runnable java что это

Runnable и Thread

В Java многопоточность программы организуется с помощью интерфейса Runnable и класса Thread, который наследуется от Runnable. Первый способ более гибкий, второй – проще.

Та часть кода, которая должна выполняться в отдельном потоке, выносится в свой класс, имеющий переопределенный метод run(). Код метода run() выполняется, когда к объекту типа Thread применяется метод start(). Непосредственный вызов run() новый поток не создает.

Здесь обработка исключений необходима из-за статического метода sleep(), который приостанавливает выполнение текущего потока. Данный метод часто используют в дочерних потоках, когда они должны выполнять какое-либо действие постоянно, но не бесперебойно. Например, периодически проверять доступность ресурса.

Метод join() заставляет текущий поток ждать завершения нити, к которой применяется. Только после этого текущий поток может продолжить выполнение своего кода.

В данном случае мы создаем класс-наследник от Runnable. Объект типа Runnable или его производное передается в конструктор объекта типа Thread. После этого поток запускается.

Другой вариант – когда пользовательский класс является наследником Thread:

Этот вариант не подходит, если класс для организации отдельного потока должен наследоваться от другого класса (не Thread). Поскольку в Java нет множественного наследования классов, приходится использовать наследование от интерфейса Runnable. Также данный подход не дает возможности запускать несколько потоков на основе одного объекта. Так в первом примере мы могли бы передать единственный объект anotherRun в несколько объектов типа Thread.

Напомним, библиотечный класс Thread сам является наследником Runnable.

Если в отдельный поток обособляется небольшая подзадача, можно использовать неименованный класс:

Прерывание потоков

Для прерывания выполнения нити, если это необходимо, используется метод interrupt(), который устанавливает переменную isInterrupt в значение true. К коде пользовательского класса, унаследованного от Runnable/Thread, это переменная должна проверяться. Отсюда следует, что на самом деле в Java нет возможности прервать поток извне, поток может остановиться только сам.

С другой стороны, в метод sleep() уже встроена проверка переменной isInterrupt, поэтому проверку вручную опускают. Если sleep() считывает наличие прерывания, то генерирует исключение.

В примере основной поток ожидает ввод данных, в это время выполняется вторая нить. Но как только вы нажмете Enter, выполнится метод interrupt(). В свою очередь метод sleep() прочитает значение переменной isInterrupt класса Thread и сгенерирует исключение InterruptedException.

Если sleep() не используется, то isInterrupt проверяется вручную методом isInterrupted(). Следующий пример содержит ошибку, приводящую к зацикливанию:

Мы могли бы ожидать, что через 2 секунды сработает метод interrupt(), который прервет дочернюю нить. Однако, поскольку в ней не проверяется значение isInterrupt, цикл продолжает работать. Корректный код может выглядеть так:

При наследовании от Runnable текущий поток через this получить нельзя. Его получают, вызывая соответствующий метод класса Thread:

Источник

Многопоточность Thread, Runnable

Многопоточное программирование позволяет разделить представление и обработку информации на несколько «легковесных» процессов (light-weight processes), имеющих общий доступ как к методам различных объектов приложения, так и к их полям. Многопоточность незаменима в тех случаях, когда графический интерфейс должен реагировать на действия пользователя при выполнении определенной обработки информации. Потоки могут взаимодействовать друг с другом через основной «родительский» поток, из которого они стартованы.

В качестве примера можно привести некоторый поток, отвечающий за представление информации в интерфейсе, который ожидает завершения работы другого потока, загружающего файл, и одновременно отображает некоторую анимацию или обновляет прогресс-бар. Кроме того этот поток может остановить загружающий файл поток при нажатии кнопки «Отмена».

Преимущества потоков перед процессами

Главный поток

Каждое java приложение имеет хотя бы один выполняющийся поток. Поток, с которого начинается выполнение программы, называется главным. После создания процесса, как правило, JVM начинает выполнение главного потока с метода main(). Затем, по мере необходимости, могут быть запущены дополнительные потоки. Многопоточность — это два и более потоков, выполняющихся одновременно в одной программе. Компьютер с одноядерным процессором может выполнять только один поток, разделяя процессорное время между различными процессами и потоками.

Класс Thread

В классе Thread определены семь перегруженных конструкторов, большое количество методов, предназначенных для работы с потоками, и три константы (приоритеты выполнения потока).

Конструкторы класса Thread

Пример создания потока, который входит в группу, реализует интерфейс Runnable и имеет свое уникальное название :

Группы потоков удобно использовать, когда необходимо одинаково управлять несколькими потоками. Например, несколько потоков выводят данные на печать и необходимо прервать печать всех документов поставленных в очередь. В этом случае удобно применить команду ко всем потокам одновременно, а не к каждому потоку отдельно. Но это можно сделать, если потоки отнесены к одной группе.

Несмотря на то, что главный поток создаётся автоматически, им можно управлять. Для этого необходимо создать объект класса Thread вызовом метода currentThread().

Методы класса Thread

Наиболее часто используемые методы класса Thread для управления потоками :

Жизненный цикл потока

При выполнении программы объект Thread может находиться в одном из четырех основных состояний: «новый», «работоспособный», «неработоспособный» и «пассивный». При создании потока он получает состояние «новый» (NEW) и не выполняется. Для перевода потока из состояния «новый» в «работоспособный» (RUNNABLE) следует выполнить метод start(), вызывающий метод run().

Поток может находиться в одном из состояний, соответствующих элементам статически вложенного перечисления Thread.State :

NEW — поток создан, но еще не запущен;
RUNNABLE — поток выполняется;
BLOCKED — поток блокирован;
WAITING — поток ждет окончания работы другого потока;
TIMED_WAITING — поток некоторое время ждет окончания другого потока;
TERMINATED — поток завершен.

Пример использования Thread

В примере ChickenEgg рассматривается параллельная работа двух потоков (главный поток и поток Egg), в которых идет спор, «что было раньше, яйцо или курица?». Каждый поток высказывает свое мнение после небольшой задержки, формируемой методом ChickenEgg.getTimeSleep(). Побеждает тот поток, который последним говорит свое слово.

При выполнении программы в консоль было выведено следующее сообщение.

Невозможно точно предсказать, какой поток закончит высказываться последним. При следующем запуске «победитель» может измениться. Это происходит вследствии так называемого «асинхронного выполнения кода». Асинхронность обеспечивает независимость выполнения потоков. Или, другими словами, параллельные потоки независимы друг от друга, за исключением случаев, когда бизнес-логика зависимости выполнения потоков определяется предусмотренными для этого средств языка.

Интерфейс Runnable

Интерфейс Runnable содержит только один метод run() :

Метод run() выполняется при запуске потока. После определения объекта Runnable он передается в один из конструкторов класса Thread.

Пример класса RunnableExample, реализующего интерфейс Runnable

При выполнении программы в консоль было выведено следующее сообщение.

Синхронизация потоков, synchronized

В процессе функционирования потоки часто используют общие ресурсы приложения, определенные вне потока. Если несколько потоков начнут одновременно вносить изменения в общий ресурс, то результаты выполнения программы могут быть непредсказуемыми. Рассмотрим следующий пример :

В примере определен общий ресурс в виде класса CommonObject, в котором имеется целочисленное поле counter. Данный ресурс используется внутренним классом, создающим поток CounterThread для увеличения в цикле значения counter на единицу. При старте потока полю counter присваивается значение 1. После завершения работы потока значение res.counter должно быть равно 4.

Две строчки кода класса CounterThread закомментированы. О них речь пойдет ниже.

В главном классе программы SynchronizedThread.main запускается пять потоков. То есть, каждый поток должен в цикле увеличить значение res.counter с единицы до четырех; и так пять раз. Но результат работы программы, отображаемый в консоли, будет иным :

То есть, с общим ресурсов res.counter работают все потоки одновременно, поочередно изменяя значение.

Чтобы избежать подобной ситуации, потоки необходимо синхронизировать. Одним из способов синхронизации потоков связан с использованием ключевого слова synchronized. Оператор synchronized позволяет определить блок кода или метод, который должен быть доступен только одному потоку. Можно использовать synchronized в своих классах определяя синхронизированные методы или блоки. Но нельзя использовать synchronized в переменных или атрибутах в определении класса.

Блокировка на уровне объекта

Блокировать общий ресурс можно на уровне объекта, но нельзя использовать для этих целей примитивные типы. В примере следует удалить строчные комментарии в классе CounterThread, после чего общий ресурс будет блокироваться как только его захватит один из потоков; остальные потоки будут ждать в очереди освобождения ресурса. Результат работы программы при синхронизации доступа к общему ресурсу резко изменится :

Следующий код демонстрирует порядок использования оператора synchronized для блокирования доступа к объекту.

Блокировка на уровне метода и класса

Блокировать доступ к ресурсам можно на уровне метода и класса. Следующий код показывает, что если во время выполнения программы имеется несколько экземпляров класса DemoClass, то только один поток может выполнить метод demoMethod(), для других потоков доступ к методу будет заблокирован. Это необходимо когда требуется сделать определенные ресурсы потокобезопасными.

Каждый объект в Java имеет ассоциированный с ним монитор, который представляет своего рода инструмент для управления доступа к объекту. Когда выполнение кода доходит до оператора synchronized, монитор объекта блокируется, предоставляя монопольный доступ к блоку кода только одному потоку, который произвел блокировку. После окончания работы блока кода, монитор объекта освобождается и он становится доступным для других потоков.

Некоторые важные замечания использования synchronized

Примечание : для синхронизации потоков можно использовать объекты синхронизации Synchroniser’s пакета java.util.concurrent.

Взаимная блокировка

С использованием блокировок необходимо быть очень внимательным, чтобы не создать «взаимоблокировку», которая хорошо известна разработчикам. Этот термин означает, что один из потоков ждет от другого освобождения заблокированного им ресурса, в то время как сам также заблокировал один из ресурсов, доступа к которому ждёт второй поток. В данном процессе могут участвовать два и более потоков.

Основные условия возникновения взаимоблокировок в многопотоковом приложении :

Взаимодействие между потоками в Java, wait и notify

При взаимодействии потоков часто возникает необходимость приостановки одних потоков и их последующего извещения о завершении определенных действий в других потоков. Так например, действия первого потока зависят от результата действий второго потока, и надо каким-то образом известить первый поток, что второй поток произвел/завершил определенную работу. Для подобных ситуаций используются методы :

Все эти методы вызываются только из синхронизированного контекста (синхронизированного блока или метода).

Рассмотрим пример «Производитель-Склад-Потребитель» (Producer-Store-Consumer). Пока производитель не поставит на склад продукт, потребитель не может его забрать. Допустим производитель должен поставить 5 единиц определенного товара. Соответственно потребитель должен весь товар получить. Но, при этом, одновременно на складе может находиться не более 3 единиц товара. При реализации данного примера используем методы wait() и notify().

Листинг класса Store

Класс Store содержит два синхронизированных метода для получения товара get() и для добавления товара put(). При получении товара выполняется проверка счетчика counter. Если на складе товара нет, то есть counter

Источник

Многопоточность в Java: работа с потоками и полезные методы класса Thread

runnable java что это. Смотреть фото runnable java что это. Смотреть картинку runnable java что это. Картинка про runnable java что это. Фото runnable java что это runnable java что это. Смотреть фото runnable java что это. Смотреть картинку runnable java что это. Картинка про runnable java что это. Фото runnable java что это runnable java что это. Смотреть фото runnable java что это. Смотреть картинку runnable java что это. Картинка про runnable java что это. Фото runnable java что это

Многопоточность в Java — это одновременное выполнение двух или более потоков для максимального использования центрального процессора (CPU — central processing unit). Каждый поток работает параллельно и не требует отдельной области памяти. К тому же, переключение контекста между потоками занимает меньше времени.

Процессы в Java: определение и функции

Что такое потоки

Поток — наименьшее составляющее процесса. Потоки могут выполняться параллельно друг с другом. Их также часто называют легковесными процессами. Они используют адресное пространство процесса и делят его с другими потоками.

Потоки могут контролироваться друг друга и общаться посредством методов wait(), notify(), notifyAll().

Состояния потоков

Потоки могут пребывать в нескольких состояниях:

Способы запуска потоков

Приложение, создающее экземпляр класса Thread, должно предоставить код, который будет работать в этом потоке. Существует два способа, чтобы добиться этого:

Обратите внимание, что оба примера вызывают Thread.start, чтобы запустить новый поток.

Какой из способов выбрать? Первый — с использованием объекта Runnable — более общий, потому что этот объект может превратить отличный от Thread класс в подкласс. Этот способ более гибкий и может использоваться для высокоуровневых API управления потоками.

Второй способ больше подходит для простых приложений, но есть условие: класс задачи должен быть потомком Thread.

Завершение процесса и потоки-демоны

В Java процесс завершается тогда, когда завершаются все его основные и дочерние потоки.

Потоки-демоны — это низкоприоритетные потоки, работающие в фоновом режиме для выполнения таких задач, как сбор «мусора»: они освобождают память неиспользованных объектов и очищают кэш. Большинство потоков JVM (Java Virtual Machine) являются потоками-демонами.

Свойства потоков-демонов:

Чтобы установить, является ли поток демоном, используется метод boolean isDaemon(). Если да, то он возвращает значение true, если нет, то — то значение false.

Завершение потоков

Завершение потока Java требует подготовки кода реализации потока. Класс Java Thread содержит метод stop(), но он помечен как deprecated. Оригинальный метод stop() не дает никаких гарантий относительно состояния, в котором поток остановили. То есть, все объекты Java, к которым у потока был доступ во время выполнения, останутся в неизвестном состоянии. Если другие потоки в приложении имели доступ к тем же объектам, то они могут неожиданно «сломаться».

Вместо вызова метода stop() нужно реализовать код потока, чтобы его остановить. Приведем пример класса с реализацией Runnable, который содержит дополнительный метод doStop(), посылающий Runnable сигнал остановиться. Runnable проверит его и остановит, когда будет готов.

Обратите внимание на методы doStop() и keepRunning(). Вызов doStop() происходит не из потока, выполняющего метод run() в MyRunnable.

Метод keepRunning() вызывается внутренней потоком, выполняющим метод run() MyRunnable. Поскольку метод doStop() не вызван, метод keepRunning() возвратит значение true, то есть поток, выполняющий метод run(), продолжит работать.

В примере сначала создается MyRunnable, а затем передается потоку и запускает его. Поток, выполняющий метод main() (главный поток), засыпает на 10 секунд и потом вызывает метод doStop() экземпляра класса MyRunnable. Впоследствии поток, выполняющий метод MyRunnable, остановится, потому что после того, как вызван doStop(), keepRunning() возвратит false.

Обратите внимание, если для реализация Runnable нужен не только метод run() (а например, еще метод stop() или pause()), реализацию Runnable больше нельзя будет создать с помощью лямбда-выражений. Понадобится кастомный класс или интерфейс, расширяющий Runnable, который содержит дополнительные методы и реализуется анонимным классом.

Метод Thread.sleep()

Поток может остановиться сам, вызвав статический метод Thread.sleep(). Thread.sleep() принимает в качестве параметра количество миллисекунд. Метод sleep() попытается заснуть на это количество времени перед возобновлениям выполнения. Thread sleep() не гарантирует абсолютной точности.

Приведем пример остановки потока Java на 10 секунд (10 тысяч миллисекунд) с помощью вызова метода Thread sleep():

Поток, выполняющий код, уснет примерно на 10 секунд.

Метод yield()

Предотвратить выполнение потока можно методом yield(): предположим, существует три потока t1, t2, and t3. Поток t1 выполняется процессором, а потоки t2 и t3 находятся в состоянии Ready/Runnable. Время выполнения для потока t1 — 5 часов, а для t2 – 5 минут.

Поскольку t1 закончит свое выполнение через 5 часов, t2 придется ждать все это время, чтобы закончить 5-минутную задачу. В таких случаях, когда один поток требует слишком много времени, чтобы завершить свое выполнение, нужен способ приостановить выполнение длинного потока в промежутке, если какая-то важная задача не завершена. Тут и поможет yield ().

По сути, yield() означает, что поток не выполняет ничего особо важного, и если другие потоки или процессы требуют запуска, то их можно запустить.

Использование метода yield() :

Синтаксис:

Результат:

Метод join()

Метод join() экземпляра класса Thread используется для объединения начала выполнения одного потока с завершением выполнения другого потока. Это необходимо, чтобы один поток не начал выполняться до того, как завершится другой поток. Если метод join() вызывается на Thread, то выполняющийся в этот момент поток блокируется до момента, пока Thread не закончит выполнение.

Метод join() ждет не более указанного количества миллисекунд, пока поток умрет. Тайм-аут 0 (ноль) означает «ждать вечно».

Синтаксис:

Например:

Результат:

Из примера видно, что как только поток t1 завершает выполнение задачи, потоки t2 и t3 начинают выполнять свои задачи.

Приоритеты потоков

У каждого потока есть приоритет. Приоритет обозначается числом от 1 до 10. В большинстве случаев планировщик распределяет потоки относительно их приоритета (другими словами — происходит приоритетное планирование). Но это не гарантированно, поскольку он зависит от того, какое планирование выберет JVM.

Три константы, которые определяются в классе Thread:

1. public static int MIN_PRIORITY (значение равно 1);

2. public static int NORM_PRIORITY (дефолтный приоритет потока);

3. public static int MAX_PRIORITY (значение равно 10).

Пример приоритета потока:

Результат:

Некоторые полезные методы класса Thread

Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет действие.

Источник

В чем разница между Thread и Runnable?

В чем разница между Thread и Thread (Runnable)?

Иными словами, какой плюс от того, что поток Thread будет реализован через интерфейс Runnable? Это типа поток в потоке или какие-то доп. функции будут? К примеру, доступ к UI.

6 ответов 6

Плюс использования Runnable состоит в том, что это позволяет логически отделить выполнение задачи от логики управления потоками.

@Futurama, в документации совершенно четко прописан ответ на Ваш вопрос.

There are two ways to create a new thread of execution. One is to declare a class to be a subclass of Thread. This subclass should override the run method of class Thread. An instance of the subclass can then be allocated and started. For example, a thread that computes primes larger than a stated value could be written as follows:

The following code would then create a thread and start it running:

Суть в том, что мы переопределяем метод run класса Thread, который вызывается из метода start класса Thread, который мы и вызываем для запуска потока (исполнения нашей программы в новом потоке).

The other way to create a thread is to declare a class that implements the Runnable interface. That class then implements the run method. An instance of the class can then be allocated, passed as an argument when creating Thread, and started. The same example in this other style looks like the following:

The following code would then create a thread and start it running:

Источник

Многопоточность в Java

Здравствуйте! В этой статье я вкратце расскажу вам о процессах, потоках, и об основах многопоточного программирования на языке Java. runnable java что это. Смотреть фото runnable java что это. Смотреть картинку runnable java что это. Картинка про runnable java что это. Фото runnable java что это
Наиболее очевидная область применения многопоточности – это программирование интерфейсов. Многопоточность незаменима тогда, когда необходимо, чтобы графический интерфейс продолжал отзываться на действия пользователя во время выполнения некоторой обработки информации. Например, поток, отвечающий за интерфейс, может ждать завершения другого потока, загружающего файл из интернета, и в это время выводить некоторую анимацию или обновлять прогресс-бар. Кроме того он может остановить поток загружающий файл, если была нажата кнопка «отмена».

Еще одна популярная и, пожалуй, одна из самых хардкорных областей применения многопоточности – игры. В играх различные потоки могут отвечать за работу с сетью, анимацию, расчет физики и т.п.

Давайте начнем. Сначала о процессах.

Процессы

Процесс — это совокупность кода и данных, разделяющих общее виртуальное адресное пространство. Чаще всего одна программа состоит из одного процесса, но бывают и исключения (например, браузер Chrome создает отдельный процесс для каждой вкладки, что дает ему некоторые преимущества, вроде независимости вкладок друг от друга). Процессы изолированы друг от друга, поэтому прямой доступ к памяти чужого процесса невозможен (взаимодействие между процессами осуществляется с помощью специальных средств).

Для каждого процесса ОС создает так называемое «виртуальное адресное пространство», к которому процесс имеет прямой доступ. Это пространство принадлежит процессу, содержит только его данные и находится в полном его распоряжении. Операционная система же отвечает за то, как виртуальное пространство процесса проецируется на физическую память.

Схема этого взаимодействия представлена на картинке. Операционная система оперирует так называемыми страницами памяти, которые представляют собой просто область определенного фиксированного размера. Если процессу становится недостаточно памяти, система выделяет ему дополнительные страницы из физической памяти. Страницы виртуальной памяти могут проецироваться на физическую память в произвольном порядке.

runnable java что это. Смотреть фото runnable java что это. Смотреть картинку runnable java что это. Картинка про runnable java что это. Фото runnable java что это

При запуске программы операционная система создает процесс, загружая в его адресное пространство код и данные программы, а затем запускает главный поток созданного процесса.

Потоки

Один поток – это одна единица исполнения кода. Каждый поток последовательно выполняет инструкции процесса, которому он принадлежит, параллельно с другими потоками этого процесса.

Следует отдельно обговорить фразу «параллельно с другими потоками». Известно, что на одно ядро процессора, в каждый момент времени, приходится одна единица исполнения. То есть одноядерный процессор может обрабатывать команды только последовательно, по одной за раз (в упрощенном случае). Однако запуск нескольких параллельных потоков возможен и в системах с одноядерными процессорами. В этом случае система будет периодически переключаться между потоками, поочередно давая выполняться то одному, то другому потоку. Такая схема называется псевдо-параллелизмом. Система запоминает состояние (контекст) каждого потока, перед тем как переключиться на другой поток, и восстанавливает его по возвращению к выполнению потока. В контекст потока входят такие параметры, как стек, набор значений регистров процессора, адрес исполняемой команды и прочее…

Проще говоря, при псевдопараллельном выполнении потоков процессор мечется между выполнением нескольких потоков, выполняя по очереди часть каждого из них.

Вот как это выглядит:

runnable java что это. Смотреть фото runnable java что это. Смотреть картинку runnable java что это. Картинка про runnable java что это. Фото runnable java что это

Цветные квадраты на рисунке – это инструкции процессора (зеленые – инструкции главного потока, синие – побочного). Выполнение идет слева направо. После запуска побочного потока его инструкции начинают выполняться вперемешку с инструкциями главного потока. Кол-во выполняемых инструкций за каждый подход не определено.

То, что инструкции параллельных потоков выполняются вперемешку, в некоторых случаях может привести к конфликтам доступа к данным. Проблемам взаимодействия потоков будет посвящена следующая статья, а пока о том, как запускаются потоки в Java…

Запуск потоков

Каждый процесс имеет хотя бы один выполняющийся поток. Тот поток, с которого начинается выполнение программы, называется главным. В языке Java, после создания процесса, выполнение главного потока начинается с метода main(). Затем, по мере необходимости, в заданных программистом местах, и при выполнении заданных им же условий, запускаются другие, побочные потоки.

В языке Java поток представляется в виде объекта-потомка класса Thread. Этот класс инкапсулирует стандартные механизмы работы с потоком.

Запустить новый поток можно двумя способами:

Способ 1

Создать объект класса Thread, передав ему в конструкторе нечто, реализующее интерфейс Runnable. Этот интерфейс содержит метод run(), который будет выполняться в новом потоке. Поток закончит выполнение, когда завершится его метод run().

Для пущего укорочения кода можно передать в конструктор класса Thread объект безымянного внутреннего класса, реализующего интерфейс Runnable:

Способ 2

Создать потомка класса Thread и переопределить его метод run():

В приведённом выше примере в методе main() создается и запускается еще один поток. Важно отметить, что после вызова метода mSecondThread.start() главный поток продолжает своё выполнение, не дожидаясь пока порожденный им поток завершится. И те инструкции, которые идут после вызова метода start(), будут выполнены параллельно с инструкциями потока mSecondThread.

Для демонстрации параллельной работы потоков давайте рассмотрим программу, в которой два потока спорят на предмет философского вопроса «что было раньше, яйцо или курица?». Главный поток уверен, что первой была курица, о чем он и будет сообщать каждую секунду. Второй же поток раз в секунду будет опровергать своего оппонента. Всего спор продлится 5 секунд. Победит тот поток, который последним изречет свой ответ на этот, без сомнения, животрепещущий философский вопрос. В примере используются средства, о которых пока не было сказано (isAlive() sleep() и join()). К ним даны комментарии, а более подробно они будут разобраны дальше.

В приведенном примере два потока параллельно в течении 5 секунд выводят информацию на консоль. Точно предсказать, какой поток закончит высказываться последним, невозможно. Можно попытаться, и можно даже угадать, но есть большая вероятность того, что та же программа при следующем запуске будет иметь другого «победителя». Это происходит из-за так называемого «асинхронного выполнения кода». Асинхронность означает то, что нельзя утверждать, что какая-либо инструкция одного потока, выполнится раньше или позже инструкции другого. Или, другими словами, параллельные потоки независимы друг от друга, за исключением тех случаев, когда программист сам описывает зависимости между потоками с помощью предусмотренных для этого средств языка.

Теперь немного о завершении процессов…

Завершение процесса и демоны

В Java процесс завершается тогда, когда завершается последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к особому виду потоков – демонам. Если завершился последний обычный поток процесса, и остались только потоки-демоны, то они будут принудительно завершены и выполнение процесса закончится. Чаще всего потоки-демоны используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто — нужно перед запуском потока вызвать его метод setDaemon(true) ;
Проверить, является ли поток демоном, можно вызвав его метод boolean isDaemon() ;

Завершение потоков

В Java существуют (существовали) средства для принудительного завершения потока. В частности метод Thread.stop() завершает поток незамедлительно после своего выполнения. Однако этот метод, а также Thread.suspend(), приостанавливающий поток, и Thread.resume(), продолжающий выполнение потока, были объявлены устаревшими и их использование отныне крайне нежелательно. Дело в том что поток может быть «убит» во время выполнения операции, обрыв которой на полуслове оставит некоторый объект в неправильном состоянии, что приведет к появлению трудноотлавливаемой и случайным образом возникающей ошибке.

Вместо принудительного завершения потока применяется схема, в которой каждый поток сам ответственен за своё завершение. Поток может остановиться либо тогда, когда он закончит выполнение метода run(), (main() — для главного потока) либо по сигналу из другого потока. Причем как реагировать на такой сигнал — дело, опять же, самого потока. Получив его, поток может выполнить некоторые операции и завершить выполнение, а может и вовсе его проигнорировать и продолжить выполняться. Описание реакции на сигнал завершения потока лежит на плечах программиста.

Java имеет встроенный механизм оповещения потока, который называется Interruption (прерывание, вмешательство), и скоро мы его рассмотрим, но сначала посмотрите на следующую программку:

Incremenator — поток, который каждую секунду прибавляет или вычитает единицу из значения статической переменной Program.mValue. Incremenator содержит два закрытых поля – mIsIncrement и mFinish. То, какое действие выполняется, определяется булевой переменной mIsIncrement — если оно равно true, то выполняется прибавление единицы, иначе — вычитание. А завершение потока происходит, когда значение mFinish становится равно true.

Взаимодействовать с потоком можно с помощью метода changeAction() (для смены вычитания на сложение и наоборот) и метода finish() (для завершения потока).

В объявлении переменных mIsIncrement и mFinish было использовано ключевое слово volatile (изменчивый, не постоянный). Его необходимо использовать для переменных, которые используются разными потоками. Это связано с тем, что значение переменной, объявленной без volatile, может кэшироваться отдельно для каждого потока, и значение из этого кэша может различаться для каждого из них. Объявление переменной с ключевым словом volatile отключает для неё такое кэширование и все запросы к переменной будут направляться непосредственно в память.

В этом примере показано, каким образом можно организовать взаимодействие между потоками. Однако есть одна проблема при таком подходе к завершению потока — Incremenator проверяет значение поля mFinish раз в секунду, поэтому может пройти до секунды времени между тем, когда будет выполнен метод finish(), и фактическим завершения потока. Было бы замечательно, если бы при получении сигнала извне, метод sleep() возвращал выполнение и поток незамедлительно начинал своё завершение. Для выполнения такого сценария существует встроенное средство оповещения потока, которое называется Interruption (прерывание, вмешательство).

Interruption

Класс Thread содержит в себе скрытое булево поле, подобное полю mFinish в программе Incremenator, которое называется флагом прерывания. Установить этот флаг можно вызвав метод interrupt() потока. Проверить же, установлен ли этот флаг, можно двумя способами. Первый способ — вызвать метод bool isInterrupted() объекта потока, второй — вызвать статический метод bool Thread.interrupted(). Первый метод возвращает состояние флага прерывания и оставляет этот флаг нетронутым. Второй метод возвращает состояние флага и сбрасывает его. Заметьте что Thread.interrupted() — статический метод класса Thread, и его вызов возвращает значение флага прерывания того потока, из которого он был вызван. Поэтому этот метод вызывается только изнутри потока и позволяет потоку проверить своё состояние прерывания.

Итак, вернемся к нашей программе. Механизм прерывания позволит нам решить проблему с засыпанием потока. У методов, приостанавливающих выполнение потока, таких как sleep(), wait() и join() есть одна особенность — если во время их выполнения будет вызван метод interrupt() этого потока, они, не дожидаясь конца времени ожидания, сгенерируют исключение InterruptedException.

Переделаем программу Incremenator – теперь вместо завершения потока с помощью метода finish() будем использовать стандартный метод interrupt(). А вместо проверки флага mFinish будем вызывать метод bool Thread.interrupted();
Так будет выглядеть класс Incremenator после добавления поддержки прерываний:

Как видите, мы избавились от метода finish() и реализовали тот же механизм завершения потока с помощью встроенной системы прерываний. В этой реализации мы получили одно преимущество — метод sleep() вернет управление (сгенерирует исключение) незамедлительно после прерывания потока.

Заметьте что методы sleep() и join() обёрнуты в конструкции try-catch. Это необходимое условие работы этих методов. Вызывающий их код должен перехватывать исключение InterruptedException, которое они бросают при прерывании во время ожидания.

С запуском и завершением потоков разобрались, дальше я расскажу о методах, использующихся при работе с потоками.

Метод Thread.sleep()

Thread.sleep() — статический метод класса Thread, который приостанавливает выполнение потока, в котором он был вызван. Во время выполнения метода sleep() система перестает выделять потоку процессорное время, распределяя его между другими потоками. Метод sleep() может выполняться либо заданное кол-во времени (миллисекунды или наносекунды) либо до тех пор пока он не будет остановлен прерыванием (в этом случае он сгенерирует исключение InterruptedException).

Несмотря на то, что метод sleep() может принимать в качестве времени ожидания наносекунды, не стоит принимать это всерьез. Во многих системах время ожидания все равно округляется до миллисекунд а то и до их десятков.

Метод yield()

Статический метод Thread.yield() заставляет процессор переключиться на обработку других потоков системы. Метод может быть полезным, например, когда поток ожидает наступления какого-либо события и необходимо чтобы проверка его наступления происходила как можно чаще. В этом случае можно поместить проверку события и метод Thread.yield() в цикл:

Метод join()

В Java предусмотрен механизм, позволяющий одному потоку ждать завершения выполнения другого. Для этого используется метод join(). Например, чтобы главный поток подождал завершения побочного потока myThready, необходимо выполнить инструкцию myThready.join() в главном потоке. Как только поток myThready завершится, метод join() вернет управление, и главный поток сможет продолжить выполнение.

Метод join() имеет перегруженную версию, которая получает в качестве параметра время ожидания. В этом случае join() возвращает управление либо когда завершится ожидаемый поток, либо когда закончится время ожидания. Подобно методу Thread.sleep() метод join может ждать в течение миллисекунд и наносекунд – аргументы те же.

С помощью задания времени ожидания потока можно, например, выполнять обновление анимированной картинки пока главный (или любой другой) поток ждёт завершения побочного потока, выполняющего ресурсоёмкие операции:

В этом примере поток brain (мозг) думает над чем-то, и предполагается, что это занимает у него длительное время. Главный поток ждет его четверть секунды и, в случае, если этого времени на раздумье не хватило, обновляет «индикатор раздумий» (некоторая анимированная картинка). В итоге, во время раздумий, пользователь наблюдает на экране индикатор мыслительного процесса, что дает ему знать, что электронные мозги чем то заняты.

Приоритеты потоков

Каждый поток в системе имеет свой приоритет. Приоритет – это некоторое число в объекте потока, более высокое значение которого означает больший приоритет. Система в первую очередь выполняет потоки с большим приоритетом, а потоки с меньшим приоритетом получают процессорное время только тогда, когда их более привилегированные собратья простаивают.

Работать с приоритетами потока можно с помощью двух функций:

void setPriority(int priority) – устанавливает приоритет потока.
Возможные значения priority — MIN_PRIORITY, NORM_PRIORITY и MAX_PRIORITY.

int getPriority() – получает приоритет потока.

Некоторые полезные методы класса Thread

Это практически всё. Напоследок приведу несколько полезных методов работы с потоками.

boolean isAlive() — возвращает true если myThready() выполняется и false если поток еще не был запущен или был завершен.

setName(String threadName) – Задает имя потока.
String getName() – Получает имя потока.
Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет некоторое действие. Иногда это бывает полезным.

static Thread Thread.currentThread() — статический метод, возвращающий объект потока, в котором он был вызван.

long getId() – возвращает идентификатор потока. Идентификатор – уникальное число, присвоенное потоку.

Заключение

Отмечу, что в статье рассказано далеко не про все нюансы многопоточного программирования. И коду, приведенному в примерах, для полной корректности не хватает некоторых нюансов. В частности, в примерах не используется синхронизация. Синхронизация потоков — тема, не изучив которую, программировать правильные многопоточные приложения не получится. Почитать о ней вы можете, например, в книге «Java Concurrency in Practice» или здесь (всё на английском).

В статье были рассмотрены основные средства работы с потоками в Java. Если эта статья окажется полезной, то в следующей я расскажу о проблемах совместного доступа потоков к ресурсам и о методах их решения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *