Тср соединение что это
Протокол TCP
Что такое протокол TCP?
В отличие от протокола UDP гарантирует целостность передаваемых данных и подтверждения отправителя о результатах передачи. Используется при передаче файлов, где потеря одного пакета может привести к искажению всего файла.
TCP обеспечивает свою надежность благодаря следующему:
Заголовок TCP
Рассмотрим структуру заголовка TCP с помощью сетевого анализатора Wireshark:
TCP порты
Так как на одном и том же компьютере могут быть запущены несколько программ, то для доставки TCP-пакета конкретной программе, используется уникальный идентификатор каждой программы или номер порта.
Номер порта — это условное 16-битное число от 1 до 65535, указывающее, какой программе предназначается пакет.
TCP порты используют определенный порт программы для доставки данных, передаваемых с помощью протокола управления передачей (TCP). TCP порты являются более сложными и работают иначе, чем порты UDP. В то время как порт UDP работает как одиночная очередь сообщений и как точка входа для UDP-соединения, окончательной точкой входа для всех соединений TCP является уникальное соединение. Каждое соединение TCP однозначно идентифицируется двумя точками входа.
Каждый отдельный порт сервера TCP может предложить общий доступ к нескольким соединениям, потому что все TCP соединения идентифицируются двумя значениями: IP-адресом и TCP портом (сокет).
Номера портов UDP и TCP не пересекаются.
TCP программы используют зарезервированные или хорошо известные номера портов, как показано на следующем рисунке.
Установление соединения TCP
Давайте теперь посмотрим, как устанавливается TCP-соединения. Предположим, что процесс, работающий на одном хосте, хочет установить соединение с другим процессом на другом хосте. Напомним, что хост, который инициирует соединение называется «клиентом», в то время как другой узел называется «сервером».
Перед началом передачи каких-либо данных, согласно протоколу TCP, стороны должны установить соединение. Соединение устанавливается в три этапа (процесс «трёхкратного рукопожатия» TCP).
После установления соединения TCP, эти два хоста могут передавать данные друг другу, так как TCP-соединение является полнодуплексным, они могут передавать данные одновременно.
Протокол TCP/IP или как работает Интернет (для чайников)
Автор: Дубровин Борис, 13 сентября 2007 г. 18:32
В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP. Но эти термины лишь на первый взгляд кажутся сложными. На самом деле стек протоколов TCP/IP — это простой набор правил обмена информацией, и правила эти на самом деле вам хорошо известны, хоть вы, вероятно, об этом и не догадываетесь. Да, все именно так, по существу в принципах, лежащих в основе протоколов TCP/IP, нет ничего нового: все новое — это хорошо забытое старое.
Человек может учиться двумя путями:
В этой статье я предлагаю пойти вторым путем, так как понимание принципов, лежащих в основе работы Интернета, даст вам возможность чувствовать себя в Интернете уверенно и свободно — быстро решать возникающие проблемы, грамотно формулировать проблемы и уверенно общаться с техподдержкой.
Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.
Вспомните, как работает наша обычная почта. Сначала вы на листке пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Все, письмо дошло до получателя. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.
На конверте письма будет написано примерно следующее:
Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже). Обратите внимание, что аналогия с обычной почтой будет почти полной.
Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:
В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет, который содержит собственно передаваемые данные и адресную информацию — адрес отправителя и адрес получателя, например:
Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.
В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.
Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.
Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:
Диалог примерно следующий:
Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.
Зачем эти принципы надо понимать?
Ну и самое главное — эти знания крайне полезны при общении с техподдержкой.
Напоследок приведу список портов, с которыми вам, вероятно, придется столкнуться:
Несколько специальных IP адресов:
Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?
(Эти параметры задаются в настройках сетевых подключений).
Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения — принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).
Напоследок рассмотрим что же означают непонятные термины:
TCP/IP — это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).
IP протокол — это протокол так называемого сетевого уровня. Задача этого уровня — доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно — это не его задача, это задача транспортного уровня.
TCP и UDP — это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.
UDP — это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет — неважно).
Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http, ftp и пр. Например HTTP и FTP — используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.
Как посмотреть текущие соединения?
Текущие соединения можно посмотреть с помощью команды
(параметр n указывает выводить IP адреса вместо доменных имен).
Запускается эта команда следующим образом:
Имя | Локальный адрес | Внешний адрес | Состояние |
TCP | 0.0.0.0:135 | 0.0.0.0:0 | LISTENING |
TCP | 91.76.65.216:139 | 0.0.0.0:0 | LISTENING |
TCP | 91.76.65.216:1719 | 212.58.226.20:80 | ESTABLISHED |
TCP | 91.76.65.216:1720 | 212.58.226.20:80 | ESTABLISHED |
TCP | 91.76.65.216:1723 | 212.58.227.138:80 | CLOSE_WAIT |
TCP | 91.76.65.216:1724 | 212.58.226.8:80 | ESTABLISHED |
В этом примере 0.0.0.0:135 — означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.
91.76.65.216:139 — наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.
Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).
В следующих статьях мы рассмотрим, как применять эти знания, например общаясь с техподдержкой.
КОММЕНТАРИИ К СТАТЬЕ:
Спасибо)
Очень доступно и хорошо изложено.
Что такое TCP и как он работает?
Протокол управления передачей (TCP) является одним из самых важных протоколов пакета Internet Protocols. Это наиболее широко используемый протокол для передачи данных в сети связи, такой как Интернет.
Длина заголовка TCP составляет минимум 20 байтов и максимум 60 байт.
Адресация
Связь TCP между двумя удаленными хостами выполняется с помощью номеров портов (TSAP). Номера портов могут варьироваться от 0 до 65535, которые делятся как:
Управление подключениями
Связь TCP работает в модели Server / Client. Клиент инициирует соединение, и сервер либо принимает, либо отклоняет его. Для управления подключением используется трехстороннее связывание.
Установка соединения
Клиент инициирует соединение и отправляет сегмент с порядковым номером. Сервер подтверждает это со своим собственным порядковым номером и ACK сегмента клиента, который является еще одним номером последовательности клиентов. Клиент после получения ACK своего сегмента отправляет подтверждение ответа сервера.
Любой из серверов и клиентов может отправлять сегмент TCP с флагом FIN, установленным в 1. Когда принимающая сторона отвечает на это посредством ACKnowlinging FIN, это направление связи TCP закрывается и соединение освобождается.
Управление полосой пропускания
TCP использует концепцию размера окна, чтобы удовлетворить потребность в управлении пропускной способностью. Размер окна сообщает отправителю на удаленном конце, количество сегментов байтов данных, которое может получить приемник с этого конца. TCP использует медленную фазу запуска с использованием размера окна 1 и увеличивает размер окна по экспоненте после каждого успешного сообщения.
Например, клиент использует размер окна 2 и отправляет 2 байта данных. Когда подтверждение этого сегмента получено, размер окна удваивается до 4, а следующий отправленный сегмент отправляется длиной 4 байта данных. Когда получено подтверждение 4-байтового сегмента данных, клиент устанавливает размер окна 8 и т. Д.
Если упущено подтверждение, то есть данные, потерянные в транзитной сети или полученные NACK, размер окна уменьшается до половины, а медленная начальная фаза начинается снова.
Контроль ошибок и контроль потока
TCP использует номера портов, чтобы узнать, какой процесс приложения ему нужен для передачи сегмента данных. Наряду с этим он использует порядковые номера для синхронизации с удаленным хостом. Все сегменты данных отправляются и принимаются с порядковыми номерами. Отправитель знает, какой последний сегмент данных был принят Получателем, когда он получает ACK. Получатель знает о последнем сегменте, отправленном отправителем, ссылаясь на порядковый номер недавно полученного пакета.
Если порядковый номер недавно полученного сегмента не совпадает с порядковым номером, который ожидал приемник, он отбрасывается и NACK отправляется обратно. Если два сегмента поступают с одинаковым порядковым номером, значение временной метки TCP сравнивается для принятия решения.
Мультиплексирование
Способ объединения двух или более потоков данных в один сеанс называется мультиплексированием. Когда клиент TCP инициализирует соединение с сервером, он всегда ссылается на четко определенный номер порта, который указывает на процесс приложения. Сам клиент использует случайный номер порта из частных пулов номеров портов.
Используя TCP Multiplexing, клиент может взаимодействовать с несколькими различными процессами приложения за один сеанс. Например, клиент запрашивает веб-страницу, которая, в свою очередь, содержит различные типы данных (HTTP, SMTP, FTP и т. Д.), Тайм-аут сеанса TCP увеличивается, и сеанс остается открытым на более длительное время, так что накладные расходы на трехстороннюю рукопожатие могут избегать.
Это позволяет клиентской системе получать несколько соединений по одному виртуальному соединению. Эти виртуальные соединения не подходят для серверов, если тайм-аут слишком длинный.
Контроль перегрузок
Когда большое количество данных подается в систему, которая не способна обрабатывать ее, происходит перегрузка. TCP управляет перегрузкой с помощью механизма Window. TCP устанавливает размер окна, говорящий на другом конце, сколько сегмента данных нужно отправить. TCP может использовать три алгоритма управления перегрузкой:
Управление таймером
TCP использует различные типы таймеров для управления и управления различными задачами:
Таймер сохранения:
Таймер повторной передачи:
Постоянный таймер:
Timed-Wait:
Восстановление после аварий
TCP — очень надежный протокол. Он предоставляет порядковый номер для каждого байта, отправленного в сегменте. Он обеспечивает механизм обратной связи, т.е. когда хост получает пакет, он привязан к ACK, чтобы ожидал пакет, имеющий следующий порядковый номер (если он не является последним сегментом).
Когда TCP-сервер прерывает связь в середине и перезапускает его процесс, он отправляет трансляцию TPDU всем своим хостам. Затем хосты могут отправить последний сегмент данных, который никогда не был непризнан и продолжен.
Протокол TCP простым и понятным языком — как работает
На этом уровне есть два протокола, протокол UDP, который уже рассматривали и протокол TCP, который является одним из основных протоколов стека TCP/IP и интернет.
TCP — расшифровывается как (Transmission Control Protocol) протокол управления передач. В отличии от UDP, TCP обеспечивает надежную доставку данных. Сервис предоставляемый TCP называются надежная передача потока байт или (reliable byte stream) по-английский. TCP обеспечивает как гарантию доставки данных, так и гарантию сохранения порядка следования сообщений.
Поток байт
От приложения, протокол TCP получает поток байт, который может быть очень большим. Например, вы можете скачивать из интернета файл, который составляет несколько мегабайт или несколько гигабайт. Данные файлы приходят на транспортный уровень в виде одного большого потока байт.
В протоколе TCP поток байт делится на отдельные части, которые называются сегменты. Каждый сегмент отправляется отдельно получателю. Получатель со своей стороны, принимает сегменты, собирает их в один большой поток байт и отправляет этот поток байт приложению.
Гарантия доставки: подтверждение получения
Для того чтобы обеспечить гарантию доставки данных, TCP использует подтверждение получения сообщения. Рассмотрим, как это работает. Отправитель пересылает по сети некоторый сегмент данных, получатель принимает сегмент и посылает отправителю подтверждение, сокращенно ACK от английского Acknowledgment, которая говорит о том что сегмент данных получен. Затем отправляется следующий сегмент данных, снова подтверждение и так далее.
Гарантия доставки: повторная отправка
Что происходит, если произошла ошибка при передаче данных? Сегмент данных потерян в сети, он не доходит до получателя, получатель не отправляет подтверждение сообщения. Отправитель при отправке сегмента устанавливает таймер, который задает время ожидания подтверждения, если в течении этого времени подтверждение не пришло, таймер срабатывает и тот же самый сегмент отправляются повторно.
Предположим, что в этот раз сегмент дошел, получатель отправляет подтверждение, отправитель может передавать следующий сегмент данных.
Протокол TCP: скользящее окно
Работа протокола TCP отличаются от той схемы, которую мы сейчас рассмотрели. Подтверждается не каждый сегмент, а несколько сегментов следующие друг за другом, этот механизм называется скользящее окно.
Варианты подтверждения доставки
Рассмотрим остановку и ожидание. Отправитель передает данные и останавливается ожидая подтверждение. Получатель присылает подтверждение после этого передается следующая порция данных. Снова подтверждение, снова данные и снова подтверждение.
Другой вариант скользящее окно. В этом случае отправитель передает сразу несколько порций данных не дожидаясь подтверждения. Получатель отправляет одно подтверждение которое называется кумулятивное. Это означает, что получатель получил последнюю порцию данных и все предыдущие.
Время передачи сообщения
Почему на транспортном уровне эффективно использовать скользящее окно? Дело в том, что сообщение по сети передается хотя и быстро, но не мгновенно. Поэтому в среде передачи данных может находиться некоторый объем данных, который определяется скоростью передачи данных умноженной на задержку передачи данных. Этот объем небольшой для локальных сетей, где отправитель и получатель находится рядом друг с другом, поэтому задержка небольшая.
В локальных сетях, например Wi-Fi используется метод подтверждения остановка и ожидания. В крупных современных сетях с высокоскоростными каналами связи большой протяженности, например если вы хотите скачать чего-нибудь с американского сайта, такой объем данных может быть очень большой. И в этой ситуации ожидания подтверждения приводит к существенному снижению производительности.
Пример подтверждения доставки
Рассмотрим на примере работу сети.
Скользящее окно
Почему термин называется скользящее окно? Удобно представлять себе окно, которое скользит по потоку байт получаемых от приложений. У есть поток байт, разделенный на отдельные сегменты, часть сегментов уже передана, часть еще не отправлены. Для некоторых сегментов, которые уже переданы, получено подтверждение. И отправлено некоторое количество сегментов соответствующие размеру окна, для которых подтверждение не получено.
Размер окна — это количество байтов данных, которые могут быть переданы без получения подтверждения.
В примере размер окна 8 сегментов. Что происходит, если мы получили очередное подтверждение? Мы можем передвинуть окно дальше по данным, в него попадает новая порция не отправленных данных. Можно отправить эти данные получателю, после этого отправитель останавливается и дожидаются подтверждения получения следующей порции данных. Таким образом, окно скользит вдоль нашего потока байт от приложения.
Тип подтверждения
Есть два типа подтверждения, которые могут использоваться совместно с алгоритмом скользящего окна.
Для устранения этой проблемы предложено выборочное подтверждение. В этом случае получатель подтверждает получение диапазона принятых байт. Он получил первые 500 мегабайт и вторые 500 мегабайт из гигабайта и не получил всего лишь один сегмент. Отправитель вместо вторых 500 мегабайт, повторно передает всего лишь один недостающий сегмент. Выборочное подтверждение эффективно при большом размере окна TCP, но выборочное подтверждение по умолчанию не используется для этого необходимо применение дополнительных полей заголовка TCP, которые называются параметрами.
Порядок следования сообщений
Но подтверждений и повторной отправки данных недостаточно для обеспечения надежной передачи потока байт. Это защищает только от потери сегментов, но не обеспечивает сохранение порядка следования сообщений.
Какие проблемы могут произойти? Протокол IP не сохраняет порядок следования сообщений и поэтому сегменты могут прийти к получателю не в том порядке в котором они были отправлены. Кроме того, некоторые сегменты могут прийти два и более раз. Рассмотрим одну из возможных причин дублирования сегментов.
Дублирование сегментов
Предположим, отправитель передал сегмент данных получателю, получатель этот сегмент принял и передал отправителю подтверждение, но при передаче подтверждения произошла ошибка. Отправитель не получил подтверждение, сработал таймер и тот же самый сегмент данных был отправлен второй раз.
Это один из возможных вариантов, на самом деле, таких вариантов еще очень много, поэтому в протокол TCP встроен механизм защиты от дублирования и нарушение порядка следования сообщений.
Механизм очень простой, все сообщения нумеруются. В TCP нумеруются не сегменты, так как разные сегменты могут иметь разный размер, а байты.
В нашем примере 4 сегмента первый сегмент содержит байты от 0 до 1023, второй от 1024 до 2047 и так далее.
Нумерация байтов
При передаче отправитель включают в сегмент номер первого байта данных, которые в нем содержатся.
Дублирование сегментов
Рассмотрим как решается ситуация с дублированием сегментов.
Соединение TCP
TCP для передачи данных использует соединение. Соединение нужно установить перед тем, как начать передачу данных, а после того как передача данных завершена, соединение разрывается.
Задачи соединения
Установка соединения в TCP
Получатель в ответ передаёт сообщение SYN, куда включает подтверждение получения предыдущего сообщения ACK от слова acknowledge и порядковый номер байта, который он ожидает 7538, потому что на предыдущем этапе был получен байт с номером 7537.
Также отправитель включает в сегмент номер байта в потоке байт 36829. Номера байт в первом сообщении не могут быть всегда нулевыми, они выбираются по достаточно сложным алгоритмам, но для простоты можно представлять себе что эти номера выбираются случайным образом.
На третьем этапе пересылается подтверждение получения предыдущего запроса на установку соединения ACK номер следующего ожидаемого байта 36830, а также номер байта в сообщении. После этого соединение считается установленным и можно передавать данные.
Разрыв соединения в TCP
Протокол TCP предусматривает два варианта разрыва соединения: корректное, с помощью одностороннего разрыва соединения и сообщения FIN и разрыв из-за критической ситуации с помощью сообщения RST.
Рассмотрим, как выполняется корректный разрыв соединения. Сторона, которая хочет разорвать соединение пересылает другой стороне сообщение FIN и в ответ получает сообщение ACK. Однако соединение разорвано только с одной стороны.
Когда другая сторона решила, что данные для передачи у нее закончились, она также передает сообщение FIN в ответ получает сообщение ACK подтверждение. На этом этапе соединение закрыто полностью в обе стороны.
Для разрыва соединения в критической ситуации из-за ошибок в приложении или с оборудованием используется одно сообщение RST. В этом случае соединение закрывается в обе стороны. Хотя сообщение RST предназначено для использования в критических ситуациях, некоторые протоколы используют его для быстрого закрытия соединения.
Заключение
Итак мы рассмотрели протокол TCP — протокол управления передачей данных. TCP обеспечивают надежную передачу потока байт от одного приложения к другому. При этом TCP обеспечивает, как гарантию доставки данных, так и гарантию сохранении порядка следования сообщений.
TCP использует соединение между отправителем и получателем, которое необходимо установить до того, как начнется передача данных, а после завершения передачи соединение необходимо разорвать.
Рассмотрели различные варианты подтверждения сообщений. Остановка и ожидание, которые используются на канальном уровне и скользящее окно которое используется на транспортном уровне в протоколе TCP, для того чтобы повысить производительность передачи данных по протяженным высокоскоростным каналам связи, которые сейчас широко используется в интернет.
Прежде чем передавать данные в TCP, необходимо сначала установить соединение, а после завершения передачи соединение необходимо разорвать. Для установки соединения в TCP используется схема трехкратного рукопожатия. Сначала передается сообщение SYN потом SYN + ACK и на третьем шаге ACK.
Для разрыва соединения возможны две схемы. Корректное закрытие соединения требует корректной отправки обеими сторонами сообщения FIN и получении подтверждения. Разрыв соединения в критической ситуации может быть выполнен быстро, отправкой одного сообщения RST. Таким образом накладные расходы в TCP особенно при передаче небольшого объема данных значительно выше чем в UDP, но соединение и отправка подтверждений позволяют TCP обеспечивать гарантию доставки и гарантию сохранения порядка следования сообщений.