понятие о царствах жизни основные таксоны микроорганизмов

Понятие о царствах жизни основные таксоны микроорганизмов

Четыре царства жизни

Мир микроорганизмов чрезвычайно разнообразен. По мере их открытия и изучения они были разделены на следующие группы:

1. Бактерии – Schizomycetes (грибы-дробянки; лат. schizo – расщепляю и mycetes – грибы).

5. Сине-зеленые водоросли – Cyanophyta, они же цианобактерии (Cyanobacteria).

6. Спирохеты – Spirochaeta (греч. speira – спираль и chaite – волос).

7. Простейшие – Protozoa.

8. Риккетсии – Rickettsia.

9. Микоплазмы – Mycoplasma.

Единственное, что их всех объединяет, – микроскопические размеры. Однако эти организмы существенным образом различаются по многим признакам и прежде всего по уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки.

Микроорганизмы – это невидимые простым глазом представители всех царств жизни: эукариоты, прокариоты (эубактерии и архебактерии), вирусы и плазмиды. Они занимают низшие ступени эволюции, но играют важную и разнообразную роль в общей экономике природы, в круговороте веществ, в патологии человека, животных и растений.

Отличительные особенности перечисленных царств жизни следующие.

К царству вирусов и плазмид относят организмы, у которых геном представлен либо ДНК, либо РНК; у них отсутствуют собственные системы биосинтеза белка и мобилизации энергии, поэтому они являются абсолютными внутриклеточными паразитами.

Прокариоты (эубактерии и архебактерии) – это организмы, у которых еще нет оформленного ядра, а есть лишь его предшественник – нуклеоид. Он представлен одной или несколькими хромосомами, которые состоят из ДНК и свободно располагаются в цитоплазме, не отграниченные от нее никакой мембраной. Прокариоты не имеют дифференцированного аппарата митоза, у них нет ядрышка. Кроме того, они имеют рибосомы 70S, и большинство их имеет клеточную стенку, содержащую пептидогликан, который отсутствует у эукариот. Размеры прокариот варьируют в пределах 1 – 20 мкм. У прокариот нет митохондрий и хлоропластов. Среди них есть аэробные и анаэробные организмы.

Архебактерии. В 70 – 80 гг. XX в. были использованы новые признаки при создании дендрограмм (древа жизни); сравнивали гены (или их продукты), выполняющие одну и ту же функцию, у разных классов организмов, например нуклеотидные последовательности 16S рРНК (18S рРНК) из 6 или большего числа остатков. Построенные по этим признакам дендрограммы выявили три высшие таксономические группы (домена): эубактерий, архебактерий и эукариот. При этом оказалось, что архебактерии отличаются от эубактерий и эукариот в такой же степени, в какой последние отличаются друг от друга. Основные отличия архебактерий от эубактерий: химический состав жесткой клеточной стенки различный, у архебактерий она не содержит пептидогликана; у архебактерий особая химическая структура липидов, иной компонентный состав РНК-полимераз; есть повторяющиеся последовательности в составе хромосомной ДНК; наличие интронов в генах тРНК и рРНК; различие в химическом составе и строении рибосом.

Сходство архебактерий с эукариотами: наличие интронов в генах тРНК и рРНК; наличие в хромосомных ДНК повторяющихся последовательностей; сходный компонентный состав РНК-полимераз; чувствительность белоксинтезирующих систем к дифтерийному токсину; сходство ферментных систем, участвующих в процессах репликации, транскрипции и трансляции. Рибосомы архебактерий имеют сходство с рибосомами 70S и 80S.

Таким образом, существуют четыре царства жизни: эукариоты; эубактерии; архебактерии; вирусы и плазмиды.

Среди архебактерий выделяют следующие группы:

2. Экстремальные галофилы – аэробные бактерии, способные расти в насыщенном растворе NaCl (до 32 %), нижняя пороговая концентрация NaCl = 12 – 15 %. Обладают системой фотосинтеза, отличной от таковой у других фотосинтезирующих бактерий (в мембране галофильных бактерий присутствует не хлорофилл, а бактериородопсин).

3. Термоацидофилы – характеризуются высокими оптимальными температурами (от 75 до 90 °C) и низкими значениями рН (от 5 – 6 до 1 – 2), опимальными для своего роста. Сумма Г + Ц у архебактерий варьирует от 28 до 68 мол%. Экстремальные условия существования архебактерий, вероятнее всего, указывают на то, что их предки возникли тогда, когда физические условия существенно отличались от современных. Патогенных для человека видов среди архебактерий не обнаружено.

Эубактерии. Длина хромосомы Escherichia coli составляет 1,6 мм; хромосома организована в форме нуклеоида длиной в 1 мкм, т. е. в структуру в 1600 раз более короткую. Упаковка ДНК в пределах нуклеоида существует в двух вариантах: в виде длинных суперспирализованных доменов (по 1000 000 п. н. в каждом), у E. coli таких доменов 43; и в виде коротких доменов из нескольких сот пар нуклеотидов. Стабилизирующую роль в такой упаковке играют специфические белки. У энтеробактерий известно не менее 5 таких белков: H, H1, HU, IFN, HLP1, которые имеют сходство с гистонами.

Эукариоты имеют рибосомы 80S, митохондрии или хлоропласты (в этих структурах содержатся рибосомы 70S), не содержат пептидогликана; все они – аэробные организмы. К эукариотам относятся все высшие растения и животные. Жгутики у эукариот состоят из белка тубулина и представляют собой систему микротрубочек, распологающихся по типу 9 + 2 и связанных с базальным телом. Жгутики у прокариот не содержат систем микротрубочек и построены из белка флагеллина.

Источник

Раздел I.

1. Предмет, задачи и основные этапы развития медицинской микробиологии, вирусологии и иммунологии.

Предмет: изуч. морфологию, физиологию (питание, рост, размножение), иммунологию, генетику и экологию мк, имеющих мед. значение.

Задачи медицинской микробиологии.Медицинская микробиология разрабатывает методы диагностики, способы специфической профилактики и терапии инфекционных болезней. Она тесно связана с клиникой инфекционных болезней, эпидемиологией, гигиеной и рядом других смежных дисциплин.

— Установление этиологической роли различных микроорганизмов в патологии человека. На этом строится диагностика инфекционных заболеваний.

— Разработка методов диагностики и профилактики инфекционных заболеваний.

— Изучение болезнетворных свойств патогенных микроорганизмов с целью определения клинической и эпидемиологической значимости того или иного микроорганизма.

— Контроль за эффективностью лечебных и профилактических мероприятий.

— Изучение асептики, антисептики, дезинфекции, стерилизации.

— Изучение механизмов распространения микроорганизмов во внешней среде, в основном в питьевой воде, пище, воздухе.

— Изучение вопросов охраны внешней среды.

Главная задача медицинской микробиологии – ликвидация инфекционных болезней.

ИСТОРИЯ РАЗВИТИЯ МИКРОБИОЛОГИИ

Становление микробиологии как науки происходило в три этапа. На первом этапе было установлено существование микробов в природе; на втором – дифференцированы виды микробов, на третьем – началось изучение иммунитета и профилактики инфекционных болезней, вызванных патогенными микробами.

Описательный период.Этот период развития микробиологии берет начало от первых наблюдений голландского естествоиспытателя Антония ван Левенгука (1632–1723), который, изготовив микроскоп, увеличивающий объект в 160–300 раз, сумел увидеть и описать все основные формы бактерий, назвав их animalcula viva (живые зверьки). В 1695 г. был издан труд «Тайны природы, открытые Антонием Левенгуком».

После исследований Левенгука были сделаны попытки доказать роль микробов в происхождении инфекционных заболеваний. В 1840 г. в печати появилась статья Ф. Генле «О миазмах и контагиях», где автор обосновал этиологическое значение микробов в происхождении инфекционных заболеваний, впоследствии названное триадой Генле–Коха:

1) предполагаемый возбудитель должен с постоянством обнаруживаться при определенной болезни и не встречаться при других заболеваниях и у здоровых людей; 2) патогенный микроб должен быть выделен из организма в чистом виде; 3) должна быть доказана способность микроба вызывать соответствующее заболевание у экспериментальных животных.

В период описательной микробиологии были установлены возбудители фавуса (И. Шенлейн, 1839) и стригущего лишая (И. Груби, 1843), в крови больных животных обнаружены бациллы сибирской язвы (А. Поллендер, 1849; К. Давен, 1850).

Физиологический период развития.Разрозненные факты описательного периода микробиологии были обобщены и приумножены основателем микробиологии и современной медицины французским ученым Луи Пастером (1822–1895), с именем которого связано развитие второго, физиологического периода микробиологии и эпохальные открытия сущности брожения (1857), невозможности самопроизвольного зарождения (1860), причин порчи пива и вина (1865), болезней шелковичных червей (1868), микробной обусловленности и заразности инфекционных болезней (1881), методов изготовления вакцин и способов предохранения от куриной холеры, сибирской язвы и бешенства (1882–1885).

Большую роль в истории развития микробиологии сыграли труды немецкого ученого Р. Коха (1843–1910), который разработал метод выделения чистых культур микроорганизмов на плотных питательных средах, в частности ввел в практику агар–агар, желатину, свернутую сыворотку, кусочки овощей, предложил методы окраски бактерий анилиновыми красителями, усовершенствовал микроскоп, благодаря чему выделил и описал возбудителей сибирской язвы, туберкулеза и холеры, а его ученики и последователи к концу 19 в. открыли почти всех других возбудителей бактериальных инфекций.

Иммунологический этап.Основоположником иммунологического этапа в развитии микробиологии является выдающийся русский ученый И. И. Мечников (1845–1916) – творец фагоцитарной теории иммунитета, за разработку которой ему была присуждена Нобелевская премия. Он положил начало учению об антагонизме микробов, о причинах преждевременного старения и возможности продления жизни человека, внес большой вклад в изучение туберкулеза, холеры, сифилиса. И. И. Мечников является создателем русской школы микробиологов, труды которых легли в основу развития современной медицины. Среди самых удачливых охотников за микробами следует выделить Ф. А. Леша, впервые обнаружившего дизентерийную амебу, и первооткрывателя возбудителя кожного лейшманиоза П. Ф. Боровского, основателей эпидемиологии и паразитологии в России Д. К. Заболотного, В. К. Высоковича и Е. И. Марциновского.

Русские ученые стояли у истоков развития многих новых разделов и научных направлений в микробиологии. В частности, в конце 19 в. А. М Безредка положил начало учению о местном иммунитете. Труды С. Н. Виноградского, открывшего нитрифицирующие и азотфиксирующие бактерии, легли в основу развития сельскохозяйственной микробиологии. Д. И. Ивановский в 1892 г. открыл вирусную природу мозаичной болезни листьев табака и по праву является основоположником вирусологии

2. Методы диагностики инфекционных заболеваний.

А. Бактериоскопический метод(прямая мк/скопия, после окраски, лиминесцентная мк/ск. и проч.)

Б. Биологический метод– заражение моргом чувствительных животных (напр.,M.tuberculosis– морские свинки) и наблюдение характерной клиники заболевания

В. Серологический метод– опр. АТ или АГ в биол. жидкостях методом реакций АГ+АТ (РА, РПГА, РНГА, РП, РТГА, РСК; ИФА, РИФ)

Г. Молекулярно-генетич. методы (ПЦР – полимеразная цепная реакция

Д. Бактериологический метод– выделение чистых культур и их идентификация.

Он состоит из след этапов:

0.Обработка первичного материала, способствующая выделению чистого материала:

а) инфиц. лабор. животных (для размножения мк®)

б) кипячение (для выделения спор)

в) обраб. к-той или щелочью

г) посев на среды обогащения

д) мк/ск с окраской по Граму

1.Рассев исход. мат-ла на пластинчатый агар (МПА, электив. или диффер-диагн. среды), механическое разобщение:

а) разведение в пробирках (1:10, 1:100, 1:1000) и высев на пластинч. агар

б) рассев шпателем на пласт. МПА (последовательно в несколько чашек, погрузив шпатель в материал всего один раз)

в) рассев на сетора пластинч. агара

1.Культ-ние посевов в термостате (анаэростате) при 37°С 24-48 часов

2.Пересев полученных культур на др. среды (по 1 на каждую пробирку)

2′.Культ-ние посевов в термостате (анаэростате) при 37°С 24-48 часов

3.Определение чистоты выделенных культур, морфологических и тинкториальных свойств в окр. по Граму

4.Идентификация выделенных чистых культур по фермент. и серологич. свойствам.

3. Систематика микроорганизмов. Классификация, идентификация и номенклатура. Понятие вида в микробиологии.

Систематика– это наука, к/я решает вопросы клсф мк-в. Располагает всех мкпо опред группам в соответствии с их сходными ФТ и ГТ пр!! Эти группы, объединяющие отдельных мк, наз ТАКСОНАМИ. Выделяют след таксономические единицы:вид (species) > род (genus) > семейство (familia) > порядок > класс > тип > царство (Procaryotae, Eucaryotae, Vira)

Т.к. внутри вида т/же есть различия м/у мк, то выделяют ещё:

ШТАММ – объединяет мкодного и того же вида, но выделенные из опред источника и в опред время.

КЛОН – это культура мк, полученная из единичной клетки, к/я размножилась и дала начало целой популяции.

По морфологическим признакам выделяют 3 основных группы:

Номенклатура– список названий разл групп мк. Кажд мким св назв в осн к/го положена бинарная система, т.е. название мксостоит из названия рода и вида (Staphilococcus aureus). Как правило, родовое название пишется с заглавной буквы, м.б. сокращённым, видовое – полностью.

4. Гено- и фенотипические характеристики, используемые для изучения микроорганизмов.

1. Морфология: размеры, форма, тинкториальные свойства, наличие и кол-во жгутиков, пилей, капсулы.

2. Характер роста на различных средах (помутнение-осадок-пленка – на жидких средах, или: форма, прозрачность, пигмент, размеры, консистенция, структура и край колонии – на плотных средах).

3. Биохимические свойства: расщепление углеводов, желатина, ГАГ и проч.

4. Продуцируемые моргом токсины

5. Антигенные свойства компонентов морга

6. Характер вызываемого им иммунитета

5. Понятие о царствах жизни, основные таксоны микроорганизмов.

По оформленности генетического материала все живое делят на три царства: Procaryotae (прокариоты), Eucaryotae (эукариоты), Vira (вирусы).

Микробы принадлежат всем трем царствам, но б-во патогенных моргов – к прокариотам и вирусам.

6. Понятия штамм, колония, клон, культура микроорганизмов.

ШТАММ – объединяет микроорганизмы одного и того же вида, но выделенные из различных источников или даже из одного и того же источника, но в разное время. Штаммы одного вида могут быть абсолютно идентичными или различаться по отдельным признакам, нпр., по способности ферментировать к.-л. сахар, по устойчивости к к.-л. антибиотику и т.д.

КОЛОНИЯ – изолированные скопления клеток, образующиеся на поверхности плотных пит. сред.

КЛОН – это культура микроорганизмов, полученная из единичной клетки, которая размножилась и дала начало целой популяции.

ЧИСТАЯ КУЛЬТУРА – популяция микробов. состоящая из особей одного вида.

7. Основные отличия прокариотических и эукариотических клеток.

Микроорганизмы относятся к царству прокариот:

1) отсутствие ядерной мембраны,

2) слабо развитая ЭПС,

3) нет митохондрий, хлоропластов,

5) не обладают эндоцитозом.

8) Цитоплазма имеет вид зернистого образования, куда входят различные вакуоли, рибосомы, гликоген, крахмал, зерна волютина (питательный запас).

8. Характеристика основных морфологических форм бактерий.

По морфологическим признакам выделяют 3 основных группы:

микрококки, диплококки, тетракокки, стрептококки, стафилококки, сарцины

короткие, длинные, толстые, тонкие, могут выстраиваться друг за другом, в виде частокола, под углом (в виде V), с закругленными концами, с заостренными концами, коккобациллы (оч. мелкие палочки, их можно спутуть с кокками)

— в виде запятой (напр., вибрион холеры)

— в виде латинской S (напр., Campillobacter, Helicobacter

Форма тех или иных микроорганизмов может изменяться в зависимости от способа культивирования, внутри макроорганизма, поэтому часто отмечается полиморфизм.

По размеру различают морги:

9. Строение бактериальной клетки. Обязательные и необязательные органоиды.

Клеточная стенка— это необязательный структурный элемент. Ее не имеют микоплазмы,L-формы микроорганизмов.L-формы образуются из обычных микроорганизмов, которые по ряду причин теряют клеточную стенку. Без клеточной стенки микроб более уязвим к факторам окружающей среды.

ЦПМ имеет специфические выпячивания внутрь цитоплазмы – мезосомы. Они делятся на центральные и латеральные. Мезосомы способны соединяться с ДНК и участвовать в делении бактериальной клетки- растаскивают нити ДНК по полюсам.

Многие микроорганизмы имеют капсулу, она состоит из скопления слизистого материала и выполняет защитную функцию. У патогенных микроорганизмов капсула образуется только внутри макроорганизма, она является фактором патогенности, препятствует фагоцитозу, доступу к микробу антител, бактериофагов. Капсула не окрашивается обычными красителями, только по Гимсу- Бурри. Препарат смешивают с черной тушью, которая образует темный фон, затем окрашивают фуксином.

10. Основные отличия Грам «+» и Грам «—» бактерий. Механизм окраски по Граму.

Клеточная стенка.Это внешняя структура бактерий толщиной 10–35 нм, отделенная от цитоплазматической мембраны очень узким ободком периплазматического пространства. Она несет в основном формообразующую и защитную функции.

Главным компонентом клеточной стенки бактерий является особый, только им присущий гетерополимер, который называется пептидогликаном.Это вещество состоит из параллельно чередующихся полисахаридных (гликановых) цепей, поперечно скрепленных пептидными связями. Пептидогликан придает клеточной стенке бактерий большую прочность и защищает их от действия осмотического давления, которое может достигать внутри клетки 20–25 атм.

При действии лизоцима, пенициллина и некоторых других веществ, разрушающих пептидогликан или нарушающих его синтез, бактерии вначале превращаются в сферопласты, а далее, полностью утратив клеточную стенку, – в бесформенные протопласты, быстро подвергающиеся плазмолизу. Дефектные по клеточной стенке бактерии, которые образуются в организме, обладают жизнеспособностью и патогенностью, называют L–формами в честь института Листера, где они были открыты.

Количественное содержание пептидогликана определяет характер окраски бактерий и других прокариот по Граму. Те из них, которые содержат в клеточной стенке большое его количество (около 90 % пептидогликана), окрашиваются по Граму в сине–фиолетовый цвет и их называют грамположительными, все другие, содержащие в оболочке 5–20 % пептидогликана, – в розовый цвет и их называют грамотрицательными. Толщина слоя пептидогликана в клеточной стенке грамположительных бактерий в несколько раз больше, чем у грамотрицательных.

Помимо пептидогликана, в клеточной стенке грамположительных бактерий содержатся тейхоевые кислоты, полисахариды и белки. Грамотрицательные бактерии покрыты наружной мембраной, в состав которой входят липополисахариды и базальные белки.

Для окраски по Граму необходимо подготовить: 1) феноловый раствор генцианового фиолетового (генцианвиолет – 1 г, этанол 96 % – 10 мл, фенол кристаллический – 2 г, вода дистиллированная – 100 мл); 2) раствор Люголя – концентрированный раствор калия иодида (2 г), в котором растворяют кристаллический йод (1 г), а затем прибавляют дистиллированную воду (300 мл); 3) этанол 96 %; 4) водный фуксин Пфейффера.

Техника окраски по Граму.1. Фиксированный мазок 1–2 мин окрашивают раствором генцианвиолета (по методу Синева его покрывают пропитанной тем же красителем полоской фильтровальной бумаги, которую смачивают 2–3 каплями воды).2. Слив генцианвиолет (сняв полоску бумаги Синева), мазок 1 мин обрабатывают раствором Люголя и, не промывая водой, сливают его.3. Обесцвечивают спиртом в течение 0,5 мин, промывают водой.4. Окрашивают 1–2 мин фуксином Пфейффера.5. Мазок ополаскивают водой и высушивают.

11. L-формы бактерий. Морфология микоплазм и других молликут.

При действии лизоцима, пенициллина и некоторых других веществ, разрушающих пептидогликан или нарушающих его синтез, бактерии вначале превращаются в сферопласты, а далее, полностью утратив клеточную стенку, – в бесформенные протопласты, быстро подвергающиеся плазмолизу.

Дефектные по клеточной стенке бактерии, которые образуются в организме, обладают жизнеспособностью и патогенностью, называют L–формами в честь института Листера, где они были открыты.

Также морг может лишаться клет. стенки в результате длительного культ-ния на пит. средах в лабораториях.

Микоплазмы (сем Mycoplasmacea, класс Mollicutes) не способны синтезировать компоненты клеточной стенки. Вместо неё микоплазмы покрыты трехслойной эластичной мембраной, состоящей из липопротеиновых соединений, фосфолипидов с включением стеринов, которых нет у бактерий и риккетсий. Содержат большое количество белка и нуклеиновых кислот; количество углеводов варьирует.

Морфология и способы размножения.Большинство из них – факультативные анаэробы. Так как микоплазмы не имеют ригидной оболочки, они очень полиморфны. В мазках из культур обнаруживаются различные микроструктуры: гранулы, в виде крошечных кокков и элементарных телец; крупные шары; кольца; палочки, нити и ветвящиеся мицелиальные формы; аморфные массы, меняющиеся в конфигурации. Размеры микоплазм варьируют от 125–250 нм у мелких гранулярных форм до 0,4 –150 мкм у нитевидных структур. Микоплазмы не образуют жгутиков, капсул и спор. По Граму окрашиваются отрицательно, лучше окрашиваются по Романовскому–Гимзе. Размножаются путем бинарного деления, некоторые способны к почкованию и сегментации.

Колонии мелкие с приподнятым центром («яичница глазунья»), врастают в среду. На поверхности колоний располагаются крупные, часто вакуолизированные клетки, в глубине – мелкие, оптически плотные организмы.

Методы микроскопии.В световом микроскопе можно обнаружить лишь самые большие формы и виды микоплазм, размеры которых превышают 0,2 мкм в длину и в поперечнике. В живом состоянии их изучают в темном поле и фазово–контрастном микроскопе, ультраструктурные элементы выявляют при электронной микроскопии.

12. Споры и спорообразование у бактерий, методы выявления спор.

Спорообразование наблюдается в условиях, неблагоприятных для вегетативных форм. У бактерий выделяют 3 вида спор:

1) ЭНДОСПОРЫ (истинные споры) – располагаются внутри, имеют высокий коэффициент светопреломления.

2) АРТОСПОРЫ – обр-ся в рез фрагментации вегетирующих Б!!

3) ХЛАМИДИОСПОРЫ (микроцисты) – формируются в рез утолщения стенок вегетирующей и накопления запасных пит в-в.

К спорообразованию способна лишь небольшая группа эубактерий, а из патогенных для чка только – Clostridium и Bacillus. Каждая вегетативная образует 1 эндоспору. Споры УСТОЙЧИВЫ к температуре, высыханию, радиации и химическим в-вам (включая 70° этанол). Могут сохраняться оч длительное время. Предположительно споры могут храниться в сухой почве до 1000 лет, но фактически уже за 50 лет 90% спор теряют жизнеспособность.

Морфологически споры м.б. круглыми, овальными, эллиптическими, некоторые снабжены «рёбрами жесткости».

ПРОЦЕСС СПОРУЛЯЦИИ начинается сразу при возникновении дефицита питательных в-в и длится около 8ч, при этом никаких внешних источников питания или энергии не требуется. Стимулируют – глюкоза, Р и NH4, угнетают –пептон, лактоза, NaCl, CaCl2. Выделяют следЭТАПЫ:

1) Подготовительная стадия – прекращается деление, начинается накопление липидных включений.

2) Стадия предспоры – появляется эллиптическая оболочка, окружающая участок цитоплазмы с изменённой плотностью и тинкториальными свойствами.

3) Формирование оболочки

4) Стадия созревания споры – происходит её уплотнение и прекращение любых перемещений в –спорангии.

5) Разрушение родительской .

В оптимальных условиях происходит прорастание споры. Сначала она активно поглощает воду и набухает, усиливается дыхание, возрастает активность ферментов, происходит выделение АК – активация метаболизма (в этот период спора УТРАЧИВАЕТ ТЕРМОРЕЗИСТЕНТНОСТЬ). Затем спора лопается и из неё выходит вегетативная форма.

13. Некультивируемые формы бактерий.

Риикетсии активно окисляют глутаминовую кислоту. В организме больного обнаруживаются в цитоплазме и в ядре клеток, являются облигатными внутриклеточными паразитами на бесклеточных средах не культивируются.

14. Морфология хламидий и риккетсий.

Гр- и по структуре имеют много общего с другими Гр- бактериями. Полиморфные микроорганизмы, могут быть в виде кокко- бактерий, палочковидной, нитевидной формы. Облигатные внутриклеточные паразиты, могут размножаться только в живой клетке. Во внешней среде сохраняются некоторое время. У рикеттсий выделяют 2 морфоформы, которые образуются в клетке хозяина:

Вегетативная форма, которая размножается внутри клетки.

Покоящаяся форма, сохраняется в клетке, но не размножается. Имеет меньшие размеры. Вызывают хронический сыпной тиф.

Рикеттсии обладают минимальным собственным обменом веществ из-за особого строения ЦПМ. Они практически не способны выделять продукты метаболизма, это метаболически зависимые от клетки- хозяина микроорганизмы. Культивируются на куриных эмбрионах, культурах клеток, в живом организме (организме членистоногих).

15. Морфологическая характеристика грибов.

У низших грибов споры образуются в специальных закрытых спорангиях. Споры, закрытые оболочкой спорангия, называются эндоспорами. У высших грибов экзоспоры- соприкасаются с внешней средой.

Coccidioidesвызывают системное заболевание кокцидиоз, острая форма напоминает грипп. При хронической форме поражается костная ткань. Образует эндоспоры. На питательных средах образует воздушный мицелий. Часто встречается на фоне ВИЧ-инфекции.

16. Морфологическая характеристика актиномицетов.

2) Проактиномицеты. У этих микроорганизмов сохраняется мицелий, образуют артроспоры. К ним относятся Nocardia- вызывают нокардиоз.

17. Морфологическая характеристика простейших.

Простейшие (Protea) – одноклеточные живые существа. Морфологически их делят на: амебовидные, инфузории,

18. Химический состав бактерий. Пептидогликан, тейхоевые кислоты, липополисахарид – структура, механизмы биологического действия.

Микроорганизмы по своему химическому составу похожи на другие живые формы. 75-80% содержания воды. Белки, жиры, углеводы, нуклеиновые кислоты.

Белки входят в состав бактерий в виде простых, сложных, комплексных соединений, в состав липопротеидов. Белки выполняют роль ферментов. Различают структурные белки и ферменты.

Жгутики. В их состав входят белки- флаггелин- полимерное белковое соединение. Он состоит из отдельных компонентов линейной молекулярной формы, скрученных в виде канатов. Белок, входящий в состав жгутиков, обладает выраженными антигенными свойствами. На этот антиген жгутиков в макроорганизме вырабатывабтся антитела и сенсибилизированные лимфоциты.

Пили состоят из белка пилина. Этот белок обладает антигенными свойствами, но у многих микроорганизмов он гомологичен по аминокислотному составу.

Наружная мембрана Гр+ и Гр- бактерий содержит чистые белки или их комплексные соединения. Например, золотистый стафилококк имеет чистый белок- белок А. Этот белок располагается на наружной мембране и может связываться с молекулой IgG. У стрептококков имеется белок М. Этот белок может связываться с молекулой иммуноглобулинаG, у стрептококков выполняет функцию адгезина с помощью которого стрептококки связываются с мембраной клеток. Чистый белок входит в состав капсулы некоторых микроорганизмов.

Полипептидная капсула имеется у возбудителя сибирской язвы.

Клеточная стенка – у Гр+ и Гр- микробов. Белок входит в состав пептидогликана. У Гр+ бактерий пептидогликан расположен в несколько слоев. Пептидогликан в природе имеется только в составе бактерий и является самым мощным раздражителем иммунной системы макроорганизма. Для бактерий он обеспечивает механическую устойчивость, выполняет роль каркаса. Пептидогликан обладает рядом биологических активностей:

— Является довольно сильным антигеном.

— Обладает пирогенными свойствами, т.е. вызывает лихорадочное состояние.

— Вызывает воспалительные реакции в сосудах кишечника.

Белки встречаются также в составе ЦПМ. Она имеет 2 белковых слоя- наружный и внутренний, между которыми- слой липидов. Цитоплазма, рибосомальные белки отличаются от белков эукариотических клеток константой седиментации- скоростью осаждения в ультра- центрифуге. У бактерий она составляет 70Sи 80Sу эукариот. Действие ряда антибиотиков блокируют синтез белка рибосомами бактерий.

Ядерный материал белка не имеет. У микроорганизмов имеются особые белки, которые способны связывать атомы железа. Эти белки- сидерофоры или аэробактин. Эти белки усиливают патогенные свойства микроорганизмов. Вдоль каналов бактериальных клеток, по которым проходят питательные вещества, содержатся белок, имеющий большое значение в обмене веществ- порин.

— Способны к ориентации

— Способны к агрегации

— Играют большую роль в обменных процессах.

— Состоят из жирных кислот, в основном насыщенных- С15-С18. У Гр- микробов- С16- С18. Часть жирных кислот обладает выраженными патогенными свойствами- миколовая, фтионовая. По спектру летучих жирных кислот часто проводят идентификацию микроорганизмов.

Углеводы. У микроорганизмов встречаются редкие углеводы, характерные только для них- маннитол, эритритол. Углеводы имеются в составе капсулы. Особенно много полисахаридов в клеточной стенке у Гр+.

2- Сердцевинный полисахарид.

ЛПС обладает свойствами эндотоксина, выраженными антигенными свойствами(О- антиген). Липид А обеспечивает токсические свойства полисахарида, и если из состава ЛПС удалить липид А его токсические свойства теряются. Сердцевинный полисахарид обладает антигенными и иммунномоделирующими свойствами. О- боковая цепь является специфическим свойством. В зависимости от ее строения проводится серологическое типирование бактерий. Она состоит из различных углеводов, сахаров(галактоза, глюкоза, манноза), специфичных только для бактерий сахаров: абеквоза, паратоза, политоза.

ЛПС оказывает следующие воздействия на организм:

1) обладает пирогенным действием вызывает лихорадку

2) вызывает гемодинамические расстройства и нарушения ССС, резко уменьшает АД

3) вызывает агглютинацию ФЭ крови тромбоз

4) вызывает диарейные состояния

5) является митогеном и стимулирует В-лимфоциты

6) обладает АГ свойствами

7) стимулирует образование цитокинов, а они в свою очередь действуют на др системы МК, может даже вызвать шоковое состояние

вызывает ЭНДОТОКСИНОВЫЙ ШОК

ЛПС может вызывать лейкоцитоз, обладает протекторными свойствами – сдерживает рост и размножение раковых , ↓ чувствительностьМКк ИО.

Бактерии, имеющие полный состав ЛПС, образуют S-колонии. Эти колонии имеют ровные края, гладкую поверхность, более выраженные патогенные свойства. Бактерии с нарушенным синтезом ЛПС (отсутствует О-боковая цепь и часть сердцевинного полисахарида) образуютR-колонии: неровный край, шероховатая поверхность, сниженные патогенные свойства. Для выделения ЛПС из микробной клетки используется:

В чистом виде ЛПС выпускается промышленностью, используется как иммунностимулятор, в основном используется его полисахаридная часть без липида А. В зависимости от концентрации липополисахарида он вызывает в организме:

— Гемодинамические расстройства со стороны ССС.

— Коагуляцию клеточных элементов крови, плазмы, в результате чего образубтся тромбы.

— Митогенные свойства, стимулирует образование В- лимфоцитов.

Очень большое значение имеет эндотоксиновый шок. ЛПС может задерживать рост раковых клеток. Способствует снижению чувствительности макрооранизма к радиоактивному излучению.

19. Ферменты бактерий. Основные классы, генетический контроль, классификация, характеристика ферментов вирулентности.

Ферменты участвуют во всех обменных процессах. Ферменты делятся на экзоферменты, которые выделяются в окружающую среду, где они расщепляют питательные вещества. Эти вещества поступают внутрь клетки, где расщепляютсяэндоферментами.

По постоянству действия:

— Ферменты, действующие только при наличии субстрата – адаптационные: ферменты транспорта и катаболизма лактозы – галактоздпермиаза,-галактозидаза, галактозидацетилтрансфераза.

В целях диагностики определяют такие ферменты моргов: лецитиназа, уреаза, сахараза, мальтаза, гиалуронидаза,

1) гиалуронидаза – расщепляет ГАГ (матрикс соедин. ткани), что облегчает механическое продвижение по ткани

2) уреаза – расщепляет мочевину с образованием аммиака, что помогает выжить в очень кислой среде

3) гемагглютинины – запускают агглютинацию крови, что создает благоприятные условия для роста и размножения моргов.

4) лецитиназа – расщепляет желток куриного яйца

5) пенициллаза – расщепляет пенициллин (первый антибиотик)

20. Метаболизм микроорганизмов. Механизмы поступления веществ. Классификация и состав питательных сред.

Микроорганизмы используют питательные вещества для построение компонентов бактериальной стенки и для получения энергии. По характеру захвата пищи бактерии относятся к ОСМОФИЛАМ, т.е. питаются веществами, растворёнными в воде. Как и др мкони нуждаются в большом кол-ве минеральных в-в (С, О, N, S, Р, Са, Fe и др).

Основным источником углерода для б! могут служить неорг соед-я (чаще СО2), из которых мксинтезирует орг в-ва – этоАУТО- или ФОТОТРОФЫ(синегнойная палочка). Если же мкнуждаются в орг соед-ях, к/е служат им источником углерода и азота, то их наз.ХЕМО- или ГЕТЕРОТРОФАМИ. В результате ассимиляции и окисления орг в-в (из прир соед-й чаще всего исп-ся полисахариды – крахмал, целлюлоза), выделяется азот.

Помимо этих в-в, мкнеобходимы доп в-ва – факторы роста, к ним относится большое кол-во АК, пуриновые и пиримидиновые основания, витамины. Они входят в состав микробной, но синтезировать их самостоятельно они не могут, поэтому факторы роста обязательно должны присутствовать в пит среде у некоторых б. Если мкнуждаются в факторах роста –АУКСОТРОФЫ, если нет –ПРОТОТРОФЫ.

Источником N и Sдля мкслужат сульфаты, нитраты, карбонаты и др, к/е восстанавливаются до H2S и N2. Самый распространённый источник N –аммонийные соли (восстанавливаются до N2); т/же АК. Источником S явл H2S (в прир усл из него восст-ся S с участием Beggiatoa) и АК, содержащие S.

Осн преградой на пути пит в-в явл мбна. Ч/з неё могут переноситься только те в-ва, для к/х есть спец транспортная система. Существует несколько типов транспорта веществ:

ПРОСТ ДИФФУЗИЯ – неспецифич проникновение в-в в , зависит от размеров и липофильности молеклы.

ОБЛЕГЧЁННАЯ ДИФ-Я – по градиенту конц (без затрат эн) с помощью ферментов СУБСТРАТСПЕЦИФИЧНЫХ ПЕРМЕАЗ или ТРАНСЛОКАЗ.

АКТИВНЫЙ ТРАНСПОРТ – с затратой энергии и при участии спец ферментов, против градиента конц.

ТРАНСЛОКАЦИЯ ГРУПП – происходит перенос и трансформация молекулы: глюкоза → глюкозо-6-фосфат.

КЛСФ ПИТАТЕЛЬНЫХ СРЕД:

Жидкие (МПБ, желчный и сахарный бульоны, пептонная вода …)

Полужидкие (полужидкий агар…)

Плотные (МПА, свёрнутая сыворотка крови …)

Сухие (Левина, Плоскирева…)

Искусственные: а) животные (МПА, МПБ, МПЖ)

б) растительные (настои сена, отвары злаков, дрожжей, фруктов…)

Естественные: а) животные (кровь, сыворотка, жёлчь)

б) растительные (кусочки овощей или фруктов)

Сложные (кровяные, сахарные, сывороточные питательные среды…)

Среды консервирования (для первичного посева и транспортировки) – предупреждают отмирание патогенов и подавляют рост сапрофитов: гипертонический р-р, глицериновая смесь…

Среды обогащения – для накопления опред группы бактерий за счёт создания условий, оптимальных для одних и неблаг для др видов: селенитовая среда, пептонная щелочная вода, солевой и жёлчный бульоны…)

Элективные, селективные среды – для отдельных видов, готовятся с учётом биохимических и энергетических потребностей мк. Выделяют кровяные и сывороточные (Борде–Жангу), яичные (Левенштайна–Йенсена, ЖСА…) и др. среды (ЖСА, УКА, Эндо, Плоскирева…).

Дифференциально-диагностические среды– для изучения и идентификации отдельных групп, видов, типов б!! В основе различные в-ва, при расщеплении к/х происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки, мочевина…) сторону. В них часто вносят индикаторы → визуально оценить изменение рН. Напр, сдвиг в КИСЛУЮ сторону вызывает покраснениеиндикатора Андреде (в основе фуксин) или пожелтение при использованиибромтимолового синего, а при сдвиге в ЩЕЛОЧНУЮ сторону они не меняют окраски.

Для выделения чистых культур применяют оптимальные питательные среды с фиксированным рН. Большинство б! способны расти на разл пит средах, за исключением хламидий и риккетсий, к/е не растут вне .

Дифференциально-диагностические средыиспользуются для изучения и идентификации отдельных групп, видов, типов б. В их основе различные органические и неорг в-ва, при их расщеплении происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки, мочевина…) сторону. В эти среды часто вносят разл индикаторы, позволяющих визуально оценить изменение рН. Напр, сдвиг в КИСЛУЮ сторону вызывает покраснениеиндикатора Андреде (в основе фуксин) или пожелтение при использованиибромтимолового синего, а при сдвиге в ЩЕЛОЧНУЮ сторону они не меняют окраски.

Дифф.-диагн. среды Эндо, Левина, Плоскирева прм для диагностики кишечных заболеваний (шигеллёзов, сальмонеллёзов). Готовятся они в чашках Петри, в основе МПА + лактоза (ферментируется только E.coli, но не патогенными мк) + индикатор.

ЭНДО. Индикатор по типу индикатора Андреде, лучше держать в тёмном месте. Растущая колония E.coli вырабатывает конечные продукты → окраска красная, часто с металлическим блеском; Shigella и Salmonella → бесцветные колонии.

ПЛОСКИРЕВА. Индикатор – нейтральный красный; рН=7 бесцветный (патогенный б!), рН 800) – это IS–ЭЛЕМЕНТЫ (“ВСТАВОЧНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ”), к/е содержат гены, не контролирующие признаки бактерий, но встраиваясь в ДНК вместе с транспозонами или без них перестраивают геном → мутации.

В цтпл Б! м.б. доп АВТОНОМНЫЕ уч-ки ДНК, имеющие 2-хцепочечную структуру и пальцевидную форму, но в сотни раз 800) – это IS–ЭЛЕМЕНТЫ (“ВСТАВОЧНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ”), к/е содержат гены, не контролирующие признаки бактерий, но встраиваясь в ДНК вместе с транспозонами или без них перестраивают геном → мутации.

В цтпл Б! м.б. доп АВТОНОМНЫЕ уч-ки ДНК, имеющие 2-хцепочечную структуру и пальцевидную форму, но в сотни раз 100 раз).

индуцированные – получают под влиянием мутагенов.

По КОЛИЧЕСТВУ МУТИРОВАВШИХ ГЕНОВ:

ГЕННЫЕ – затрагивают один ген, чаще всего – точковые,

Точковые – замену или вставку пары АО в ДНК → изменение 1 кодонавместо одной АК кодируется другая или нонсенскодон (нонсенсмутация) – этоПРЯМАЯ Мт. Впоследствии может возникнутьвторичная(ОБРАТНАЯ) мутация в этом же гене → восстановление дикого генотипа и фенотипа.

Вставка иливыпадение одной пары АО → изменение всех последующих кодонов в пределах 1 гена (Мт со сдвигом считывания).

хромосомные – распространяются на несколько генов, возникают в результате выпадения нуклеотидов (ДЕЛЕЦИЯ), поворота участка ДНК на 180° (ИНВЕРСИЯ), повторения фрагмента ДНК (ДУПЛИКАЦИЯ). Один из механизмов связан с перемещением Is-ПОСЛЕДОВАТЕЛЬНОСТЕЙ и ТРАНСПОЗОНОВ из одного участка ДНК в другой или из хромосомы в плазмиду и наоборот → нарушается функция гена.

По ФЕНОТИПИЧЕСКИМ ПОСЛЕДСТВИЯМ:

Нейтральные–фенотипически не проявляются.

Условно-летальные – приводят к изменению функциональной активности фермента. В зависимости от условий окр среды мкмогут сохранять свою жизнеспособность или утрачивать ее. Так, например, ts-мутанты (температурочувствительные) могут синтезировать ферменты, активные при 37°С, но неактивные при 42 °С, у Б!! дикого типа – активны при обеих t°C.

Летальные – характеризуются полной утратой способности синтезировать жизненно важные ферменты (особенно ДНК-полимераз).

Мутации проявляются в фенотипе в виде утраты или изменения морфологических и БХ признаков: жгутиков, пилей, капсулы, стенки; способности ферментировать углеводы, синтезировать опред АК, витамины и другие соединения, устойчивость к лекарствам или дезинфектантам и т. д.ауксотрофы, растут только в среде с готовым продуктом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *