shdsl модем что это
Shdsl модем что это
Смотрите также на других языках: UA EN
1. Что понимают под SHDSL?
3. Отличия между SHDSL и SDSL.
4. Что понимают под стандартом SHDSL.
5. Какое отличие между североамериканским и европейским стандартами?
6. Что понимают под TC-PAM модуляцией?
8. Можно ли использовать в SHDSL линиях репитеры?
Да. Дополнительные репитеры могут быть использованы как для двойной пары, так и для одинарной пары. Стандарт ITU поддерживает до восьми ретитеров в каждой паре, которая позволяет уменьшать помехи и регенерировать сигналы перед их передачей в следующий сегмент, что в свою очередь увеличивает расстояние передачи.
9. Что понимают под «4-wire mode»?
11. Какой тип протокола поддерживает SHDSL технология?
SHDSL технология поддерживают такие протоколы как TDM, ATM, Frame Relay, а так же другие сетевые протоколы. Что позволяет осуществлять построение территориально распределённых корпоративных сетей, а также применять в составе решений, связанных с обеспечением гарантированной пропускной способности канала передачи данных (VoIP, видеоконференции и т. п.).
Используя высокочастотные ресурсы канала и такие пакетные технологии, как АТМ или IP, интегрированные устройства доступа с функциями VoDSL позволяют одновременно с высокоскоростным потоком данных организовать несколько (скажем, 4, 8, 16 или 24) телефонных каналов. Системы VoDSL помогут традиционным операторам решить проблему телефонизации квартирного сектора (как известно, установка телефона часто невозможна из-за отсутствия свободной медной пары) и сформировать привлекательные предложения для бизнес-пользователей.
13. Совместимость оборудования
SHDSL
Немного предыстории
В начале 90-х годов развитие цифровых способов обработки сигнала привело к созданию HDSL. Эта технология сочетала в себе линейное кодирование 2B1Q и сложные алгоритмы эхоподавления. Первые варианты, работающие по двум парам, были созданы в США и быстро вытеснили старые цифровые системы передачи T1 ANSI (1544 Мбит/с), которые имели рабочую дальность чуть более километра. Все это произошло благодаря тому, что HDSL, обеспечивая большую дальность (3,5 км на проводе 0,4 мм), позволил отказаться от регенераторов и существенно снизить затраты на монтаж и эксплуатацию вновь вводимых линий.
Аналогичная картина складывалась в это время и в Европе получили распространение варианты HDSL, которые обеспечивают передачу потока Е1 ETSI (2048 Кбит/с). Сначала появился вариант, который для получения большей скорости при той же дальности использовал три пары. Скорость передачи по каждой из пар при этом была та же, что и у американского варианта (748 Кбит/с). Затем, был стандартизован двухпарный вариант, у которого скорость по каждой из пар была выше (1168 Кбит/с) при меньшей рабочей дальности (около 3 км на проводе 0,4 мм). Но даже в этом случае дальность она оказывалась выше, чем у оборудования с линейным кодом HDB3 (рис. 1).
Всем опытом эксплуатации HDSL доказал свои высокие эксплуатационные характеристики. В подавляющем большинстве случаев монтаж HDSL оборудования проводится без дополнительного подбора пар или кондиционирования линии. Благодаря этому сегодня большая часть линий Е1 подключена с применением HDSL оборудования. Более того, сам факт появления технологии, которая обеспечила возможность экономичных решений по организации цифровых подключений абонентов, привел к тому, что число таких подключений стало стремительно расти. Иными словами, именно появление HDSL стало своеобразным катализатором развития цифровых сетей.
В свою очередь, развитие цифровых сетей создало спрос на цифровые системы передачи xDSL с другими характеристиками. Так появилась сравнительно низкоскоростная технология IDSL, основными достоинствами которой были работа по одной паре и низкая стоимость, обусловленная применением стандартных компонентов, производимых для абонентского ISDN оборудования. Так родились скоростные и асимметричные ADSL, VDSL со всеми своими разновидностями, созданные для подключения индивидуальных абонентов жилого сектора по их существующей телефонной линии и без отказа от использования этой линии для аналоговой или цифровой (ISDN BRI) телефонии. Наконец, так были разработаны обеспечившие увеличенную дальность работы разновидности HDSL с другими способами линейного кодирования (CAP) и адаптивные разновидности HDSL с возможностью изменять скорость передачи в линии, подстраивая ее под характеристики линии.
Производители, каждый на свой лад, стали задумываться о реализации вариантов HDSL систем, которые бы работали по одной паре при полной скорости. Дело в том, что параллельно с развитием xDSL технологий росло и число используемых ими линий. Из-за этого большинство операторов во всем мире уже сегодня отмечают острую нехватку меди на абонентском участке почти вся она «съедена» xDSL линиями. А ведь цифровизация еще не закончена. Где-то к 1996 году появились однопарные варианты HDSL. Но они не могли решить проблему из-за несовместимости с ADSL спектр сигнала таких систем частично перекрывался со спектром сигнала ADSL от АТС к клиенту.
Первыми забили тревогу операторы США, и уже в начале 1996 года перед комитетом ANSI (T1E1.4) была поставлена задача подобрать для дальнейшего развития технологию, которая при симметричных потоках данных и использовании одной пары позволяла бы обеспечить:
HDSL2
Новая технология, появившаяся в результате огромной трехлетней работы, получила название HDSL2 (нужно отметить, что работа над ее стандартизацией ввиду некоторых разногласий между основными производителями пока не окончена и стандарт существует в виде рабочей версии Т1.418-2000). Изначально в качестве основы для реализации HDSL2 рассматривались симметричная передача с эхоподавлением (SEC) и частотное мультиплексирование (FDM), но обе были отклонены из-за присущих им недостатков. Первая имеет серьезные ограничения в условиях помех на ближнем конце, что делает ее неприменимой для массового развертывания. Вторая, хотя и свободна от недостатков первой, но требует использования более широкого спектра и не обеспечивает требований по взаимному влиянию с системами передачи других технологий.
В результате, в качестве основы была принята система передачи с перекрывающимся, но несимметричным распределением спектральной плотности сигнала, передаваемого в различных направлениях, использующая 16-уровневую модуляцию PAM (Pulse Amplitude Modulation). Выбранный способ модуляции PAM-16 обеспечивает передачу трех бит полезной информации и дополнительного бита (кодирование для защиты от ошибок) в одном символе. Сама по себе модуляция PAM не несет в себе ничего нового. Хорошо известная 2B1Q это тоже модуляция PAM, но четырехуровневая. Использование решетчатых (Trellis) кодов, которые за счет введения избыточности передаваемых данных позволили снизить вероятность ошибок, дало выигрыш в 5 dB. Результирующая система получила название TC-PAM (Trellis coded PAM). При декодировании в приемнике используется весьма эффективный алгоритм Витерби (Viterbi). Дополнительный выигрыш получен за счет применения прекодирования Томлинсона (Tomlinson) искажении сигнала в передатчике на основе знания импульсной характеристики канала. Суммарный выигрыш за счет использования такой достаточно сложной технологии кодирования сигнала составляет до 30% по сравнению с ранее используемыми HDSL/SDSL системами.
Но все-таки, ключевым элементом успеха новой технологии является идея несимметричного распределение спектра, получившее название OPTIS (Overlapped PAM Transmission with Interlocking Spectra) и послужившее основой HDSL2 и, впоследствии, G.shdsl. При выборе распределения спектральной плотности для OPTIS решалось одновременно несколько задач (рис. 2). В первой области диапазона частот (0-200 кГц), где переходное влияние минимально, спектральные плотности сигналов, передаваемых в обе стороны одинаковы. Во втором диапазоне частот (200-250 кГц), спектральная плотность сигнала от LTU (оборудования на узле связи) к NTU (абонентскому оборудованию) уменьшена, чтобы снизить его влияние на сигнал в обратном направлении в этой области частот. Благодаря этому переходные влияния на ближнем конце в обоих диапазонах частот оказываются одинаковыми. В свою очередь мощность сигнала от NTU к LTU во втором диапазоне частот уменьшена, что даёт дальнейшее улучшение отношения сигнал/шум в этой области частот. Следует отметить, что это уменьшение не ухудшает отношения сигнал/шум на входе NTU по двум причинам: во-первых, полоса частот сигнала от LTU к NTU увеличена по сравнению с полосой частот сигнала в обратном направлении, и, во-вторых, абонентские модемы NTU пространственно разнесены, что также уменьшает уровень переходной помехи. В третьем диапазоне частот спектральная плотность сигнала от LTU к NTU максимальна, поскольку сигнал в обратном направлении в этой области почти отсутствует, и отношение сигнал/шум для сигнала на входе NTU оказывается высоким. Выбранная форма спектра является оптимальной не только в случае, когда в кабеле работают только системы HDSL2. Она будет оптимальна и при работе с ADSL, поскольку сигнал HDSL2 от NTU к LTU выше частоты 250 кГц, где сосредоточена основная мощность составляющих нисходящего потока ADSL, практически подавлен. Предварительные расчёты показали, что помехи от системы HDSL2 в нисходящем тракте системы ADSL (от LTU к NTU) меньше помех от системы HDSL, работающей по двум парам, и существенно меньше помех от системы HDSL, использующей код 2B1Q и работающей по одной паре на полной скорости.
На арену выходит G.shdsl
В 1998 году инициативу ANSI подхватила и остальная часть мира. В ITU-T началась работа над всемирным стандартом G.shdsl (стандарт G.991.2 утвержден в феврале 2001 г.), европейской версией этого стандарта занимается и ETSI (сейчас он оформлен в виде спецификации TS 101524).
В основу G.shdsl были положены основные идеи HDSL2, получившие дальнейшее развитие. Была поставлена задача, используя способы линейного кодирования и технологию модуляции HDSL2, снизить взаимное влияние на соседние линии ADSL при скоростях передачи выше 784 Кбит/с.
Поскольку новая система использует более эффективный линейный код по сравнению с 2B1Q, то при любой скорости сигнал G.shdsl занимает более узкую полосу частот, чем соответствующий той же скорости сигнал 2B1Q. Поэтому помехи от систем G.shdsl на другие системы xDSL имеют меньшую мощность по сравнению с помехами, создаваемыми HDSL типа 2B1Q. Более того, спектральная плотность сигнала G.shdsl имеет такую форму, которая обеспечивает его почти идеальную спектральную совместимость с сигналами ADSL.
Отмеченные свойства G.shdsl являются чрезвычайно важными для обеспечения устойчивой работы в условиях широкого внедрения xDSL технологий в будущем. Результаты анализа устойчивости работы, которые выполнялись на основе используемых ранее шумовых моделей (в том числе и описанных в стандартах) могут оказаться недостоверными. Таким образом, оператор связи, развертывая системы передачи сегодня, не будет иметь гарантии, что они сохранят устойчивую работоспособность в будущем, когда на соседних парах заработают другие системы.
Шумовые модели, более точно отражающие современное состояние внедрения цифровых технологий передачи на абонентской сети предложены международной инициативной организацией FSAN (Full Service Access Networks), которая с 1995 г. занимается разработкой требований и поиском консенсуса между интересами операторов и различных производителей телекоммуникационного оборудования, работающих в области построения мультисервисных сетей узкополосного и широкополосного абонентского доступа. Организацией FSAN были разработаны четыре оценочные модели шумов, отличающиеся количеством и составом эксплуатируемых в одном кабеле систем передачи (табл. 1). Расчеты по новым моделям достаточно сложны, но именно они могут дать представление о реальной работоспособности технологий xDSL на этапе массового развертывания цифрового абонентского доступа. С учетом сказанного, стоит весьма критически относиться к результатам оценки устойчивости работы, если для них использованы хоть и предусмотренные стандартами, но морально устаревшие шумовые модели.
Модель A, высокий уровень внедрения xDSL технологий | ||
SDSL | +11,7 дБ | около 90 пар |
ISDN/2B1Q | +11,7 дБ | около 90 пар |
HDSL/2B1Q (2 пары) | +9,6 дБ | около 40 пар |
ADSL на аналоговой телефонной линии | +11,7 дБ | около 90 пар |
ADSL на ISDN BRI | +11,7 дБ | около 90 пар |
Модель B, средний уровень внедрения xDSL технологий | ||
SDSL | +7,1 дБ | около 15 пар |
ISDN/2B1Q | +6,0 дБ | около 10 пар |
HDSL/2B1Q (2 пары) | +3,6 дБ | около 4 пар |
ADSL Lite | +6,0 дБ | около 10 пар |
ADSL на ISDN BRI | +4,2 дБ | около 5 пар |
Модель С, средний уровень внедрения xDSL технологий при наличии старых систем цифровой передачи с кодом HDB3 | ||
SDSL | +7,1 дБ | около 15 пар |
ISDN/2B1Q | +6,0 дБ | около 10 пар |
HDSL/2B1Q (2 пары) | +3,6 дБ | около 4 пар |
ADSL Lite | +6,0 дБ | около 10 пар |
ADSL на ISDN BRI | +4,2 дБ | около 5 пар |
ISDN PRI / HDB3 | +3,6 дБ | около 4 пар |
Модель D, эталонная | ||
SDSL | +10,1 дБ | около 49 пар |
Для того, чтобы оценить расхождения в полученных по старым и новым моделям результатах и убедиться в описанных выше достоинствах технологии G.shdsl, можно воспользоваться результатами, опубликованными компанией Schmid Telecom в своей презентации, посвященной началу выпуска семейства Watson 5, реализованного на основе технологии G.shdsl (табл. 2). Поскольку среди оборудования, производимого этой компанией ранее, использованы почти все основные разновидности xDSL технологий, то результат весьма нагляден. Везде, где значения запаса по шумам имеют отрицательную величину, рассматриваемое оборудование не будет работать в заданной шумовой моделью ситуации. Выигрыш, который имеет G.shdsl по сравнению с другими технологиями, очень хорошо заметен. Следует обратить внимание и на существенные расхождения результатов, полученных по новой модели FSAN и старой, общепринятой, методике оценки по ETSI. Конечно, результаты оценки оборудования других производителей могут отличаться от представленных Schmid Telecom, но, учитывая широко известное качество модемов Watson, отличия будут скорее всего несущественными.
Shdsl модем что это
Число пар / линейный код
Запас по шумам модель ETSI (дБ)
Примечания:
Сравнение производилось для скорости 2,032 Мбит/с при линии длинной 2400 м, провод D=0,4 мм в ПЭ изоляции.
* Для увеличенного уровня передачи NT.
** Нисходящий поток с использованием PAM8.
*** Для сравнения использовано оборудование другого производителя.
Есть и другие достоинства G.shdsl. По сравнению с двухпарными вариантами, однопарные варианты обеспечивают существенный выигрыш по аппаратным затратам и, соответственно, надежности изделия. Ресурс снижения стоимости составляет до 30% для модемов и до 40% для регенераторов ведь каждая из пар требует приемопередатчика HDSL, линейных цепей, элементов защиты и т.п.
В целях поддержки клиентов различного уровня, в G.shdsl решили предусмотреть возможность выбора скорости в диапазоне 192 Кбит/с 2320 Кбит/с с инкрементом 8 Кбит/с. За счет расширения набора скоростей передачи оператор может выстроить маркетинговую политику, более точно приближенную к потребностям клиентов. Кроме того, уменьшая скорость, можно добиться увеличения дальности в тех случаях, когда установка регенераторов невозможна. Так, если при максимальной скорости рабочая дальность составляет около 2 км (для провода 0,4 мм), то при минимальной свыше 6 км (рис. 3). Но это еще не все. В G.shdsl предусмотрена возможность использования для передачи данных одновременно двух пар, что позволяет увеличить предельную скорость передачи до 4624 Кбит/с. Но, главное, можно удвоить максимальную скорость, которую удается получить на реальном кабеле, по которому подключен абонент.
Для обеспечения взаимной совместимости оборудования различных производителей в стандарт G.shdsl был инкорпорирован стандарт G.hs.bis (G.844.1), описывающий процедуру инициализации соединения. Предусмотрено два варианта процедуры. В первом оборудование LTU (установленное на АТС) диктует параметры соединения NTU (оборудованию клиента), во втором оба устройства «договариваются» о скорости передачи с учетом состояния линии. Учитывая неизвестные начальные условия, при обмене данными во время инициализации для гарантированного установления соединения применяется низкая скорость передачи и один из классических методов модуляции (DPSK).
Кроме установки скорости, G.hs описывает и порядок выбора протокола в процессе установки соединения. Чтобы обеспечить совместимость со всеми используемыми на сегодня сервисами, фреймер G.shdsl модема должен реализовать возможность работы с такими протоколами, как E1, ATM, IP, PCM, ISDN. Для обеспечения гарантированной работоспособности приложений реального времени, стандартом G.shdsl ограничена максимальная задержка данных в канале передачи (не более 500 мс). Наиболее используемыми приложениями этого вида для G.shdsl являются передача голоса VoDSL во всех ее разновидностях (PCM обычный цифровой канал телефонии, VoIP голос через IP и VoATM- голос через ATM) и видеоконференцсвязь.
За счет оптимального выбора протокола во время инициализации в G.shdsl удается дополнительно снизить задержки в канале передачи. Например, для IP трафика устанавливается соответствующий протокол, что позволяет отказаться от передачи избыточной информации, по сравнению с IP пакетами, инкапсулированными в ATM ячейки. А для передачи цифровых телефонных каналов в формате ИКМ непосредственно выделяется часть полосы DSL канала.
Стоит отметить, что упомянутые выше передача голоса и видеоконференцсвязь требуют передачи симметричных потоков данных в обе стороны. Симметричная передача необходима и для подключения локальных сетей корпоративных пользователей, которые используют удаленный доступ к серверам с информацией. Поэтому, в отличие от других высокоскоростных технологий (ADSL и VDSL), G.shdsl как нельзя лучше подходит для организации последней мили. Так, при максимальной скорости она обеспечивает передачу 36 стандартных голосовых каналов. Тогда как ADSL, где ограничивающим фактором является низкая скорость передачи от абонента к сети (640 Кбит/с), позволяет организовать лишь 9 голосовых каналов, не оставляя места для передачи данных.
Еще одна задача, которая успешно решена в G.shdsl снижение энергопотребления. Поскольку для дистанционного питания используется одна пара, важность этой задачи трудно переоценить. Еще одна положительная сторона снижение рассеиваемой мощности открывает путь к созданию высоко интегрированного станционного оборудования.
Новые возможности оборудования свобода выбора операторов
Технология SHDSL
Технология SHDSL предназначена для передачи сигналов по парам медных проводников. Чаще всего это технология применяется на «последней миле».
Родоначальником семейства подобных технологий стала HDSL, обладавшая передовым на тот момент сочетанием алгоритмов кодирования и эхоподавления. Первые промышленные варианты работали по двум медным парам, в Соединенных Штатах, или по трем медным парам, в Европе. Внедрение этих технологий позволило существенно снизить затраты на передачу данных по сравнению с существовавшими на тот момент системами передачи T1 и Е1 за счет возможности избавиться от регенераторов на линии.
Успех технологии HDSL привел к росту числа исследований в этой области и появлению схожих технологий с другими характеристиками, получившими собирательное название xDSL. На сегодняшний день, когда технология прошла этап зрелости, можно сказать, что из всего всего многообразия xDSL наиболее востребованными оказались вариации ADSL2+, VDSL и SHDSL.
Работа над стандартом SHDSL началась в 1998 году, в 2001 году стандарт был утвержден. При работе над ним была поставлена и успешна решена задача снижения взаимоного влияния соседних медных пар на скоростях передачи свыше 784 кбит/с.
За счет узкой полосы частот и особой спектральной плотности сигнала фактически полностью устраняется взаимное влияние с широкороспространненым ADSL.
Для увеличения широты применения технологии SHDSL предусмотрена возможность задания скорости передачи данных от 192 кбит/с до 2320 кбит/с с шагом 8 кбит/с. Это позволяет операторам выстраивать гибкие тарифные планы. Более того, уменьшение скорости передачи позволяет увеличить дальность, на которую будут передаваться данные.
Например, на максимальной скорости передачи, рабочая дальность составляет около 3,5 км на проводе 0,4 мм, минимальная скорость передачи позволяет передавать данные до 6 км на том же 0,4 мм кабеле.
Технология SHDSL позволяет объединять для передачи данных от двух до 4 пар, соответственно увеличивая дальность или скорость передачи от двух до четырех раз.
Резюмируя вышесказанное, SHDSL имеет множество неоспоримых плюсов для развертывания сети доступа.
Передача данных на расстояние до 20 км по обычным проводам? Легко, если это SHDSL…
Несмотря на повсеместное распространение сетей Ethernet, технологии связи на основе DSL не теряют своей актуальности и по сей день. До сих пор DSL можно встретить в сетях последней мили для подключения абонентского оборудования к сетям Интернет-провайдера, а в последнее время технология все чаще используется при построении локальных сетей, например, в промышленных приложениях, где DSL выступает в качестве дополнения к Ethernet или к полевым сетям на основе RS-232/422/485. Подобные промышленные решения активно применяются в развитых европейских и азиатских странах.
DSL представляет из себя семейство стандартов, которые изначально задумывались для передачи цифровых данных по телефонным линиям связи. Исторически это стало первой технологией широкополосного доступа в Интернет, придя на смену DIAL UP и ISDN. Большое разнообразие существующих в настоящий момент стандартов DSL связано с тем, что многие компании, начиная с 80-х годов, старались разработать и продвинуть на рынок собственную технологию.
Все эти разработки можно разделить на две большие категории – асимметричные (ADSL) и симметричные (SDSL) технологии. Под асимметричными понимаются те, в которых скорость входящего соединения отличается от скорости исходящего трафика. Под симметричными понимается, что скорости на прием и передачу равны.
Наиболее известными и распространенными асимметричными стандартами являются, собственно, ADSL (в последней редакции – ADSL2+) и VDSL (VDSL2), симметричными – HDSL (устаревший профиль) и SHDSL. Друг от друга все они отличаются тем, что работают на разных частотах, используют разные способы кодирования и модуляции на физической линии связи. Также отличаются способы коррекции ошибок, благодаря чему обеспечивается разный уровень помехоустойчивости. Как итог, каждая технология имеет свои пределы в скорости и дистанции передачи данных, в том числе в зависимости от типа и качества проводника.
Предельные параметры различных стандартов DSL
В любой DSL-технологии скорость передачи данных падает с увеличением длины проводника. На предельных дистанциях возможно получить скорость в несколько сот килобит, но при передаче данных на 200-300 м доступна максимально возможная скорость.
Среди всех технологий у SHDSL есть серьезное преимущество, которое делает возможным ее применение в промышленных приложениях, — высокая помехоустойчивость и возможность использования для передачи данных любого типа проводника. В асимметричных стандартах такого нет, и качество связи сильно зависит от качества линии, используемой для передачи данных. В частности, рекомендуется использовать витой телефонный кабель. В этом случае более надежным решением вместо ADSL и VDSL оказывается использовать оптический кабель.
Для SHDSL подходит любая пара изолированных друг от друга проводников – медных, алюминиевых, стальных и пр. В качестве среды передачи может выступать старая электропроводка, старые телефонные линии, колючая проволока заборов и пр.
Зависимость скорости передачи данных SHDSL от дистанции и типа проводника
Из графика зависимости скорости передачи данных от дистанции и типа проводника, приведенного для SHDSL, можно увидеть, что проводники с большим сечением позволяют передавать информацию на большую дистанцию. Благодаря технологии возможно организовать связь на дистанцию до 20 км при максимально возможной скорости 15.3 Мб/с для 2-проводного кабеля или 30 Мб для 4-проводного. В реальных приложениях скорость передачи может быть выставлена вручную, что необходимо в условиях сильных электромагнитных помех или плохого качества линии. В этом случае для увеличения дистанции передачи необходимо снизить скорость работы SHDSL-устройств. Для точного расчета скорости в зависимости от дистанции и типа проводника можно использовать бесплатные программные средства, такие как SHDSL-калькулятор от Phoenix Contact.
За счет чего SHDSL обладает высокой помехоустойчивостью?
Принцип работы приемопередатчика SHDSL можно представить в виде блок-диаграммы, в которой выделяют специфическую и независимую (инвариантную) с точки зрения приложения часть. Независимая часть состоит из функциональных блоков PMD (Physical Medium Dependent) и PMS-TC (Physical Medium-Specific TC Layer), в то время как специфическая часть включает уровень TPS-TC (Transmission Protocol-Specific TC Layer) и интерфейсы пользовательских данных.
Физическая линия связи между приемопередатчиками (STU) может существовать в виде однопарного или нескольких однопарных кабелей. В случае нескольких пар кабелей STU содержит несколько независимых блоков PMD, связанных с единственным PMS-TC.
Функциональная модель SHDSL-приемопередатчика (STU)
Модуль TPS-TC зависит от приложения, в котором используется устройство (Ethernet, RS-232/422/485 и пр.). В его задачу входит преобразование пользовательских данных в формат SHDSL, выполняется мультиплексирование/демультиплексирование и корректировка по времени нескольких каналов пользовательских данных.
На уровне PMS-TC производится формирование кадров SHDSL и их синхронизация, а также скремблирование и дескремблирование.
Модуль PMD выполняет функции кодирования/декодирования информации, модуляции/демодуляции, эхоподавления, согласования параметров на линии связи и установления соединения между приемопередатчиками. Именно на уровне PMD выполняются основные операции, обеспечивающая высокую помехоустойчивость SHDSL, включая TCPAM кодирование (Треллис кодирование с аналого-импульсной модуляцией), механизм совместного кодирования и модуляции, при котором улучшается спектральная эффективность сигнала по сравнению с раздельным способом. Принцип работы модуля PMD также можно представить в виде функциональной диаграммы.
Блок-диаграмма модуля PMD
В основе TC-PAM лежит использование сверточного кодера, формирующего избыточную последовательность битов на стороне SHDSL-передатчика. На каждом такте работы каждому биту, поступающему на вход кодера, ставится в соответствие двойной бит (дибит) на выходе. Таким образом, ценой сравнительно небольшой избыточности повышается помехоустойчивость передачи. Использование Треллис-модуляции позволяет уменьшить используемую полосу частоту передачи данных и упростить аппаратную часть при неизменном отношении сигнал/шум.
Принцип работы Треллис-кодера (TC-PAM 16)
Двойной бит формируется в результате логической операции сложения по модулю 2 (исключающее «или») на основе входного бита x1(tn) и битов x1(tn-1), x1(tn-2) и т.д. (всего их может быть до 20), которые поступали на вход кодера до этого и остались храниться в регистрах памяти. На следующем такте работы кодера tn+1 произойдет смещение битов в ячейках памяти для выполнения логической операции: бит x1(tn) переместится в память, сдвинув всю хранящуюся там последовательность битов.
Алгоритм сверточного кодера
Таблицы истинности операции сложения по модулю 2
Для наглядности удобно использовать диаграмму состояния сверточного кодера, по которой можно увидеть, в каком состоянии находится кодер в моменты времени tn, tn+1 и т.д. в зависимости от входных данных. Под состоянием кодера в этом случае подразумевают пару значений входного бита x1(tn) и бита в первой ячейки памяти x1(tn-1). Для построения диаграммы можно использовать граф, в вершинах которого находятся возможные состояния кодера, а переходы из одного состояния в другое обозначены соответствующими входными битами x1(tn) и выходными дибитами .
Диаграмма состояний и граф переходов сверточного кодера передатчика
В передатчике на основе полученных четырех битов (двух выходных битов кодера и двух битов данных) формируется символ, каждому из которых соответствует своя амплитуда модулирующего сигнала аналого-импульсного модулятора.
Состояние 16-разрядного АИМ в зависимости от значения четырехбитового символа
На стороне приемника сигнала происходит обратный процесс – демодуляция и выделение из избыточного кода (двойных битов y0y1(tn)) нужной последовательности входных битов кодера x1(tn). Эту операцию выполняет декодер Витерби.
Алгоритм декодера основан на расчете метрики ошибок для всех возможных предполагаемых состояний кодера. Под метрикой ошибок понимают разницу между принимаемыми битами и предполагаемыми битами для каждого возможного пути. Если ошибок на приеме нет, то метрика ошибок истинного пути будет 0, потому что нет расхождения по битам. Для ложных путей метрика будет отличаться от нуля, постоянно нарастать и через какое-то время декодер перестанет рассчитывать ошибочный путь, оставив только истинный.
Диаграмма состояний кодера, вычисляемая декодером Витерби приемника
Но как этот алгоритм обеспечивает помехоустойчивость? Если предположить, что приемник принял данные с ошибкой, декодер продолжит рассчитывать два пути с метрикой ошибок 1. Пути с метрикой 0 уже не будет существовать. Но вывод о том, какой путь истинный, алгоритм сделает позже на основе следующих принимаемых двойных битов.
При появлении второй ошибки, будет несколько путей с метрикой 2, но правильный путь выявится позже на основе метода наибольшего правдоподобия (то есть минимальной метрики).
Диаграмма состояний кодера, вычисляемая декодером Витерби, при приеме данных с ошибками
В описанном выше случае для примера был рассмотрен алгоритм 16-разрядной системы (TC-PAM16), обеспечивающей передачу в одном символе трех бит полезной информации и дополнительного бита для защиты от ошибок. В TC-PAM16 достижима скорость передачи данных от 192 до 3840 кбит/с. При увеличении разрядности до 128 (современные системы работают с TC-PAM128) в каждом символе передается шесть бит полезной информации, а максимально достижимая скорость составляет от 5696 кбит/с до 15,3 Мб/с.
Использование аналого-импульсной модуляции (PAM) роднит SHDSL с рядом популярных стандартов Ethernet, таких как гигабитный 1000BASE-T (PAM-5), 10-гигабитный 10GBASE-T (PAM-16) или перспективный на 2020 год промышленный однопарный Ethernet 10BASE-T1L (PAM-3).
SHDSL в сетях Ethernet
Различают управляемые и неуправляемые SHDSL-модемы, но в подобной классификации мало общего с привычным разделением на управляемые и неуправляемые устройства, которое существует, например, для Ethernet-коммутаторов. Разница заключается в средствах конфигурирования и мониторинга. Управляемые модемы настраиваются через веб-интерфейс и могут диагностироваться по SNMP, а неуправляемые – при помощи дополнительного ПО через консольный порт (для Phoenix Contact это бесплатная программа PSI-CONF и mini-USB интерфейс). В отличии от коммутаторов неуправляемые модемы могут работать в сети с кольцевой топологией.
В остальном управляемые и неуправляемые модемы являются абсолютно идентичными, включая функционал и возможность работать по принципу Plug&Play, то есть без всякого предварительного конфигурирования.
Дополнительно на модемы могут возлагаться функции защиты от импульсных перенапряжений c возможностью ее диагностики. Сети SHDSL могут образовывать очень протяженные сегменты, и проводники могут проходить в местах, где возможно образование импульсных перенапряжений (наведенной разности потенциалов, вызванной грозовыми разрядами либо короткими замыканиями в близлежащих кабельных линиях). Наведенное напряжение может вызвать протекание разрядных токов величиной в килоамперы. Поэтому для защиты оборудования от подобных явлений в модемы встраиваются УЗИП в виде съемной платы, которая в случае необходимости может быть заменена. Именно к клеммнику этой платы подключается линия SHDSL.
Топологии
С помощью SHDSL в Ethernet возможно строить сети с любой топологией: точка-точка, линия, звезда и кольцо. При этом, в зависимости от типа модема для подключения можно использовать как 2-проводные, так и 4-проводные линии связи.
Топологии сети Ethernet на основе SHDSL
Также можно строить распределенные системы с комбинированной топологией. Каждый сегмент SHDSL-сети может насчитывать до 50 модемов и, учитывая физические возможности технологии (расстояние между модемами в 20 км), длина сегмента может достигать 1000 км.
Если в голове каждого такого сегмента установить управляемый модем, то целостность сегмента можно диагностировать по SNMP. Помимо этого, управляемые и неуправляемые модемы поддерживают технологию VLAN, то есть позволяют разбивать сеть на логические подсети. Также устройства способны работать с протоколами передачи данных, применяемыми в современных системах автоматизации (Profinet, Ethernet/IP, Modbus TCP и пр.).
Резервирование каналов связи с помощью SHDSL
SHDSL используют для создания резервных каналов связи в сети Ethernet, чаще всего оптического.
SHDSL и последовательный интерфейс
SHDSL-модемы с последовательным интерфейсом позволяют преодолеть ограничения по дистанции, топологии и качеству проводника, которые существуют для традиционных проводных систем на основе асинхронных приемопередатчиков (UART): RS-232 — 15 м, RS-422 и RS-485 — 1200 м.
Существуют модемы с последовательными интерфейсами (RS-232/422/485) как для универсальных приложений, так и для специализированных (например, для Profibus). Все подобные устройства относятся к категории «неуправляемых», поэтому настраиваются и диагностируются при помощи специального ПО.
Топологии
В сетях с последовательным интерфейсом при помощи SHDSL возможно строить сети с топологией точка-точка, линия и звезда. В рамках линейной топологии возможно объединить в одну сеть до 255 узлов (для Profibus — 30).
В системах, построенных с использованием только устройств на интерфейсе RS-485, отсутствуют какие-либо ограничения по применяемому протоколу передачи данных, но топологии типа линия и звезда являются нетипичными для RS-232 и RS-422, поэтому работа конечных устройств в SHDSL-сети с подобными топологиями возможна только в полудуплексном режиме. Одновременно в системах с RS-232 и RS-422 на уровне протокола должна обеспечиваться адресация приборов, что нехарактерно для интерфейсов, чаще всего применяемых в сетях точка-точка.
При объединении через SHDSL устройств с разными типами интерфейсов необходимо учитывать факт отсутствия единого механизма для установления соединения (рукопожатия) между устройствами. Однако организовать обмен в этом случае все равно возможно — для этого необходимо выполнение следующих условий:
Топологии сети с последовательным интерфейсом на основе SHDSL
При использовании двухпроводного RS-485 на оборудовании Phoenix Contact можно строить более сложные структуры, объединяя модемы через одну шину на DIN-рейке. На этой же шине может быть установлен источник питания (в таком случае питание всех устройств осуществляется через шину) и оптические преобразователи серии PSI-MOS для создания комбинированной сети. Важным условием работы такой системы является одинаковая скорость всех приемопередатчиков.
Дополнительные возможности SHDSL в сети RS-485
Примеры применения
SHDSL-технология активно применяется в городском коммунальном хозяйстве в Германии. Более 50 компаний, обслуживающих городские коммунальные системы, используют старые медные провода, чтоб связать одной сетью распределенные по городу объекты. На SHDSL строятся в первую очередь системы управления и учета в водо-, газо- и энергоснабжении. Среди таких городов – Ульм, Магдебург, Ингольштадт, Билефельд, Франкфурт-на-Одере и многие другие.
Самая масштабная система на основе SHDSL была создана в городе Любеке. Система имеет комбинированную структуру на основе оптического Ethernet и SHDSL, объединяет 120 удаленных друг от друга объектов и использует более 50 модемов Phoenix Contact. Вся сеть диагностируется по SNMP. Самый протяженный сегмент от коммуны Калькхорст до аэропорта Любека имеет длину 39 км. Причина, по которой компания-заказчик выбрала SHDSL, заключалась в том, что реализация проекта целиком на оптике была экономический невыгодна с учетом наличия старых медных кабелей.
Передача данных через контактное кольцо
Интересным примером является передача данных между движущимися объектами, как например, это сделано в ветрогенераторах или в крупных промышленных крутильных машинах. Подобная система используется для информационного обмена между контроллерами, расположенными на роторе и статоре установок. В этом случае для передачи данных используется скользящий контакт через контактное кольцо. Подобные примеры показывают, что необязательно иметь статический контакт для передачи данных по SHDSL.
Сравнение с другими технологиями
SHDSL vs GSM
Если сравнивать SHDSL с системами передачи данных на основе GSM (3G/4G), то в пользу DSL говорит отсутствие эксплуатационных расходов, связанных с регулярной платой оператору за доступ к мобильной сети. При SHDSL мы не зависим от зоны покрытия, качества и надежности мобильной связи на промышленном объекте, включая устойчивость к электромагнитным помехам. В SHDSL отсутствует необходимость в конфигурировании оборудования, что ускоряет ввод объекта в эксплуатацию. Для беспроводных сетей характерны большие задержки в передаче данных и сложность с передачей данных, использующих мультикастовый трафик (Profinet, Ethernet IP).
В пользу SHDSL говорит информационная безопасность в силу отсутствия необходимости передачи данных через Интернет и необходимости конфигурирования для этого VPN-соединений.
SHDSL vs Wi-Fi
Многое из сказанного для GSM можно отнести и к промышленному Wi-Fi. Против Wi-Fi говорит низкая помехоустойчивость, ограниченная дистанция передачи данных, зависимость от топологии местности, задержки при передаче данных. Самый главный недостаток – информационная безопасность сетей Wi-Fi, потому как любой человек имеет доступ к среде передачи данных. При помощи Wi-Fi уже возможно передавать данные Profinet или Ethernet IP, что было бы затруднительно для GSM.
- Уровень intermediate в английском что нужно знать
- smb что это маркетинг