rgb датчик что это
Зачем нужна автояркость на смартфоне и нужно ли ее включать
Автояркость — одна из самых противоречивых функций в современных смартфонах. Несмотря на рекомендации производителей, касающихся энергосбережения, пользователи отключают автояркость чаще всего, чтобы вручную контролировать уровень яркости дисплея. Самое интересное, что ее недолюбливают пользователи самых разных устройств. Но частая ручная регулировка яркости дисплея по-своему опасна для вашего телефона и может привести к неприятным последствиям. Почему производители устройств до сих пор не научились адекватно настраивать эту функцию автоматической регулировки? Как работает датчик освещенности? Как правильно откалибровать автояркость на смартфое? И нужно ли ей пользоваться?
Разбираемся с автояркостью на смартфоне: чем хороша и какие у нее минусы
Что такое автояркость в смартфоне
Во всех телефонах есть функция «Автояркость экрана», которая автоматически настраивает яркость дисплея в зависимости от уровня освещенности. По идее, в солнечную погоду яркость должна увеличиться, а если вы находитесь в темноте, то уменьшиться. В большинстве случаев функция работает неправильно, чем вызывает гнев пользователей и дальнейшее отключение в настройках. Функция работает за счет сенсора освещенности, который расположен рядом с разговорным динамиком и фронтальной камерой. Самые топовые смартфоны оснащают более продвинутой версией этого датчика — RGB сенсором, который способен не только менять яркость, но и считывать интенсивность основных цветов, настраивая качество изображения и корректируя баланс цвета фотографий.
Автояркость: плюсы и минусы
Функция не всегда работает правильно, но в большинстве случаев очень полезно ей пользоваться. На это есть несколько весомых причин. Система автоматически выбирает оптимальный показатель яркости дисплея. Если сейчас солнечно, а через час появятся тучи, то датчик поймет, что необходимо уменьшить яркость дисплея. Благодаря автояркости и автоматической адаптации дисплея не меняется качество изображения на экране.
Без калибровки автояркость может ослепить вас в ночи
Автояркость положительно влияет на время автономной работы смартфона. Казалось бы, в чем отличие между ручной настройкой и автоматической? Эксперты из компании Battery Universe в своем исследовании пришли к выводу, что ручное регулирование уровня яркости снижает время работы. Все из-за того, что при солнечном свете пользователи увеличивают яркость до 100%, забывая вовремя его отключить, когда пропадает необходимость. В результате этого смартфон начинает нагреваться и разряжается гораздо быстрее. Функция автояркости также подбирает оптимальные параметры яркости дисплея для просмотра видео при минимальной нагрузке на батарею.
Включение автояркости — единственный способ адаптировать экран под текущее освещение
У функции есть и явные недостатки. Например, в солнечную погоду смартфон не дает достаточного уровня яркости дисплея, чтобы не убивать батарею. С одной стороны, это полезно для самого смартфона, с другой — начинаешь испытывать дискомфорт, потому что ничего не видишь на экране.
Автояркость сходит с ума по-разному: бывает, что просыпаешься ночью и не можешь уснуть. Начинаешь читать статью в интернете и глаза сильнее концентрируются на тексте и быстрее устают из-за того, что яркость на минимуме. Повышается нагрузка на зрение (и уровень ненависти к этой функции), в результате чего приходится вручную регулировать яркость экрана.
Яркий дисплей посреди ночи неприятно ослепляет
Несмотря на всеобщие рекомендации производителей, автояркость буквально выжигает экран смартфона. В теории эта функция может испортить дисплей: из-за того, что настройкой комфортной яркости занимается ПО и алгоритмы, может случиться сбой. Например, если вы без отрыва пользуетесь смартфоном со включенной автояркостью, а уровень освещения постоянно меняется, то эта функция начинает сходить с ума. Частая смена яркости дисплея неблагоприятно влияет на матрицу: экран становится тусклым, могут появиться различные пятна, желтизна по периметру экрана или неприятные засветы, на которые не раз жаловались пользователи нашего Telegram-чата.
Как откалибровать автояркость на Android
Не все знают, но эту функцию можно настроить, в результате чего она должна начать работать корректнее на любом Android-смартфоне. Рассказываем, как это сделать.
Датчик должен начать работать адекватно. Почитать о других полезных лайфхаках можно в нашем канале в Яндекс.Дзен — не забудьте подписаться!
Нужно ли пользоваться автояркостью
Регулировка яркости вручную может испортить дисплей. Так что, не увлекайтесь
Ручная регулировка зачастую удобна для нас, но вредит смартфону. По этой причине аккумулятор садится быстрее, а дисплей со временем начинает выцветать. С этой проблемой должен справиться датчик освещенности, который для этого и существует. К сожалению, он редко работает правильно, а производители не рассказывают о том, как его правильно откалибровать. В iPhone даже спрятали эту функцию подальше в «Универсальный доступ», чтобы пользователи ее подольше искали и не отключали лишний раз.
Стоит ли пользоваться этой функцией? Конечно, стоит. Почти всегда по умолчанию она работает некорректно, но попробуйте наш лайфхак, чтобы автояркость перестала трепать вам нервы.
Новости, статьи и анонсы публикаций
Свободное общение и обсуждение материалов
Мобильные технологии развиваются очень стремительно. Сейчас каждому из нас трудно представить жизнь без смартфона, планшета или ноутбука. Если раньше мы обращались к смартфону по особым случаям, то сейчас сложно представить без телефона даже один день. Смартфон заменил нам многие гаджеты, вроде плееров, фотоаппаратов или игровых приставок. Однако можно ли полностью отказаться от бумажных носителей в пользу новых технологий в 2021 году?
RGB-сенсор Samsung с глубинным изображением
В рамках конференции ISSCC 2012 компания Samsung Electronics представила первый в мире КМОП-сенсор, который позволяет захватывать одновременно инфракрасное глубинное изображение и изображение в традиционном цветовом RGB-пространстве.
Для получения глубины изображения датчик использует так называемый времяпролётный метод, который широко используется в подобных устройствах. Ранее Samsung уже анонсировала сенсор, интегрирующий Z-пиксели (пиксели глубины) и RGB-пиксели. Но из-за ограничений фильтра ближнего ИК-диапазона, данный сенсор не способен был одновременно захватывать изображения обоих типов. Речь шла о временном разделении работы датчика.
Новая технология Samsung позволила обойти ограничение, описанное выше. Как ожидается, эта разработка позволит уменьшить габаритные размеры контроллеров, управляемых жестами. Также в перспективе появляется возможность использования данной технологии для добавления функции распознавания жестов в цифровые компактные камеры, видеокамеры и другие устройства.
Из технических характеристик нового сенсора отмечаются разрешение RGB-изображения 1920 х 720 пикселей, разрешение ИК-изображения 480 х 360 пикселей, диаметр RGB-пикселя 2,25 мкм. Z-пиксели имеют размеры 2,25 х 9 мкм. Они по эффективной площади в четыре раза больше RGB-пикселей.
Для производства чипа использовалась 0,13-мкм КМОП-технология. Отметим, технология глубинного изображения используется в популярном игровом контроллере Kinect.
Инструменты пользователя
Инструменты сайта
Содержание
Датчик цвета
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Описание
Белый свет состоит из всех цветов радуги. Когда свет падает на поверхность, некоторые цвета поглощаются, а некоторые отражаются. Отраженные цвета – это цвета воспринимаемого нами объекта. Для измерения и определения количества цвета с помощью электронной схемы, вам необходимо измерить интенсивность различных длин волн света, отраженного от поверхности. Самый простой способ сделать это – осветить поверхность разными цветами и измерить, какой из цветов поверхность отражает лучше. Измеряя отраженный свет для каждого цвета можно вычислить цвет объекта.
Для улучшения результатов измерений следуйте следующим советам:
Подключение
Датчик использует два стандартных 3-пиновых разъема, однако, подключается не совсем обычно:
Коннектор 1 (без цветового обозначения) подключается в любой из портов IN контроллера «Трекдуино», сигнальный провод этой шины подключен к фоторезистору, поэтому, подключив только эту шину, вы сможете использовать датчик как датчик освещенности.
Коннектор 2 (с цветовой маркировкой) служит для управления трехцветным светодиодом. Каждый из проводов подключен напрямую соответствующему каналу светодиода. Наклейка с цветовой маркировкой на коннекторе указывает, к какому из каналов соответствует каждый из проводов. Подключается в любые три порта OUT и в любые порты IN контроллера «Трекдуино». Подключается горизонтально в верхнюю (сигнальную, «S») линию контактов.. Для того, чтобы использовать только RGB-светодиод, коннектор №1 все равно придется подключить, т.к. земляной провод (GND) общий для светодиода и фоторезистора.
Программирование
Блоки, необходимые для работы с датчиком цвета, расположены в группе блоков «Датчики».
Калибровка
Каждый раз при перезагрузке программы, использующей датчик цвета, в момент выполнения блока Настройка датчика цвета будет производится калибровка датчика под текущие условия освещения. Процедура калибровки выполняется следующим образом:
Для удобной работы с датчиком, сделайте 2 карточки 5х8 см. черного и белого цвета.
Блок и генерируемая функция | Описание |
---|---|
Ардуино: датчик цвета
В одном из предыдущих уроков — Ардуино: трехцветный светодиод — RGB — мы разобрали, что такое RGB и научились работать с трёхцветным светодиодом. В этом уроке мы разберёмся, как работать с датчиком цвета, научим нашу Ардуино распознавать красный, синий и зелёный и выведем полученные данные при помощи RGB-светодиода!
Как работает датчик цвета
Распиновка на плате с датчиком TCS230 имеет следующее значение:
Для определения цвета, который будет считываться фотодиодами, датчик TCS230 оснащен контактами S2 и S3. Поскольку фотодиоды подключены параллельно, разные типы фотодиодов можно выбирать, переключая контакты S2 и S3 в разные комбинации состояний HIGH и LOW. Правила выбора этих комбинаций для нужных нам цветов следующие:
Тип фотодиода | S2 | S3 |
Красный | LOW | LOW |
Синий | LOW | HIGH |
Без фильтра (чистый) | HIGH | LOW |
Зеленый | HIGH | HIGH |
Контакты S0 и S1 используются для масштабирования выходной частоты. Ее можно масштабировать до трех заранее заданных значений: 100%, 20% и 2%. Масштабирование частоты используется для разных микроконтроллеров, чтобы оптимизировать данные, считанные датчиком.
Масштабирование частоты | S0 | S1 |
Отключение | LOW | LOW |
2% | LOW | HIGH |
20% | HIGH | LOW |
100% | HIGH | HIGH |
Для Ардуино мы будем использовать масштабирование 20%.
Подключение датчика к Ардуино
Для визуального отображения определяемого цвета мы воспользуемся RGB-светодиодом. Схема должна работать следующим образом: к датчику подносят образец выбранного цвета и на светодиоде загорается тот же цвет.
TCS230 | GND | VCC | OUT | S0 | S1 | S2 | S3 |
Arduino Uno | GND | +5V | 8 | 4 | 5 | 6 | 7 |
Принципиальная схема:
Внешний вид макета:
Программа:
Когда мы запустим программу и откроем монитор порта на скорости 9600 бод, то при поднесении к датчику образца мы увидим значения для каждого из трёх цветов и сообщение о том, какой цвет выбран. Следует заметить, что в случае, если сообщение о цвете не соответствует реальному цвету, то необходимо подредактировать значения частот в программе, подстраивая их по значениям R, G и B в мониторе порта:
Демонстрация работы датчика
Внешний вид нашего макета:
Датчики в смартфонах: какие бывают?
Использование в современных смартфонах множества датчиков и сенсоров вызвано желанием производителей обойти конкурентов. Пользователям такая «гонка вооружений» только на пользу – ведь благодаря ней они получают доступ к совершенно невероятным технологиям.
Если удалить из смартфона все датчики, он лишится внушительной части своих функций и превратится в довольно примитивный аппарат. Даже такие привычные пользователям действия, как изменение ориентации экрана при переводе гаджета в горизонтальное положение и автоматическое отключение дисплея при разговоре, не выполнялись бы без датчиков.
Стремясь выиграть конкуренцию на рынке, производители современной мобильной техники оборудуют свои аппараты огромным количеством сенсоров – ведь это повышает функциональность. В статье мы расскажем обо всех известных датчиках смартфонов – в том числе о тех, которые устанавливаются в новейшие модели.
Акселерометр и гироскоп
Акселерометр – один из основных датчиков смартфона; его также называют G-сенсором. Функция акселерометра заключается в измерении линейного ускорения смартфона по 3-м осям координат. Данные о перемещениях устройства аккумулируются и обрабатываются специальным контроллером – естественно, происходит это за считанные доли секунды. Размещает крохотный датчик примерно по центру корпуса смартфона. Самостоятельная замена акселерометра при поломке исключена – придётся идти в сервис.
Кто должен поблагодарить разработчиков за акселерометры в смартфонах? Прежде всего, любители гоночных симуляторов, способные управлять виртуальными автомобилями, просто наклоняя аппарат влево-вправо. Именно акселерометр позволяет гаджету менять ориентацию экрана с портретной на ландшафтную, когда пользователь переворачивает устройство.
Впервые акселерометр появился на телефоне Nokia 5500. Этот датчик вызвал бурный восторг у сторонников активного образа жизни, потому как позволял пользоваться шагомером.
У акселерометра есть один существенный недостаток: он может фиксировать положение только тогда, когда происходит ускорение – то есть когда гаджет перемещается в пространстве. Определить положение аппарата, лежащего на столе, акселерометр не способен. Нивелировать этот недостаток призван датчик-«партнёр» под названием гироскоп. Такой датчик измеряет скорость углового вращения и обеспечивает более высокую точность данных по сравнению с акселерометром. У гироскопа, который прошёл процедуру калибровки, погрешность не будет составлять более 2 градусов.
Гироскоп активно используется в мобильных играх – в сочетании с акселерометром. Кроме того, этот датчик делает возможными оптическую стабилизацию камеры, создание панорамных снимков (гироскоп определяет, на сколько градусов был повёрнут смартфон), жестовое управление.
Первым смартфоном с гироскопом стал iPhone 4. Сейчас гироскоп – далеко не экзотика; им (как и акселерометром) оснащается большинство современных девайсов.
Датчики приближения и освещения
Наличие датчика приближения (Proximity Sensor) в смартфоне – объективная необходимость. Если б такой сенсор отсутствовал, пользователю приходилось бы терпеть неудобства всякий раз во время разговора по телефону. Достаточно было бы легко коснуться щекой кнопки сброса – и разговор прекращён, нужно вызывать абонента снова. Функция датчика приближения очевидна: он блокирует экран гаджета, как только пользователь подносит устройство к уху. Этот сенсор позволяет владельцу смартфона не только общаться с комфортом, но и экономить заряд аккумулятора.
Датчик приближения «прячется» под фронтальным стеклом мобильного устройства. Состоит он из 2-х элементов: диода и детектора. Диод отправляет инфракрасный импульс (невидимый глазу человека), а детектор пытается поймать его отражение. Если детектору это удаётся, экран «затемняется». Сенсор способен регистрировать всего лишь 2 состояния: «посторонний предмет ближе 5 см» и «посторонний предмет дальше 5 см».
Потрясающих результатов в экспериментах с датчиком приближения добилась компания Samsung. На основе этого сенсора корейский производитель создал датчик жестов, благодаря которому стало возможным бесконтактное управление смартфоном. Первый датчик жестов появился на Samsung Galaxy S3 – в 2012 году это стало настоящим прорывом.
Датчик освещённости (Light Sensor) не зря рассматривается в паре с датчиком приближения – как правило, эти два сенсора располагаются в непосредственной близости по отношению друг к другу. Датчик света – самый «старый» из всех датчиков, которые используются в мобильной электронике. Также он и самый простой – с конструкционной точки зрения этот сенсор представляет собой полупроводник, чувствительный к потоку фотонов. Функция у датчика освещения не такая ответственная, как у датчика приближения: Light Sensor всего лишь регулирует яркость дисплея в соответствии с окружающими условиями.
В некоторых моделях Samsung (например, Galaxy Note 3 и Galaxy S5) установлены RGB-датчики. Сенсор RGB способен не только менять яркость дисплея, но и корректировать доли красного, зелёного, синего и белого цветов изображения на экране.
Разработчики Samsung Galaxy Note 4 дошли до абсурда: они научили датчик фаблета измерять освещённость в невидимом для человека диапазоне – ультрафиолетовом. Благодаря такой любопытной новации пользователь может, например, выбрать оптимальное время для загара.
Барометр и температурный датчик
Человеку с высокой чувствительностью к резким перепадам атмосферного давления просто необходимо иметь в смартфоне приложение-барометр. В Google Play, например, одна из подобных программ так и называется — «Барометр».
Датчик-барометр способен не только предупреждать пользователя о приближении циклона – антициклона; это даже не основная его функция. Сенсор увеличивает эффективность и точность работы GPS-навигатора гаджета. Спутники GPS показывают, в какой точке земного шара находится искомое место – но не на какой высоте. Этот недостаток их работы и устраняется барометром. Датчик давления может помочь найти, скажем, офис определённой компании в многоэтажном здании бизнес-центра.
Мобильные барометры – не новинка; датчиками давления были способны похвастаться ещё аппараты Sony Ericsson. Однако на современном рынке гаджетов, оснащённых такими сенсорами, немного. Барометры всё чаще устанавливаются на защищённые смартфоны таких производителей, как Conquest, Land Rover, iMan. Также датчики давления присутствуют на Xiaomi Mi5 и Cubot Dinosaur.
Температурные датчики, в отличие от барометров, присутствуют в большей части смартфонов – однако температуру на улице с их помощью не измеришь. Речь идёт о внутренних термометрах, задача которых – следить за тем, чтобы гаджет не перегревался. В одном смартфоне может быть уйма подобных сенсоров: первый контролирует графический ускоритель, второй – ядра процессора и так далее. Если возникает перегрев, внутренний термометр автоматически прекращает зарядку или снижает выходной ампераж.
Внешние термометры на гаджетах тоже встречаются, но они пока «в диковинку». Первым смартфоном со встроенным термометром стал Samsung Galaxy S4. Датчик оказался необходим для улучшения работы предустановленного приложения S Health.
Увы, у внешних термометров мобильных устройств есть существенный недостаток – невысокая точность. Данные искажаются из-за тепла, исходящего от тела пользователя и внутренностей самого аппарата. Решить эту проблему разработчикам пока не удаётся.
Для нужд приложения S Health на Samsung Galaxy S4 был установлен ещё один любопытный датчик – гигрометр. Этот сенсор измеряет уровень влажности, предоставляя пользователю возможность эффективно управлять микроклиматом в помещении.
Какие датчики позволяют следить за здоровьем?
Человеку, стремящемуся вести здоровый образ жизни, не помешает обзавестись гаджетом, который оснащён следующими датчиками.
Педометр (шагомер)
Функция педометра – считать расстояние, преодолённое пользователем, на основании количества совершённых шагов. Эту функцию способен выполнять и акселерометр, однако точность его измерений оставляет желать лучшего. Шагомер как отдельный датчик впервые появился на смартфоне LG Nexus 5.
Пульсометр (датчик сердцебиения)
Встроенный пульсометр – одна из инноваций Samsung Galaxy S5. Разработчики Samsung посчитали, что именно датчика пульса не хватает программе S Health для того, чтоб она могла считаться полноценным личным тренером. Среди пользователей пульсометр Samsung пока популярным не стал, потому как достаточно привередлив. Чтобы обеспечить точные данные, сенсору необходим тесный контакт с той частью тела пользователя, где кровеносные сосуды находятся неглубоко – например, с подушечкой пальца. Совершать пробежку, удерживая палец на датчике – удовольствие небольшое.
Датчик оксигенации крови (датчик SpO2)
Этот сенсор определяет степень насыщения крови кислородом. Он присутствует только на 2 смартфонах фирмы Samsung (Galaxy Note 4 и Note Edge) и «заточен» под приложение S Health. На девайсах датчик SpО2 совмещён со вспышкой для камеры и пульсометром. Пользователю достаточно активировать соответствующее приложение и приложить палец к вспышке на 30-40 секунд – после чего он увидит результат замера в процентах на экране гаджета.
Дозиметр
Таким датчиком оснащён выпущенный в Японии смартфон Sharp Pantone 5. Функция дозиметра – измерение радиации. Для японцев эта функция важна, потому как после аварии на АЭС в Фукусиме в 2011 году они вынуждены более внимательно следить за радиационным фоном. На европейском рынке смартфонов с дозиметрами нет.
Сканеры отпечатков пальцев и сетчатки глаза
Пользователи, которые считают, будто первый дактилоскопический датчик появился на iPhone 5S, сильно заблуждаются. Телефоны, способные сканировать отпечатки пальцы, выпускались и раньше. Ещё в 2004 году продавалась «раскладушка» Pantech GI 100, оснащённая подобной технологией. 7 лет спустя Motorola представила модель Atrix 4g c дактилоскопическим датчиком. В обоих случаях пользователи отнеслись к технологии довольно прохладно.
Когда же в 2013 году Apple встроила сканер отпечатков пальцев в кнопку «Home» Айфона 5S, «яблочной» компании рукоплескали как эксперты, так и рядовые потребители. Apple больше повезло с эпохой: в «нулевых» вопрос о безопасности безналичных платежей не стоял так остро.
Сканер отпечатков пальцев избавляет пользователя от необходимости применять цифровые пароли для защиты данных, хранящихся на гаджете. Пароли легко взломать; обмануть дактилоскопический датчик сложнее в разы (хотя тоже возможно).
Сканер сетчатки глаза обеспечивает даже более высокую степень безопасности, чем дактилоскопический датчик – фактически это следующий уровень биометрической защиты. Сторонники технологии утверждают, что достать отпечаток пальца – задача выполнимая (ведь человек их повсюду оставляет). Получить же копию сетчатки нельзя никак.
Идея оснастить смартфон сканером сетчатки тоже не нова. Ещё в 2015 году азиатские производители (Vivo, Fujitsu) экспериментировали с этим датчиком, в 2016 году тренд поддержала малоизвестная компания из Поднебесной Homtom. Однако обсуждаемой эта технология стала только после того, как к ней обратилась компания Samsung – в Galaxy Note 7 установили сканер радужной оболочки глаза.
Датчик в Note отличен от тех, которые стоят в смартфонах китайских компаний. Идею Samsung вполне можно назвать революционной потому, что на Note 7 есть камера, которая ответственна только за сканирование глаз. «Китайцы» же считывают информацию с сетчатки селфи-камерой.
Метод, который используется гаджетами из Поднебесной, неэффективен. Дело в том, что глаз необходимо сканировать инфракрасным (ИК) лучом, но на фронтальных камерах ИК-спектр, как правило, фильтруется – ведь из-за него портятся селфи. Выходит, что Samsung – пока единственный производитель смартфонов, который не заставляет пользователей делать выбор между качественными «себяшками» и безопасностью персональных данных.
Заключение
Всякий современный смартфон оснащён минимум 5-ю датчиками. В моделях-флагманах количество сенсоров доходит до «чёртовой дюжины», и производители вовсе не собираются на этом останавливаться. Специалисты IBM прогнозируют, что уже в 2017 году гаджеты получат обоняние, благодаря которому смогут предупреждать пользователя, например, о высокой концентрации чадного газа и о присутствии в воздухе вируса гриппа. С нетерпением ждём инноваций – ведь продолжение следует?
- почему происходит дежавю в жизни
- pim ssm что это