Тригонометрия наука о чем
Тригонометрия наука о чем
Тригонометрия
Тригонометрия в жизни
ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ
Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.
Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей.
Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.
· точного определения времени суток;
· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны ;
· нахождения географических координат текущего места;
· вычисления расстояния между городами с известными географическими координатами.
Гномон— древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),
Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)
Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений
Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось
Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).
Формула сердца. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.
Также тригонометрия помогает нашему мозгу определять расстояния до объектов.
Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея «измерения углов» не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс
Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму
d B и измерим длину с отрезка АВ. Затем измерим, например
с помощью астролябии, углы A и B . Эти данные, т.е. c , a и b
позволяют решить треугольник АВС и найти искомое
Затем с помощью теоремы синусов находим d .
Тригонометрия наука о чем
История тригонометрии
Автор работы награжден дипломом победителя III степени
Цель: Расширить знания по истории развития тригонометрии.
1. Чем вызвана к жизни наука тригонометрия
2. Применение тригонометрии в астрономии, физике, биологии и медицине.
Объект: тригонометрия, история зарождения и развития тригонометрии.
Гипотеза: многие физические явления природы можно описать с помощью тригонометрии.
Новизна: знакомство с тригонометрией.
Методика исследования. Изучение литературы по данной теме, информации из Интернет-ресурсов. Обобщение найденного материала.
Продукт: Буклет «История тригонометрии» (Приложение 2).
Практическая значимость: данный материал можно использовать на уроках геометрии и тригонометрии для дополнительного образования. Любой ученик может развить в себе интерес к науке тригонометрии через данный материал.
Возникновение тригонометрии
Исторически тригонометрия сложилась из задач на решение плоских и сферических треугольников.
Как и всякая другая наука, тригонометрия возникла в результате человеческой практики в процессе решения конкретных практических задач.
Возникновение тригонометрии тесно связано с развитием одной из древнейших наук – астрономии. Главная роль принадлежит ей в формировании и развитии сферической тригонометрии. Со времен древнего Вавилона до времени Эйлера и Лапласа астрономия была руководящей и вдохновляющей силой самых замечательных математических открытий.
Развитие астрономии, вызвано, в первую очередь, необходимостью составления правильного календаря, имевшего важное значение для земледельческого хозяйства древности. Земледельцу нужно было знать смену времен года, чтобы своевременно производить необходимые сельскохозяйственные работы. Календарь был необходим также и служителям культа, исполняющим религиозные обряды, для определения дней праздником и многим другим лицам.
Развитие торговли, связанное с необходимостью передвижения, как по суше, так и водным путем, оказало большое влияние на развитие астрономии: нужно было уметь правильно определять курс корабля в открытом море.
Значительную роль в развитии астрономии и связанной с ней тригонометрии сыграла, несомненно, потребность в составлении точных географических карт, это требовало правильного определения больших расстояний на земной поверхности.
Врачам нужна была астрономия, алгебра и тригонометрия для астрологических вычислений, чтобы составить гороскоп больного и по расположению планет в созвездиях определить, поправится больной или нет.
Эти и другие стороны деятельности человека уже в глубокой древности наталкивались на необходимость ознакомления с положением и видимым движением небесных светил (Солнца, Луны, звезд).
Уровень развития математики у древних народов Двуречья был более высоким, чем у других восточных народов. У древних народов Двуречья были особенно развиты астрономические наблюдения. Следовательно, они владели некоторыми простейшими сведениями из тригонометрии. Уже 2-3 тысяч лет до нашей эры древние египтяне практически использовали астрономические наблюдения при работах по сельскому хозяйству. Разливы Нила были важны фактором в развитии земледелия.
В классическом китайском трактате «математика в девяти книгах», составленном во II-I веках нашей эры по более ранним источникам, в книге IX трактата собран ряд задач на применение прямоугольных треугольников, где есть задачи на определение расстояния до недоступных предметов. Больших успехов в астрономии добились древние майя, ими был создан достаточно точный календарь (календарно- хронологическая система).
Тригонометрия в Древней Греции
Значительно позднее тригонометрия вступила в следующий этап своего развития в древней Греции, как часть астрономии. В связи с потребностями астрономии и геодезии первостепенное значение получили вычислительные задачи сферической тригонометрии. Некоторое знакомство с сферической тригонометрией имел еще Фалес Милетский (640 – 548 гг. до н.э. – древнегреческий математик и астроном (Приложение 1); в первой половине 3 веке до н.э. древнегреческий астроном и математик Аристарх Самосский (310 – 230 г г. до н.э.); Архимед (Приложение 1), высказал смелую гипотезу о том, что Земля движется по кругу около Солнца (за это его обвинили в безбожии и изгнали из Афин).
Уже в середине I тысячелетия до н.э. древнегреческие ученные знали, что Земля имеет форму шара, в частности длины его окружности. Были разработаны некоторые методы решения этой задачи. Первое измерение дуги меридиана и радиуса Земли принадлежит Эратосфену Киренскому (ок. 276 – 194 гг. до н.э.) – древнегреческому математику, географу, историку, философу, поэту (Приложение 1).
Но основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого ученого Гиппарха (ок. 180 – 125 г г. до н.э. ) (Приложение 1) – основателя научной астрономии.
Гиппарх составил звездный каталог с тем, чтобы будущие астрономы могли следить за появлением новых звезд и исчезновением старых. В каталог было занесено положение на небе более 1 тысячи звезд, подразделенных им по блеску на 6 звездных величин и определенных им по блеску на 6 звездных величин и определенных для того времени весьма точно. Гиппарх явился основоположником математической географии. Им было введено определение точек на земной поверхности при помощи географических координат – широты и долготы.
Важно отметить, что тригонометрии как науки в современном смысле этого слова не было ни у Гиппарха, ни у других ученных древности. Но они, пользуясь известными им положениями элементарной геометрии, решали те задачи, которые сейчас относятся к тригонометрии. В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея, которую можно сформулировать так: «Произведение диагоналей вписанного в круг четырехугольника равно сумме произведений противоположных сторон».
Тригонометрия в Индии
Тригонометрия в странах Арабского Халифата
Следующий этап в развитии тригонометрии связан с расцветом культуры стран арабского халифата. Так называлось объединение различных стран и народов, завоеванных арабами в VII – VIII вв. в него входили таджики, узбеки, персы, азербайджанцы, египтяне, сирийцы и другие народы. Многие из этих народов стояли на более высоком уровне общественного и культурного развития, чем сами арабы. Необходимые сведения по астрономии вместе с тригонометрией, алгеброй и арифметикой были заимствованы в первые из Индии. И хотя индийская математика дала начало развитию арабской математики, господствующее положение в нарождающейся науки науке у арабов занимала греческая геометрия и астрономия, благодаря переводом всех трудов Евклида, Аполлония, Архимеда, Птолемея и их позднейших комментаторов. Особенно велик вклад, внесенный арабоязычными народами в математику. Это прежде всего десятичная система счисления, позаимствованная арабами у индийцев и позже, благодаря трудам арабоязычных ученых, получившая распространение в Европе. Успехи в математике, в частности в тригонометрии, создали основу для достижений в астрономии и в некоторых других науках.
Тригонометрия и здесь развивалась в тесной связи с астрономией и географией и носила ярко выраженный «вычислительный» характер.
Ал – Хорезми внес большой вклад в развитии математики, астрономии и математической географии. Его труды в течение нескольких столетий оказывали сильное влияние на ученных Востока и Запада и долго служили образцом при написании учебников математики. Два его трактата по арифметики и алгебре сыграли большую роль в развитии математики.
Тригонометрия в Европе
В XII вв Европе возникает городская культура, развиваются товарно–денежные отношения внутри феодальной системы хозяйства. Этому способствовали также торговые путешествия и крестовые походы, позволившие частично познакомиться не только с движениями восточной культуры, но и с культурой древней Греции. Начинается самостоятельное творчество европейских ученых. Им пришлось заново открывать многое из того, что открыто было задолго до них. Первые их достижения относятся именно к тригонометрии. Эта наука разливалась в основном на базе достижений древних греков. Появились переводы некоторых «арабских» сочинений по тригонометрии. На основе этих сочинений в Англии были написаны работы по тригонометрии Р. Уоллигрфордом (ок. 1292 – 1335) и его современником Д. Модюктом. Английский ученый Томас Брадвардин (ок. 1290 – 1349) (Приложение 1). Он впервые в Европе предложил единичный радиус тригонометрического круга, ввел в тригонометрические вычисления котангенс под назначением «прямой тени» и тангенс под названием «обратной тени». В этот период составляют таблицы синусов.
Важный вклад в развитие тригонометрии внес польский астроном Николай Коперник (1473 – 1543) (Приложение 1), создатель гелиоцентрической системы мира, реформатор астрономии. Не знакомый с работами Региомонтана, Коперник самостоятельно обосновал некоторые основные положения сферической тригонометрии; он впервые сводит все дело к трехграннику, проектирующему треугольник из центра. Коперник сам занимался составлением тригонометрических таблиц. Немецкий математик Петер Крюгер (1480 – 1532) был первым из европейских математиков, составивших отдельно таблицы логарифмов тригонометрических функций и таблицы логарифмов чисел. Датский математик Томас Финк (1561 – 1656) (Приложение 1) в работе «Геометрия круглого»(1583) впервые вводит термины «синус», «тангенс» и «секанс».
Английский математик Абрахам Муавр (1667 – 1754) (Приложение 1), по происхождению француз, находит правило для возведения в степень комплексного числа, заданного в тригонометрической форме, которое широко применяется в тригонометрии и алгебре при решении двухчленных уравнений и известно теперь как «формула Муавра».
В настоящее время тригонометрия перестала существовать как самостоятельная наука, распавшись на две части. Одна из этих частей представляет собой учение о тригонометрических функциях, а другая – вычисление элементов тригонометрических фигур.
Первая часть, как мы уже говорили выше, входит в состав математического анализа, располагающего общими методами исследования функций, а вторая часть относится к геометрии и играет в ней вспомогательную роль.
«Геометрическая» часть тригонометрии в свою очередь распадается на два раздела – «прямолинейную тригонометрию» и «сферическую тригонометрию». Основным содержанием первого раздела является вычисление элементов плоских треугольников, а второго раздела – вычисления элементов сферического треугольника.
Применение тригонометрии
Продолжая тему тригонометрии важно отметить, что тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей: астрономии, физике, природе, музыке, медицине, биологии и многих других.
2.1. Тригонометрия в астрономии
Так в астрономии возникла потребность в «решении треугольников».
Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии.
2.2. Тригонометрия в физике
В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.
Механические колебания. Механическими колебанияминазывают движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.
2.3 Тригонометрия в природе
Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.
Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.
Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.
2.4. Тригонометрия в медицине
Ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.
К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.
2.5. Тригонометрия и тригонометрические функции в медицине и биологии, музыке
Биологические ритмы, биоритмы связаны с тригонометрией. Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год ) и длительность прогноза.
Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.
При полёте птицы траектория взмаха крыльев образует синусоиду.
Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…
диатоническая гамма 2:3:5
Заключение
В ходе исследовательской работы расширились знания по тригонометрии, изучены материалы по истории тригонометрии и сделан вывод о том, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
Выяснили, что тригонометрия исторически сложившаяся наука. Она была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
Убедились, что тригонометрия перестала существовать как самостоятельная наука, распавшись на две части.
Думаем, что тригонометрия не только нашла своё применение в жизни человека, что сферы применения её будут расширяться.
Список использованных источников и литературы
https://sites.google.com/site/trigonometry история тригонометрии
http://fb.ru история тригонометрии
Волошинов. Математика и искусство// Москва, 1992г. Газета
История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.
Маслова Т.Н. «Справочник школьника по математике» М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и Образование», 2008. — 672 с.
Математика. Приложение к газете от 1.09.98г.
Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.
Рассказы о прикладной математике//Москва, 1979г. А. В.
Ученые, внёсшие вклад в развитие тригонометрии
Тригонометрия
Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.
В Школе СССР имела статус учебного предмета.
Содержание
Определение тригонометрических функций
Первоначально тригонометрические функции были связаны с соотношениями сторон в прямоугольном треугольнике. Их единственным аргументом является угол (один из острых углов этого треугольника).
Данные определения позволяют вычислить значения функций для острых углов, то есть от 0° до 90° (от 0 до радиан). В XVIII веке Леонард Эйлер дал современные, более общие определения, расширив область определения этих функций на всю числовую ось. Рассмотрим в прямоугольной системе координат окружность единичного радиуса (см. рисунок) и отложим от горизонтальной оси угол
(если величина угла положительна, то откладываем против часовой стрелки, иначе по часовой стрелке). Точку пересечения построенной стороны угла с окружностью обозначим A. Тогда:
Для острых углов новые определения совпадают с прежними.
Возможно также чисто аналитическое определение этих функций, которое не связано с геометрией и представляет каждую функцию её разложением в бесконечный ряд.
История
Древняя Греция
Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды — это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.
Хотя в работах Евклида и Архимеда нет тригонометрии в строгом смысле этого слова, их теоремы представлены в геометрическом виде, эквивалентном специфическим тригонометрическим формулам. Теорема Архимеда для деления хорд эквивалентна формулам для синусов суммы и разности углов. Для компенсации отсутствия таблицы хорд математики времен Аристарха иногда использовали хорошо известную теорему, в современной записи — sin α/ sin β Средневековая Индия
Другие источники сообщают, что именно замена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.
Индийские учёные пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражаются как
Индийцы также знали формулы для кратных углов ,
, где
.
Тригонометрия необходима для астрономических расчётов, которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Позднее учёные составили более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1°.
Южноиндийские математики в 16 веке добивались больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа π. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 вв. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 г., а ряд арктангенса был найден Дж. Грегори в 1671 г. и Г. В. Лейбницем в 1673 г.
В 8 в. учёные стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.