примеры перегрузки в жизни

Что губительнее для человека– перегрузки или скорость: мнение экспертов

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

Человеческое тело может выдержать многое, перед тем как наступит точка невозврата. В нас скрыт огромный потенциал, о котором мы даже не догадываемся. Историй о том, как люди чудом выживали в безвыходных ситуациях, хватает. Например, выпасть из окна выше пятого этажа – это всегда летальный исход? Многие ответят утвердительно. Но в мире ежегодно фиксируются сотни случаев, когда попавшие в смертельно опасную ситуацию люди выживали. Да, в этом есть большая доля чудесных стечений обстоятельств, но тем не менее счастливчики существуют.

А знаете ли вы, каков рекорд свободного падения с высоты, после которого человек выжил? В Книге рекордов Гиннесса внесена запись о жительнице Сербии Весне Вулович, которая пережила падение с высоты более 10 тыс. метров после разрушения на эшелоне пассажирского самолета.

Людей травят, и они травятся самостоятельно, их расстреливают, ставят невероятные эксперименты во имя науки (подготовка космонавтов и астронавтов), но из раза в раз есть во всем этом безобразии определенный процент выживших. Всегда!

К смертельно опасным испытаниям для человеческого организма относится скорость и ускорение. Все знают выражение «скорость убивает», но не многие догадываются, где находятся пороговые значения и какие факторы влияют на это.

Джеймс Энтони Павелчик

Доцент, ученый, изучающий физиологию, летавший на борту космического челнока NASA STS-90 в качестве специалиста по полезной нагрузке

Если человек выберется из самолета на скорости более 700 км/ч без защитного скафандра, все выступающие части тела будут оторваны или повреждены набегающим потоком воздуха. Поэтому даже теоретически трюк в фильме-катастрофе «Экипаж» не мог быть выполнен в реальной жизни:

[media=https://youtu.be/H-iFJoZOreM]

В воздухозаборнике скорость потока повышается, а в конце S-образного канала стоял третий двигатель, создававший дополнительную тягу. Шансов удержаться в таких условиях у человека не было бы ни единого.

Также астронавт отдельно подчеркнул, что существует еще и проблема непосредственного ускорения, когда на тело начинают действовать перегрузки.

В этом случае главным смертоносным элементом станет фактор интенсивности ускорения и времени ее приложения. Кратковременное ускорение в 40 g (это в 40 раз превышает силу притяжения на Земле) тренированный человек способен выдержать, примером может стать катапультирование пилота из истребителя.

Но стоит разогнать этого же гражданина на центрифуге с такой же перегрузкой в течение более длительного периода времени или увеличить ускорение, и человек погибнет. При этом внешних повреждений, вы, скорее всего, не обнаружите, но внутренние органы из-за дичайшего перепада давления будут повреждены. Впрочем, этого подопытный точно уже не заметит, поскольку через секунду-другую просто потеряет сознание: Перегрузка (летательные аппараты)

В завершение рассуждений Джеймс Павелчик подвел даже еще более удивительный итог:

Как в реальности чувствуются высокие перегрузки?

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

Вот как описали свои ощущения от перегрузок советские космонавты, пережившие запредельные перегрузки во время аварийного спуска с орбиты (оригинал статьи размещена на aif.ru «Союз» без номера. В 1975 году советские космонавты выжили, упав из космоса):

«Василий Лазарев, описывая свои ощущения в тот момент, сравнивал их с машиной, наехавшей прямо на грудь. Лазарев вспоминал: «Однажды, перенеся на центрифуге нагрузку в 10 g, я обратил внимание сопровождавшего меня врача на множество красных точек, покрывавших спину испытателя, которого крутили до меня. Врач спокойно ответил: «Это мелкие сосуды полопались. У тебя на спине то же самое». Но когда «Союз-18» летел к Земле, на его экипаж навалились перегрузки в 20 g. Какой величины тяжесть, давившая на космонавтов, достигла на пике, точно не известно. Василий Лазарев рассказывал, что специалисты, разбирая телеметрию, отметили, что на несколько секунд она выросла до безумных 26 g. В этот момент у космонавтов отказало зрение и была зафиксирована остановка сердца».

Скорость полета МКС на земной орбите – 27 360 км/ч. При этом исследователи чувствуют себя там вполне бодро

Ученые уверены, что во время будущих путешествий на Марс скорости, на которых покорители Солнечной системы будут перемещаться между планетами, составят порядка 56 тыс. км/ч. Практические эксперименты в этом направлении ведутся уже достаточно давно, поэтому данные показатели не выглядят каким-то невероятным испытанием.

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

Источник

Какие перегрузки может выдержать наш организм: испытания холодом, жарой, жаждой и голодом

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

Сразу предупреждаем: большинство героев этой статьи либо обладают некими врожденными особенностями, либо профессиональной подготовкой, либо им очень повезло. Не стоит брать с них пример и пытаться повторить их достижения.

Известно, что в некоторых уголках нашей планеты температура воздуха днем может подниматься до немыслимых отметок. Официально самая высокая температура была зарегистрирована 10 июля 1913 в Долине Смерти и составила +56,7 °C. Но при какой температуре может выжить человек?

Английские ученые Бланден и Чентри на собственном опыте выяснили, что человек способен несколько минут выдержать температуру + 160°С. Температуру + 100°С человек готов терпеть около получаса. Но для всего этого требуется сухой и неподвижный воздух, иначе можно заработать ожоги.

Холод

По данным Русского географического общества, минимальная температура, при которой люди кратковременно бывали на воздухе, составляет — 89°С. Это всего на 2 градуса выше, чем абсолютный рекорд самой низкой температуры (- 91,2°С), зафиксированной на нашей планете в 2004 году около станции Купол Фудзи, Антарктида (данные были получены со спутника).

Терпимость к низким температурам, кончено, напрямую зависит от одежды. Разумеется, ученым не приходило в голову выпускать в Антарктиде обнаженных испытуемых под холодный ветер, но врачам хорошо известно, что уже при температуре в — 20°С человек без одежды начинает стремительно терять тепло. Медицине известны случаи, когда удавалось реанимировать пациента после сильного переохлаждения. 23 февраля 1994 года двухлетняя Карли Козолофски находилась на двадцатиградусном морозе в течение шести часов. Температура тела малышки упала до + 14°С, но ее удалось спасти.

Гипоксия

Но тут есть несколько нюансов. Во-первых, у профессиональных подводников из-за многолетних тренировок объем легких может в два раза превышать показатели обычного человека. Во-вторых, перед погружением фридайверы активно перенасыщают организм кислородом, что у неподготовленного человека может вызвать обморок. В-третьих, во время задержки дыхания спортсмен перестает двигаться, чтобы снизить энергозатраты организма.

Перегрузки

Перегрузкой принято называть отношение абсолютной величины линейного ускорения, вызванного негравитационными силами, к стандартному ускорению свободного падения на поверхности Земли. Если говорить простыми словами, то перегрузка – это кинетическая энергия, поглощенная телом человека. Перегрузки измеряются в единицах стандартного ускорения свободного падения g и возникают в трех случаях: либо тело резко набирает скорость (и кинетическую энергию соответственно), либо резко сбрасывает, либо движется не по прямой. Если вы поедете на очень быстром поезде по идеально прямым путям с постоянной скоростью, то вам может показаться, будто вы вообще не перемещаетесь в пространстве. Настолько слабой будет перегрузка.

Когда человек просто стоит неподвижно относительно земли, то перегрузка составляет 1 g. Когда человек плавно взлетает на самолете, то перегрузка составляет уже 1,5 g. Космонавты возвращаются на землю в космическом корабле «Союз» с перегрузкой в 3-4 g. Здоровый человек способен выдержать длительную перегрузку в 8-10 g. А наибольший показатель кратковременной перегрузки, после которого человек выжил, составила невероятные 214 g. Пилот IRL IndyCar Кенни Брек испытал это неповторимое ощущение после столкновения с Томасом Шектером. Такая перегрузка сопоставима с 16 тоннами, придавившими пилота к креслу.

Голод

Шотландец Ангус Барбьери в 27 лет решил круто изменить свою жизнь. Причиной тому был лишний вес. И это еще мягко сказано. В начале 1965 года он весил целых 207 кг и никак не мог наладить личную жизнь. Ангус решил уволиться из закусочной, чтобы не искушать себя едой, и лег в больницу. Врачей он попросил проконтролировать свое лечебное голодание.

В больнице Барбьери отказался от твердой пищи и начал свой долгий путь к похуданию. Изначально голодовка должна была продлиться лишь 40 дней, но парень немного увлекся. За 382 дней он сбросил 125 кг и покинул палату в 1966 году с весом в 82 кг. Как же ему это удалось? Дело в том, что хитрый Ангус не ограничивал себя в питье, принимал витамины, с 92-го дня голодовки врачи назначили ему прием калия в таблетках, а с 345-го дня – соль для поддержания солевого баланса. После похудания он смог наконец жениться.

Жажда

Существуют неподтвержденные сведения о том, что в 1947 году в городе Фрунзе медикам удалось спасти 53-летнего мужчину, который находился без жидкости на протяжении 20 дней. Книга рекордов Гиннеса утверждает, что 1 апреля 1979 года Андреас Михавеч был задержан полицией и помещен в камеру предварительного заключения, находившуюся в подвале. После этого о задержанном забыли. Был ли это первоапрельский розыгрыш или ужасное стечение обстоятельств, но Андреас провел в камере без воды и еды 18 дней, но выжил, хоть и похудел на 24 кг. Он сам заявлял, что помещение было довольно сырым и он мог слизывать воду с камней.

Источник

Как невесомость меняет человека и для чего она науке

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

Что такое невесомость и бывает ли она на Земле

Невесомость не равно антигравитация. Это популярное заблуждение. В 400 км от Земли, где со скоростью почти 8 км/с летит Международная космическая станция (МКС), сила притяжения сохраняется на 90% от привычной. Космонавты и предметы парят в воздухе, потому что вместе с МКС находятся в состоянии свободного падения, одновременно опускаясь и смещаясь в сторону. Наша планета их постоянно притягивает: корабль непременно рухнул бы, но поскольку Земля круглая, сохраняется орбитальное движение и постоянная высота. За счет формы планеты МКС постоянно «промахивается» мимо поверхности и продолжает двигаться по орбите дальше. Иначе говоря, падает и не может упасть.

Эффект свободного падения можно ощутить на аттракционах вроде «американских горок» или в скоростном лифте, который стремительно спускается с высокого этажа. На секунды они дарят состояние невесомости или, как ее еще принято называть, микрогравитации.

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

Чуть дольше — около 25 секунд — в невесомости можно оказаться в специальном самолете-лаборатории ИЛ-76 МДК. Он поднимается до 6 тыс. метров, после за 15 секунд с резким ускорением под углом 45º набирает высоту до 9 тыс. метров, а потом по плавной дуге (баллистической траектории) при отключенном моторе уходит вниз. В этот момент и наступает невесомость. На высоте 6 тыс. метров двигатели снова заводят и самолет переводится в обычный горизонтальный полет. Пилот выполняет такие «горки» (так называемые параболы Кеплера) 10-15 раз, он удерживает штурвал, не допуская даже малейших отклонений, что физически очень непросто.

Взлетает ИЛ-76 МДК с военного аэродрома «Чкаловский» в Подмосковье. Поучаствовать может любой более-менее здоровый человек, этим занимаются специальные коммерческие агентства, стоимость полета — ₽280 тыс.

В 2016 году альтернативная рок-группа Ok Go из Чикаго сняла в ИЛ-76 МДК клип на песню Upside down and Inside Out. Это первое профессиональное музыкальное видео в условиях невесомости. Самолет-лаборатория имитировал салон пассажирского S7 Airlines, роль стюардесс исполняли многократные призеры чемпионатов по художественной гимнастике Анастасия Бурдина и Татьяна Мартынова.

Как невесомость меняет человека

Невесомость — состояние из малоприятных. Отсутствие привычной силы тяжести для человеческого тела большой стресс. Начинается «космическая» болезнь: тошнота, головокружение, головная боль, дезориентация. На Земле человек всегда знает, где верх, а где низ. Данные об ориентации тела в пространстве мозгу подсказывают «датчики» во внутреннем ухе, которые являются частью вестибулярной системы. В космосе «прицел» сбивается, организм не чувствует знакомой силы тяжести и не может определить где стоят ноги — на полу или на потолке. Поэтому на МКС все надписи нанесены в одном направлении.

«Я чувствовал, что падаю, — делится впечатлениями астронавт NASA Майк Хопкинс (провел на МКС 166 дней в 2013-2014 гг.) — Это было, как если бы вы висели на стропилах в здании 24 часа. Моему мозгу потребовалось время, чтобы привыкнуть, что теперь так будет всегда. Это почти как заново научиться ходить. Однако довольно быстро это прошло».

В невесомости человек вырастает на 2-5 см, что объясняется низкой гравитацией. После возвращения земная сила притяжения возвращает все обратно, однако в самом полете новый рост может стать проблемой, он вызывает мышечные и суставные боли.

Основной дискомфорт причиняет изменение давления жидкости в организме, кровь приливает к груди и голове, сердце увеличивается в размерах, почки работают так, как будто человек выпил много воды. Лицо становится опухшим и одутловатым, а поскольку стоять или ходить в космосе не нужно, мышцы спины и ног начинают терять силу и уменьшаются в размерах.

Средняя продолжительность полета на МКС — 6 месяцев. За это время человек теряет в весе, снижается работоспособность, а утомляемость, наоборот, повышается. Кости истончаются примерно на 1% каждый месяц, проведенный в невесомости, идет потеря мышечной массы. Например, антигравитационные мышцы практически не используются, т.к. поддерживать осанку ни к чему, большую часть времени тело находится в позе зародыша: человек немного сгибается, руки и ноги в полусогнутом состоянии.

Проблемы со здоровьем могут вызвать даже несколько дней в невесомости. В 2006 году американская астронавт Хайдемари Стефанишин-Пайпер побывала 2 недели в космосе. После приземления Пайпер давала пресс-конференцию, во время которой дважды падала, т.к. организм не справился с земной гравитацией.

» Невесомость гораздо вреднее, чем космическая радиация, о которой ходит много мифов и слухов, — говорит Виталий Егоров, популяризатор космонавтики, известный как блогер Zelenyikot. — Медицинские исследования показывают, что после длительного пребывания в невесомости 100%-го возвращения организма в прежнее состояние нет, т.е. изменения, которые происходят в организме даже после недели нахождения в космосе практически необратимы. Но в целом они настолько незначительны, что человек не замечает разницы, что было до и стало после. По рассказам космонавтов, возвращение организма к земной норме происходит примерно за то же самое время, которое проведено наверху: был неделю, восстанавливаешься неделю, был год — год и адаптируешься».

Есть ли польза от невесомости

Практически все исследования на МКС связаны с невесомостью. В конце июля 2021 года к МКС присоединился новый 20-тонный российский модуль «Наука», предназначенный для множества экспериментов: от производства полупроводников до отработки технологий, важных для будущих пилотируемых полетов к дальним планетам.

Например, в эксперименте «Перепел» в условиях микрогравитации россияне попытаются вывести птенцов японского перепела. Если все удастся — птенцы родятся, выживут и сумеют приспособиться к невесомости, это снимет острый вопрос пополнения рациона экипажа свежими продуктами в потенциальных дальних пилотируемых экспедициях, к тому же продолжит исследования размножения живых организмов в космосе.

С растениями все получилось еще в 2015-м, тогда космонавты впервые съели урожай, выращенный в невесомости. Им стал красный салат ромэн. Поскольку понятий верха и низа в космосе нет, корни растут во всех направлениях. Чтобы вода, субстрат и удобрения не разлетались повсюду, их упаковали в специальные пакеты, которые удерживают корни и «выталкивают» побеги. Свет для фотосинтеза дают светодиоды, они же указывают стеблям, в какую сторону расти.

Каждый космический экипаж сначала на советском «Салюте», американском Skylab, российском «Мире», теперь на международной МКС провел больше сотни научных экспериментов. Желающих же гораздо больше. Перед очередным стартом рассматриваются тысячи предложений: получить разрешение на проведение опытов в невесомости мечтает практически каждая отрасль современной науки. Космическая среда уникальна и обладает огромным потенциалом для открытий во многих областях: от исследования раковых клеток и биопечати органов до создания новых сплавов и военной разведки.

Чем же невесомость так привлекательна для исследований? Взять для примера биопечать, с помощью которой человек может создать клеточную ткань (в 2018 году на МКС были напечатаны щитовидная железа грызуна и человеческий хрящ), эксперимент инициировала российская компания 3D Bioprinting Solutions. Если заниматься этим на Земле, то сила тяжести при формировании биообъекта может заставить конструкцию «наклониться» и целостность органа окажется нарушенной. В космосе с влиянием гравитации проблем нет, на МКС «собрать» трехмерный тканевый экземпляр можно идеальной формы, сделать это на Земле пока практически нереально.

Какие секреты хранит микрогравитация

В 2019 году космическое агентство NASA на мышах изучало влияние невесомости на биологические объекты. На МКС грызуны быстро адаптировались к новой среде обитания и неожиданно начали «плавать» компанией по периметру клетки, будто развлекаясь. Такое нетипичное поведение ученые связывают с двумя причинами: тренировкой равновесия в условиях невесомости и игрой. Стресс, как одно из объяснений, исключили сразу, потому что после возвращения в земную лабораторию вес подопытных практически не изменился, шерсть была в отличном состоянии, а сами грызуны не демонстрировали никаких признаков волнения.

И хотя вроде бы влияние невесомости на человеческий организм изучено достаточно глубоко, космонавты сами иной раз удивляются некоторым результатам пребывания в космосе. «Невесомость оказывает самое благоприятное воздействие на кожу. Космонавты говорят, старая кожа слезает практически слоями, на ее месте появляется новая, молодая, и она остается гладкой, так как в космосе влияние силы тяжести на нее гораздо меньше. Прилетаешь с МКС — кожа, как у младенца. — говорит Виталий Егоров, — Но потом под воздействием земных факторов все возвращается на место. Хотя я предполагаю, что эффект молодой кожи может быть связан с тем, что космонавты гораздо меньше подвержены солнечному свету, чем дома».

Невесомость еще способна удивить человечество и отворить ему двери в мир новых, возможно, неожиданных открытий. И пусть еще не придумали, как воссоздать длительную микрогравитацию на Земле, зато предложили решение, как в 10 раз удешевить доставку к ней в космос. С €1 млн до €100 тыс. снизил присутствие на МКС американский стартап Yuriy Gravity, который для исследований предлагает клиентам использовать многоразовую коробочку размером всего 10 кубических см., представляющую собой миниатюрную лабораторию. Ее вместе с материалом внутри (например, опухолевыми клетками) астронавты возьмут с собой на космическую станцию. Так опытным путем будет выяснено, как поведет себя определенное вещество или материя в невесомости. Участие экипажа не предполагается, все опыты осуществляются автоматически.

Источник

Перегрузки и их действие на человека в разных условиях

примеры перегрузки в жизни. Смотреть фото примеры перегрузки в жизни. Смотреть картинку примеры перегрузки в жизни. Картинка про примеры перегрузки в жизни. Фото примеры перегрузки в жизни

В авиационной и космической медицине перегрузкой считается показатель величины ускорения, воздействующего на человека при его перемещении. Он представляет собой отношение равнодействующей перемещающих сил к массе тела человека.

Перегрузка измеряется в единицах, кратных весу тела в земных условиях. Для человека, находящегося на земной поверхности, перегрузка равна единице. К ней приспособлен человеческий организм, поэтому для людей она незаметна.

Если какому-либо телу внешняя сила сообщает ускорение 5 g, то перегрузка будет равна 5. Это значит, что вес тела в данных условиях увеличился в пять раз по сравнению с исходным.

При взлете обычного авиалайнера пассажиры в салоне испытывают перегрузку в 1,5 g. По международным нормам предельно допустимое значение перегрузок для гражданских самолетов составляет 2,5 g.

В момент раскрытия парашюта человек подвергается действию инерционных сил, вызывающих перегрузку, достигающую 4 g. При этом показатель перегрузки зависит от воздушной скорости. Для военных парашютистов он может составлять от 4,3 g при скорости 195 километров в час до 6,8 g при скорости 275 километров в час.

Реакция на перегрузки зависит от их величины, скорости нарастания и исходного состояния организма. Поэтому могут возникать как незначительные функциональные сдвиги (ощущение тяжести в теле, затруднение движений и т.п.), так и очень тяжелые состояния. К ним относятся полная потеря зрения, расстройство функций сердечно-сосудистой, дыхательной и нервной систем, а также потеря сознания и возникновение выраженных морфологических изменений в тканях.

С целью повышения устойчивости организма летчиков к ускорениям в полете применяют противоперегрузочные и высотно-компенсирующие костюмы, которые при перегрузках создают давление на область брюшной стенки и нижние конечности, что приводит к задержке оттока крови в нижнюю половину тела и улучшает кровоснабжение головного мозга.

Для повышения устойчивости к ускорениям проводятся тренировки на центрифуге, закаливание организма, дыхание кислородом под повышенным давлением.

При катапультировании, грубой посадке самолета или приземлении на парашюте возникают значительные по величине перегрузки, которые могут также вызвать органические изменения во внутренних органах и позвоночнике. Для повышения устойчивости к ним используются специальные кресла, имеющие углубленные заголовники, и фиксирующие тело ремнями, ограничителями смещения конечностей.

Перегрузкой также является проявление силы тяжести на борту космического судна. Если в земных условиях характеристикой силы тяжести является ускорение свободного падения тел, то на борту космического корабля в число характеристик перегрузки также входит ускорение свободного падения, равное по величине реактивному ускорению по противоположному ему направлению. Отношение этой величины к величине называется «коэффициентом перегрузки» или «перегрузкой».

На участке разгона ракеты-носителя перегрузка определяется равнодействующей негравитационных сил — силы тяги и силы аэродинамического сопротивления, которая состоит из силы лобового сопротивления, направленной противоположно скорости, и перпендикулярной к ней подъемной силы. Эта равнодействующая создает негравитационное ускорение, которое определяет перегрузку.

Ее коэффициент на участке разгона составляет несколько единиц.

Если космическая ракета в условиях Земли будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды, то произойдет увеличение давления на опору из-за чего возникнет перегрузка. Если движение будет происходить с выключенными двигателями в пустоте, то давление на опору исчезнет и наступит состояние невесомости.

При старте космического корабля на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. По статистике, космонавты редко испытывают перегрузки, превышающие 4 g.

Способность переносить перегрузки зависит от температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и т.д. Существуют и другие более сложные или менее уловимые факторы, влияние которых еще не до конца выяснено.

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, которое длится более трех секунд, могут возникнуть серьезные нарушения периферического зрения. Поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести. При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта иллюзия называется окологиральной и является следствием воздействия перегрузок на органы внутреннего уха.

Многочисленные экспериментальные исследования, которые были начаты еще ученым Константином Циолковским, показали, что физиологическое воздействие перегрузки зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Из-за увеличения своего веса внутренние органы смещаются вниз и вызывают сильное натяжение связок.

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси, от спины к груди. Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.

При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.

Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *