sap sas что это

SAS и SAP объединились, чтобы интегрировать средства аналитики SAS и базу данных HANA

Корпорации SAP и SAS намерены интегрировать аналитическую систему SAS и систему управления базами данных SAP HANA, а затем совместно продвигать эти решения среди своих клиентов. Об этом стало известно во время конференции SAP TechEd, которая проходит в Лас-Вегасе.

Конференция SAP TechEd в Лас-Вегасе (фото: SAP).

Смысл интеграции состоит в использовании средств SAS для обработки информации, которая содержится непосредственно в HANA. В результате исчезнет необходимость тратить время на загрузку данных в аналитическое приложение. Это, как утвержается в пресс-релизе компаний, увеличит производительность аналитиков и поможет им быстрее разрабатывать, тестировать и внедрять модели.

«Когда думаешь о том, насколько большие объёмы информации приходится обрабатывать нашим клиентам, становится ясно, что перемещать их туда-сюда — это плохая идея», — цитирует издание Data Informed слова Инго Бренкмана, старшего менеджера SAP по разработке. По словам Бренкмана, передвинуть вычисления поближе к данным — более правильный подход.

Конференция SAP TechEd в Лас-Вегасе (фото: SAP).

В этом есть логика, но не вполне понятно, почему для этого потребовалось договариваться о сотрудничестве. У SAP имеются собственные аналитические приложения, соперничающие с разработками SAS, и корпорация не собирается от них отказываться. SAS, в свою очередь, не нуждается в HANA для того, чтобы обрабатывать данные в оперативной памяти. Всего год назад представители компании позволяли себе резкие выпады в адрес SAP и её продуктов.

Руководители SAS и SAP ссылаются на давление со стороны крупных консалтинговых фирм и системных интеграторов, таких как Deloitte и Accenture. Их заинтересованность в сотрудничестве между SAS и SAP была одним из факторов, которые привели конкурентов к перемирию.

В ближайшие месяцы SAS и SAP предложат совместное решение избранным общим клиентам. В первую очередь их внимание привлекают такие отрасли, как финансовые услуги, телеком, розничная торговля, потребительские продукты и производство. Основными сферами применения аналитических средств SAS, используемых в сочетании с HANA, они видят изучение потребителей, управление риском, управление активами и предотвращение отмывания денег.

Источник

IBM, Oracle и SAP выдавливают SAS с рынка BI: подробности

При этом позиции компании SAS не ухудшились в период экономического спада: в SAS Institute в 2009 году продажи прогнозируются на уровне 2008 года в размере 2,26 млрд. долларов, а прибыль может сократиться на 4%. Для сравнения, доходы корпорации SAP в текущем году сократятся на 8%, а доходы Oracle сократятся на 1%.

Компания SAS специализируется на разработке программного обеспечения, которое позволяет компаниям работать и анализировать растущие объемы данных. Даже в период рецессии спрос на такие продукты расширяется, тогда как спрос на системы для оптимизации бизнес-процессов падает.

При этом компания требует высокую плату за свои BI-решения. Стоимость отраслевых продуктов компании SAS начинается от 1 млн. долларов, ежегодная абонентская плата составляет 20%-30% от первоначальной стоимости. По словам Билла Хостмана (Bill Hostmann), аналитика компании Gartner, стоимость программных продуктов SAS несколько дороже BI-решений других вендоров.

Продукты SAS глубоко интегрированы в компаниях, которые их используют. В программном обеспечении вендор использует собственный язык программирования, который применяется и при обучении работе с системой. Для клиентов это усложняет смену поставщика программного обеспечения.

Наиболее близким конкурентом SAS является компания IBM. Примерно четверть доходов SAS приносят системы, установленные на компьютерах IBM. Это позволяет «Голубому гиганту» предлагать им свое программное обеспечение и превращать их в своих клиентов.

Тем самым компания IBM пытается убедить потенциальных клиентов в том, что «Голубой гигант» может превзойти SAS в предоставлении оборудования, программного обеспечения и консалтинговых услугах. По словам Роба Эша (Rob Ashe), генерального директора IBM, компания намерена занять место SAS в области анализа данных.

Oracle и SAP также рассчитывают на увеличение доходов за счет BI-приложений. В 2007 году Oracle купила Hyperion Solutions за 3,3 млрд. долларов, а SAP приобрела компанию Business Objects за 6,8 млрд. долларов.

Также SAS борется с популярностью языка программирования с открытым исходным кодом, называемого R, который использует Google, Стэнфордский университет и другие известные организации для разработки статистических приложений.

SAS имеет ряд преимуществ в области увеличения продаж и защиты от конкуренции. Программное обеспечение SAS, как правило, быстро устанавливается и легко в использовании, хотя SAS и привлекает консультантов из Accenture и других компаний для того, чтобы помочь клиентам успешно начать работу с системой. Продукты SAS для небольших компаний могут стоить не более десятков тысяч долларов. В 2010 году прогнозируется рост доходов компании от продажи лицензий на программное обеспечение, хотя совокупный доход не увеличится.

SAS использует 1 млрд. долларов для расширения своей штаб-квартиры в городе Кэрри, штат Северная Каролина, США. В следующем году SAS планирует инвестировать 70 млн. долларов в открытие дата-центров, чтобы иметь возможность предоставлять программное обеспечение через Интернет.

Джеймс Гуднайт (Jim Goodnight), соучредитель SAS Institute, владеет двумя третями акций компании. Г-н Гуднайт в 2009 году занимал 33 позицию в списке миллиардеров журнала Forbes. Джон Солл (John Sall), соучредитель и CEO SAS, имеет оставшуюся треть акций.

В настоящее время SAS оценивается г-ном Гуднайтом в 10-12 млрд. долларов. Учредители SAS не намерены продавать компанию. По их словам, им поступило два предложения о покупке SAS от двух крупных компаний, однако учредители попросили за SAS 20 млрд. долларов. По словам г-на Гуднайта, компания может самостоятельно функционировать на рынке.

Источник

Вия, Уая, Вая, Вайя – “трудности перевода”, или что скрывается за новой платформой SAS Viya (Вайя)

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

В сети можно найти огромное количество разнообразных статей о методах использования алгоритмов математической статистики, о нейронных сетях и в целом о пользе машинного обучения. Данные направления способствуют существенному улучшению жизни человека и светлому будущему роботов. Например, заводы нового поколения, способные работать полностью или частично без вмешательства человека или машины с автопилотом.

Разработчики объединяют комбинации этих подходов и методов машинного обучения в различные направления. Эти направления впоследствии получают названия, оригинальные и не очень, например: IOT (Internet Of Things), WOT (Web Of Things), Индустрия 4.0 (Industry 4.0), Artificial Intelligence (AI) и другие. Данные концепции объединяет то, что их описание является верхнеуровневым, то есть не рассматриваются ни конкретные инструменты и технологии, ни уже готовые к внедрению системы, а основной целью является визуализация желаемого результата. Но технологии уже существуют, хотя часто не имеют единой платформы.
Решения предоставляют как крупные вендоры ПО: SAS, SAP, Oracle, IBM, так и маленькие стартапы, составляющие крупным игрокам сильную конкуренцию, а также решения с открытым исходным кодом — open source решения. Все это многообразие сильно осложняет быстрое и эффективное выполнение поставленной задачи, так как требует трудоемкой интеграции различных систем между собой, огромных трудов разработчиков по созданию хороших моделей машинного обучения и будущую имплементацию этих решений в продуктив. Но в то же время основной критерий успешности любого инновационного проекта, который меняет подход компании к ведению бизнеса часто требует быстрого доказательства успешности и состоятельности, а иначе никто не рискнет его запустить. А это невозможно без использования единой платформы, которая позволит выполнять быстро весь цикл подготовки (поиска, сбора, очистки, консолидации) данных и получать финальные результаты в виде качественной аналитики (в том числе с использованием алгоритмов машинного обучения), и, как следствие, прибыли для компании.

Про SAS

Трудности выбора

Мы уже выяснили, что сейчас на рынке существует огромное количество продуктов известных вендоров и игроков поменьше, а также open source, который позволяет решать различные аналитические задачи во всех сферах бизнеса. Какие же критерии, кроме цены, должны учитываться при принятии решения о выборе той или иной платформы?

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Начнем с того, что сейчас бизнес пользователь становится все больше вовлечен в полный аналитический цикл и требует большей независимости от ИТ. На первый план выходят понятные этим пользователям критерии – удобство использования (единые интерфейсы), минимизация обучения новым системам (меньше кода, больше графики), производительность (в разрезе аналитики — это возможность быстрого получения результата на больших массивах данных), наличие готовых алгоритмов и моделей для работы. Время “черных” экранов уходит, терминальные окна, хотя и в другом виде, все еще доступны и позволяют писать и отлаживать код прямо на ходу, но большую часть функций уже давно можно реализовать в виде блоков в графическом интерфейсе, что открывает двери для пользователей любых уровней для работы с продвинутой аналитикой (хотя математику знать все же желательно).

Второй тренд, который неизбежно завоевывает рынки – это облачные технологии. С точки зрения компаний это возможность гибкого управления доступными ресурсами под любые проекты. Существует много исследований о времени полного вытеснения облачными технологиями классических решений. Но здесь важно понимать, что облачные вычисления — это не только железо, которое живет где-то далеко во внешних цодах, но и сам подход гибкого предоставления всевозможных услуг в виде сервисов, которые можно получить быстро и без необходимости выстраивания или перестраивания сложной IT инфраструктуры.
Еще один тренд – использование Big Data технологий. Да и использование всей Hadoop экосистемы в целом со своими языками и технологиями, а также других доступных open source систем, которые дают интерфейсы для работы с данными, такие как R, Python и другие. В этой области нет смысла конкурировать, но есть смысл иметь технологии для интеграции с этой экосистемой. Или не просто интегрироваться, а использовать возможности этой экосистемы как в случае с SAS Hadoop Embedded Process или использование Kafka для построения High Availability для систем ESP (SAS Event Stream Processing). А иногда даже улучшать и ускорять, как например возможность запускать код на R на движке CAS в SAS Viya.

Универсальная платформа

Спрос рождает предложение и SAS Viya не исключение из правил. Если обратиться к официальному определению SAS Viya, которое было дано Джимом Гуднайтом (очень сильно сокращено, но смысл сохранен) во время анонса в 2016 году на глобальном SAS форуме, то SAS Viya это: «Облачная система, которая использует подходы распределенных вычислений…и дает единую платформу для аналитики«

Ну а если коротко сформулировать идею и цели платформы SAS Viya – то это универсальная платформа для любого вида анализа на всех стадиях проекта от подготовки данных до применения сложных алгоритмов машинного обучения. Можно выделить 4 блока задач:
1. Подготовка данных
2. Визуализация и исследование данных
3. Прогнозная аналитика
4. Продвинутая аналитика в виде алгоритмов машинного обучения

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Информация для читателей

Так как в рамках одной статьи все рассказать достаточно трудно без ущерба важным нюансам, то эти шаги будут рассмотрены в следующих статьях на примерах. В этой статье мы рассмотрим важную тему движка SAS Viya, который обеспечивает быструю работу аналитических инструментов. Статьи про современные и красивые интерфейсы следующие в очереди.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Основа платформы SAS Viya

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Почему Cloud?

SAS при разработке платформы Viya и CAS в частности использовала преимущества концепции облачных вычислений. Их можно выделить в 4 группы:
1. Доступность через большой набор API разных клиентов. Для SAS это большой шаг вперед. Больше нет ограничений на использование только языка SAS Base для аналитики. Можно использовать Python (Например, из Jupiter Notebook), R, Lua и др., выполнение которых будет происходить в CAS на платформе SAS Viya.
2. Эластичность. Можно легко масштабировать систему, подключая/отключая узлы кластера CAS. Приложения доступны через web и организованы в виде микросервисов. Они независимы друг от друга в вопросах установки, обновления и работы.
3. Высокая доступность. В CAS используется система зеркалирования данных между узлами кластера. Один набор данных хранится на нескольких узлах, что уменьшает риск потери данных. Переключение в случае отказа одного из узлов происходит автоматически с сохранением состояния выполнения задания, что часто бывает критично для тяжелых аналитических расчетов.
4. Повышенная безопасность. Так как облако может быть получено от публичного провайдера, то реализация должна соответствовать более жестким требованиям к надежности каналов передачи данных.
Развернуть платформу Viya можно где угодно — в облаке, на выделенной машине в своем цоде, в кластере из любого количества машин. Автоматически обеспечивается отказоустойчивость решения.

Как же CAS работает?

Я буду разбирать работу CAS на примере MPP установки. SMP упрощает, но сохраняет принципы работы CAS. В реальной жизни SMP можно использовать в качестве тестовых локальных сред для отработки моделей с последующим переносом разработки на MPP платформу для лучшей производительности.

Давайте еще раз посморим на верхнеуровневую архитектуру CAS на SAS Viya:

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Если говорить про CAS, то он состоит из контроллера, по-другому, мастер ноды (плюс есть возможность выделить еще один узел для резервной ноды контроллера) и рабочих узлов. Мастер нода хранит метаинформацию о данных, расположенных на узлах кластера, и отвечает за распределение запросов на эти узлы (CAS Workers), выполняющие обработку и хранение данных. Отдельно выделен сервер, на котором находятся аналитические сервисы и дополнительные модули, необходимые для работы платформы. Их тоже может быть несколько в зависимости от задач. Например, можно использовать на отдельной машине в рамках инсталляции Viya сервер для SPRE (SAS Programming Runtime Environment), который позволит запускать классические задачи SAS 9 на платформе Viya как с использованием CAS, так и SPRE.

Есть интересная конфигурация, которая расширяет возможности использования CAS на платформе Viya, и оправдывает первую букву своего названия Cloud:

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Мультиарендность (multitenancy) дает возможность разделить ресурсы и данные между департаментами. При этом “арендаторам” дается единый интерфейс доступа к платформе и обеспечивается логическое разделение различных функций платформы Viya. Вариантов достаточно много. Возможно, этот вопрос будет рассмотрен в отдельной статье.

Как же быть с надежностью оперативной памяти и как загрузить данные в CAS?

Любая in-memory система для надежности требует бэкапирования данных, которые находятся в RAM. RAM не умеет сохранять состояние при отключении питания плюс все данные могут не поместиться в область оперативной памяти, и необходим механизм для быстрой перезагрузки данных в RAM. Поэтому для таблиц, которые загружаются в CAS для аналитики, создаются копии в области постоянной памяти специального формата SASHDAT. Для обеспечения высокой доступности эти файлы зеркалируются на нескольких узлах кластера. Этот параметр можно настроить. Идея в том, что при потере узла данные будут автоматически загружены в оперативную память на соседнем узле из копии файла SASHDAT. Область хранения этих копий в структуре CAS называется CAS_DISK_CACHE.

CAS_DISK_CACHE это важная часть в составе CAS, которая нужна не только для обеспечения отказоустойчивости, но и оптимизации использования памяти. На схеме ниже отображены разные способы хранения SASHDAT и принцип загрузки данных в RAM. Например, датасет A получен из БД Oracle и хранится на одном узле CAS в RAM и на диске. Плюс этот датасет A дублируется на другом узле только на жесткий диск. Вариантов много (некоторые из них не требуют дополнительного резервирования – это будет рассмотрено ниже), но основная идея в том, чтобы всегда иметь копию для быстрого восстановления ранее загруженных данных в оперативную память. Кстати, в случае установки двух параметров: MAXTABLEMEM=0 и COPIES=0 на уровне сессии, данные будут жить только в оперативной памяти.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Отдельно хочется рассмотреть интересную конфигурацию CAS с Hadoop. Для использования этой конфигурации CAS вместе с Hadoop системой нужна установка SAS Plugins for Hadoop. Основная идея подхода в том, что узлы кластера Hadoop становятся также рабочими узлами CAS. Данные затягиваются в оперативную память напрямую из файлов в hdfs без сетевой нагрузки. Это лучший вариант с точки зрения производительности. Можно использовать Hadoop либо только для хранения SASHDAT файлов (HDFS на кластере будет выполнять роль CAS_DISK_CACHE –резервирование на уровне HDFS), либо вместе с другими данными. Распределение ресурсов на кластере Hadoop выполняется через YARN. Схема установки CAS на кластер Hadoop:

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Загрузка

С загрузкой данных все просто. Мы можем указать различные источники на вход CAS. Их можно загружать или в один поток или параллельно. Так как реляционные базы данных используются гораздо чаще в качестве источников, мы рассмотрим тему загрузки данных в CAS из RDBMS. Для оптимизации загрузки данных в кластер CAS желательно установить клиентское ПО базы данных источника на каждый узел кластера. В этом случае каждый узел CAS кластера будет получать свою порцию данных в параллельном режиме. При установке клиента только на контроллер все данные будут передаваться через CAS контроллер.

Например, при установке параметра numreadnodes=3 таблица будет автоматически разбиваться на 3 порции данных для загрузки на разные узлы CAS – в этом случае распределение данных будет основано на группировке по первому числовому столбцу с применением операции mod 3.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Если же в качестве источника используются Hadoop или Teradata, то с использованием Embedded Process для Hadoop или Teradata загрузка будет выполняться напрямую с каждого узла кластера Hadoop или Teradata. Обратите внимание, что в случае с отдельной инсталляцией кластера Hadoop (CAS установлен не на узлах Hadoop) область CAS_DISK_CACHE будет создана на кластере CAS.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

С чего начать работу с CAS?

Важными терминами в работе CAS являются библиотеки и сессии. При начале работы с CAS первое, что создается – это сессия. Ее можно определить вручную при работе через SAS Studio, или она автоматически создается через доступные графические интерфейсы на SAS Viya при подключении к CAS. Внутри сессии все данные и преобразования, которые определяются в новых библиотеках, по умолчанию создаются с локальной областью видимости. Данные (определенные в caslib) и результаты шагов локальной сессии видны только в этой сессии. В случае, если нам нужно сделать результаты общедоступными, то мы можем переопределить caslib параметром global и оператором promote, и данные будут доступны из других сессий. Библиотеки, которые уже определены с параметром global, будут доступны из любых сессий. Сделано это для оптимального разделения ресурсов и управления правами доступа к данным. После отключения от локальной сессии удаляются все временные данные, если caslib не был переопределен в global. Мы можем настроить параметр TIMEOUT для удаления данных при отключении от сессии, чтобы избежать возможных потерь при кратковременных сетевых сбоях или чтобы вернуться к этой сессии для дальнейшего анализа (например, можно выставить параметр TIMEOUT на 3600 секунд, что даст нам 60 минут времени для возврата к сессии). Плюс данные можно сохранить на любом шаге преобразований в специальный формат SASHDAT или в доступную БД, к которой настроено подключение простым оператором SAVE.

Библиотеки caslibs описывают наборы данных, которые будут доступны в CAS. При создании caslib указывается тип подключения и параметры подключения. В определении caslib мы указываем сразу на источник данных и на целевую область в in-memory. Также на уровне caslib удобно задавать права доступа группам пользователей к данным, которые описаны в caslib. Делается это в графическом интерфейсе.

Пример описания caslib для разных типов источников:

После определения caslib мы можем загружать данные в оперативную память для дальнейшей обработки. Пример загрузки данных caslib hivelib:

Внутри каждой сессии запросы (actions) выполняются последовательно. Это важно при написании кода вручную, но при использовании графических интерфейсов, доступных на Viya, об этом можно не думать. Клиентские приложения с GUI сами создают раздельные сессии для выполнения шагов в параллельном режиме.

Полноценно графические интерфейсы и подходы работы через них мы рассмотрим в следующих статьях. Здесь добавлю скриншоты шагов по созданию caslib DM_ORAHR и загрузки данных в RAM через GUI:

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что этоsap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Это только начало

На этом я заканчиваю часть про CAS и возвращаюсь к платформе Viya. Так как Viya создана для бизнес-пользователей, то в процессе работы не нужно будет глубоко понимать специфику работы CAS. Для всех операций есть удобные графические интерфейсы, а CAS будет обеспечивать быструю работу всех аналитических шагов за счет in-memory и распределенных вычислений.

Теперь можно переходить к пользовательским интерфейсам, которые доступны на Viya. На текущий момент их достаточно много, и количество продуктов постоянно увеличивается. В начале статьи они были выделены в 4 группы, которые нужны для полного аналитического цикла. Возвращаясь к основной идее, Viya – это единая платформа для исследования данных и продвинутой аналитики. А начинается работа с подготовки и поиска этих данных. И в следующей части цикла статей про Viya я расскажу про инструменты подготовки данных, которые доступны аналитикам.

Вместо заключения, название Viya происходит от слова Via (от англ. “посредством” или “через”). Основная идея этого названия в простом переходе от классического решения SAS 9 к новой платформе, которая создана, чтобы перевести аналитику на новый уровень.

Источник

SAS: мы анализировали данные и обучали модели задолго до того, как это стало модным

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Наша аналитическая платформа работает в WalMart, Bank of America, Bank of China, Сбербанке, МТС. SAS как предмет преподают в МГУ, ВШЭ, МИФИ, МГТУ им. Баумана, МЭИ, МИИТ и других ВУЗах. А под катом — наша краткая история-знакомство, с которой мы хотим открыть наш блог на Хабре.

Кто мы такие

Компания SAS существует с 1976 г. Мы выросли из маленького проекта одного молодого профессора математики из Университета Северной Каролины. Началось все с небольших подрядов на статобработку данных Минсельхоза, которые он выполнял вместе со своими студентами.

Разумеется, стандартных решений для автоматизации тогда не существовало, поэтому большинство статистических функций профессор писал сам на языках С и COBOL.

В какой-то момент количество перешло в качество: вместо того чтобы просто выполнять определенные расчеты для своих клиентов, профессор решил продавать сами свои наработки по расчетам и другим клиентам, которым необходимо было работать с аналитикой и статистикой, а также строить математические модели. Так появилась компания SAS.

Сегодня мы работаем по всему миру практически во всех традиционных отраслях, где необходим анализ статистики. В круг наших партнеров входят банки и крупнейшие страховые компании, ритейлеры и производственные компании, энергетика и нефтегаз, ресторанные и гостиничные сети, а также самые разные госструктуры. На сегодняшний день мы обслуживаем более 83 000 клиентов по всему миру. В нашей компании работает 14 000 сотрудников, более 4 000 из которых заняты непосредственно разработкой ПО.

Мы имеем богатую историю работы и на российском рынке. Хотя официальная история SAS в России началась с 1996 года, первые крупные внедрения нашего ПО относятся к самому началу 90-х, а отдельные решения работали еще при существовании СССР.

Одним из первых крупных клиентов на российском рынке стал Альфа-банк, история работы с которым уходит в самое начало 90-х. Среди крупнейших российских клиентов можно упомянуть и компанию МТС, где мы создавали хранилище данных и систему обработки управленческой и аналитической отчетности. Общий объем хранилища составлял 30 ТБ, что на тот момент (более 10 лет назад) являлось самым большим хранилищем данных в РФ, а возможно даже и в Европе. Также наши технологии и решения активно используется в сфере железнодорожного транспорта и некоторых других отраслях российской промышленности.

Зачем мы здесь

Одна из целей нашего присутствия на Хабре – познакомиться с молодежью, развеять мифы о нас, в том числе главный – о недоступности SAS из-за высокой стоимости и прочих ограничений. Нет, у нас не все платное – вы всегда можете найти варианты бесплатного использования, в том числе для исследований и изучения; нет, у нас не все недоступное – в открытом доступе есть масса ресурсов; нет, у нас не все на английском языке – и мы обязательно будем работать над увеличением русскоязычного материала.

На каких рынках мы работаем

Мы активно работаем на банковском рынке, в число наших клиентов входят практически все крупнейшие банки. Наши решения используются в клиентской аналитике, целевом маркетинге, помогают обеспечить управление данными и подготовку управленческой и аналитической отчетностью. Одно из ключевых направлений — управление рисками, которое применяется в том числе для борьбы с мошенничеством.

Несмотря на изначальный скепсис в отрасли, мы успешно работаем со страховым бизнесом. У них главная проблема — это очень небольшой объем транзакционных данных по клиентам. Нормальный человек покупает полис и приходит только через год за следующим. Поэтому страховщики сомневались, можно ли извлечь из технологий машинного обучения какую-то пользу. Но капля камень точит. Пару лет назад плотину все-таки прорвало, и мы начали делать первые проекты. Самые перспективные направления для нас – борьба с мошенничеством и оценка потенциальной убыточности клиентов.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

В последние годы мы активно выходим на рынок ритейла. В этой отрасли наши решения используются как в товарной аналитике (оптимизация цен, запасов, размещения на полках и пр.), так и в клиентской аналитике (все, что связано с персонализацией отношений с клиентами). Также аналитика дает реальный и быстрый эффект в таких секторах как логистика, медицина и сельское хозяйство

Сегодня потребности клиентов и рынка в аналитике развиваются чрезвычайно быстро, поэтому свои перспективы мы оцениваем с большим оптимизмом.

Ключевые требования

Однако не все так просто. Эффективность работы с аналитикой зависит от нескольких ключевых факторов, отсутствие которых способно испортить весь эффект.

Во-первых, для аналитики в первую очередь необходимо иметь адекватные и упорядоченные данные. В некоторых отраслях это не представляет сложности (банки, телеком), но в некоторых структурированность, да и просто наличие нужных данных – большая проблема (например, страхование, агробизнес).

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Во-вторых, большую роль играет то, насколько руководство готово внедрять аналитику и использовать ее при принятии решений, причем основная проблема кроется даже не в затратах, а именно в готовности менять схемы работы. Много где руководство считает, что если их схемы работают уже двадцать лет, а эксперты раньше принимали нужные решения без всякой аналитики, то и менять ничего не стоит. В современном мире эта стратегия работает либо до первого крупного происшествия (мошенничества, неурожая и пр.), либо до тех пор, пока компания не начинает заметно проигрывать на рынке конкурентам, использующим современные технологии и схемы управления.

В-третьих, в компании должна быть команда аналитиков, которые будут работать с полученными данными. Такие команды тоже есть не везде, и в телекоме аналитики, математики, дата-сайентисты окажутся скорее, чем, например, в сельском хозяйстве. Впрочем, и здесь все меняется: с одной стороны, все больше предприятий понимают, что необходимо иметь собственное аналитическое подразделение, с другой – использование искусственного интеллекта позволяет аналитическим системам работать точнее и лучше подстраиваться под существующие условия, что повышает эффективность в конкретных задачах. Плюс системы стали проще для пользователя.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Наконец, сейчас широко распространяется аутсорсинг, когда собственно работу аналитиков берут на себя партнеры, а заказчик получает готовые для понимания и использования аналитические данные. Например, часто в начале сотрудничества мы работаем в качестве внешних аналитиков (по модели RaaS), и клиент получает эффект и понимание, что и как работает, какие направления следует развивать, а какие – нет. Это поможет ему при формировании своей команды или же подтолкнет принять решение продолжить работать на аутсорсе.

Что мы делаем

Наша аналитическая платформа имеет очень широкую функциональность. В круг ее возможностей входят разведочный анализ, подготовка данных, классическое прогнозное моделирование и машинное обучение, прогнозирование на основе временных рядов, оптимизация, и много чего еще.

Все блоки и решения мы разрабатываем сами. Поэтому мы понимаем, что и как работает и как взаимодействует между собой – у нас нет сложностей с согласованием работы различных компонентов и решений между собой. При этом блоки работают на единой платформе управления метаданными и имеют в основе общий язык программирования SAS Base.

Один из наших приоритетов – интегрировать наши решения в рабочие процессы и схемы принятия решений в компании. Дело в том, что если аналитика и данные существуют отдельно, «в вакууме», эффективность их использования существенно падает. Кроме того, без нормальной бесшовной интеграции очень велик риск операционных ошибок. А такие ошибки очень сильно бьют по доверию к аналитике и моделям.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Для встраивания аналитики в бизнес-процессы в SAS предусмотрен целый стек технологий. Интеграция на уровне данных (SAS Data Integration), интеграция на уровне потоков событий (SAS Event Stream Processing), интеграция на уровне запросов решений (SAS Decision Manager), интеграция на уровне управления жизненным циклом моделей (SAS Model Manager), интеграция на уровне разнородных аналитических инструментов типа R, Python, Scala (SAS Viya). В крупной организации, будь то банк, ретейлер, телеком или что-то другое, основная сложность — это огромное количество разнородных источников данных на разных платформах и СУБД, и большое число процессов, где требуется применение аналитики (потребителей аналитики), реализованных в разных системах.

Из новых приоритетов стоит упомянуть скорость. Сегодня многим нашим клиентам уже недостаточно получать данные и аналитику с задержкой. Время на принятие решения все сокращается, и во многих случаях данные требуются уже в реальном времени.

Естественно, что сегодня SAS работает не только по традиционной модели предоставления софта, но и предоставляет облачные сервисы. В самых разных форматах: SaaS (ПО как сервис), BaaS (бизнес как сервис – аутсорсинг аналитических процессов), RaaS (результат как сервис – реализация какого-либо законченного продукта для клиента под ключ, от разработки прогнозной модели, до формирования статистически обоснованной стратегии развития сети торговых точек, например).

Облачные сервисы востребованы больше не в банках, где все хорошо с данными, с деньгами, с аналитиками, а в других отраслях – страховании, ритейле, агросекторе, например. Клиенты в этих отраслях готовы привлекать внешних экспертов не только на этапе настройки, но и на постоянную работу. Еще один плюс облачных сервисов — отсутствие необходимости больших инвестиций в начале работы, что дает более быстрый выход на окупаемость и снижает риски убытков.

Как выбирают

Решения SAS выбирают крупные предприятия для серьезной работы, поэтому выбор решения занимает много времени и включает оценку широкого круга возможностей и параметров работы предлагаемых решений. При этом ключевым фактором для них является рост эффективности, который, как и точность принимаемых решений, в значительной степени зависит от точности используемой модели. Иногда заказчик даже устраивает своего рода соревнование – предлагает нескольким вендорам построить нужную ему аналитическую модель и смотрит, кто лучше справится с заданием.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Однако сама точность модели – фактор не постоянный. Она зависит от многих факторов, как относящихся к модели, так и внешних. Например, точность модели полностью зависит от корректности и адекватности предоставляемых в рамках тестирования данных. Иногда они есть, иногда нужные данные находятся в рассеянном виде и их нужно искать, собирать и приводить к единому формату, либо вообще приходится самостоятельно налаживать их сбор.

Также на первом этапе не всегда понятно, что к чему, какие есть особенности и главное, что именно нужно клиенту. Поэтому на первых этапах работы преимущество в точности часто получают усредненные модели, которые уже «из коробки» дают относительно высокую точность работы. Однако такая модель со временем скорее всего будет терять актуальность за счет того, что меняются условия работы предприятия и самого рынка. Это необходимо учитывать и либо вручную, либо автоматически адаптировать модель к меняющимся условиям.

При правильной организации работы (когда модель подстраивается под особенности работы клиента и рынка) точность модели в первое время будет расти по мере «тонкой настройки», накопления данных и пр. В одном из внедрений наша модель изначально показала результат хуже, чем у конкурентов, однако в кратчайшие сроки, набрав нужную информацию и адаптировав ее работу, мы вырвались вперед.

Мы уверены в своих решениях, и та статистика, что у нас есть, показывает, что клиенты нам тоже доверяют. Отток клиентов у нас не превышает 1%, очень часто менеджеры и клиенты, переходя в новую компанию, стремятся и ее перевести на использование наших решений. В России мы растем на 40% в год, что дает нам основания считать, что наши решения востребованы.

Что привлекает клиентов

Больше всего клиенты ценят то, что получают от SAS готовые решения. Наши решения позволяют не просто разрабатывать модели – мы можем встраивать их в бизнес-процессы компании. Очень часто именно эта возможность становится решающей при принятии решения об использовании именно нашего продукта. Потому что зарабатывать деньги на любых моделях или аналитике можно только тогда, когда они реально дают возможность принимать прибыльные бизнес-решения и повышать эффективность. Поэтому мы уделяем огромное внимание тому, чтобы наша аналитика была тесно интегрирована в бизнес-процессы компании. Но это не единственное наше достоинство.

Мы сами разрабатываем все свои продукты и решения, что обеспечивает единообразность и согласованную работу, в дальнейшем наши решения можно легко масштабировать или модифицировать. Наши решения тесно интегрированы между собой: мы предлагаем общую платформу, на которую можно «навешивать» разные модули. Благодаря этому степень риска при их внедрении гораздо ниже – клиенту не надо собирать в единую систему из чужих технологий и инструментов с неизвестным результатом. Можно сразу (и зачастую перед полноценным внедрением) оценить работу решения, составить предварительное впечатление.

В наши решения заложены накопленные нами знания и опыт в области решения конкретных аналитических задач, типовые бизнес-процессы, формы мониторинга и отчетности и т.д. Плюс, у нас нет «просто аналитиков», наши специалисты обладают предметными данными в конкретной области, что позволяет им лучше понимать ситуацию. В принципе, даже технические специалисты обладают знаниями и пониманием происходящих в отрасли процессов, что позволяет им более адекватно работать с данными.

Еще момент – скорость обработки данных. О высокой скорости говорят все, но чаще речь идет о каких-то специальных бенчмарках. Мы же имеем опыт реальных внедрений сложных решений с огромными скоростями обработки для таких компаний как WalMart, Bank of America, Bank of China, Сбербанк. Кроме того, у нас есть особая услуга: специальный дата-центр, имеющий 114 высокопроизводительных процессорных ядра, 3 ТБ оперативной памяти, 24 ТБ SSD емкости, который смонтирован в передвижном ящике весом в 120 кг. Мы можем поставить его у заказчика на пару недель, чтобы он смог проверить и оценить его работу. Да, и часто клиенты не хотят отдавать ее обратно.

sap sas что это. Смотреть фото sap sas что это. Смотреть картинку sap sas что это. Картинка про sap sas что это. Фото sap sas что это

Наконец, стоит отметить, что, хотя продукты SAS и стоят немало, для наших клиентов цены конкретных решений, как правило, не играют решающей роли – они больше смотрят на то, какие выгоды они получат от внедрения. Это может быть повышение рентабельности, снижение издержек или повышение скорости реагирования, что тоже повышает эффективность. Впрочем, если цена кажется излишней или заказчик пока не понимает, выгодным ли для него окажется использование наших решений, можно начать с облачных сервисов на платформе SAS – порог вхождения для них куда ниже, но при этом можно в полной мере оценить наши возможности.

Уже сейчас с решениями SAS работают ведущие предприятия во многих отраслях. SAS преподают в крупнейших вузах – спецкурсы, куда могут прийти все желающие, есть в МГУ, ВШЭ, МИФИ, МГТУ им. Баумана, МЭИ, МИИТ и др. Мы регулярно проводим набор на стажерскую программу, причем она расширена и на наших клиентов – всем нужны люди со знанием SAS.

Мы с радостью услышим ваши пожелания о темах, которыми нам лучше поделиться. Пишите в комментариях вопросы, мы с радостью ответим, в том числе, в будущих материалах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *