применение интегралов в жизни человека
Презентация на тему:» Интегралы и их применение в жизни человека»
Описание презентации по отдельным слайдам:
Интеграл и его применение в жизни человека.
Цель: изучение и использование интеграла в деятельности человека. Задачи: узнать что такое интеграл; выявить все сферы деятельности человека где применяется интеграл; выяснить какое значение интеграл занимает в жизни человека.
Что такое интеграл?
Символ введен Готфрид Лейбницем (1675г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Якоб Бернулли (1690 г.). Оно происходит от латинского integro, которое переводится как восстанавливать. Я. Бернулли Г. Лейбниц
Путь, пройденный материальной точкой.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Номер материала: ДБ-517039
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В России объявлены нерабочие дни с 30 октября по 7 ноября
Время чтения: 2 минуты
Рособрнадзор оставил за регионами решение о дополнительных школьных каникулах
Время чтения: 1 минута
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
У ямальских школьников на уроках начнут забирать телефоны
Время чтения: 1 минута
Российские школьники завоевали две золотые медали на Международной олимпиаде по математике
Время чтения: 1 минута
В Тульской области вводят школьные каникулы c 25 октября по 7 ноября
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Так зачем же всё-таки нужны интегралы?
Ответ на вопрос, интересующий всех еще со школы.
Можно найти примеры применения математических законов в разных сферах человеческой жизнедеятельности. Я хотел бы попытаться объяснить интегрирование через воду, а точнее через измерение и мониторинг ее качества. Для начала нужно разобраться что такое общий органический углерод и как он связан с качеством воды. Общий органический углерод выражает, в виде концентрации, содержание всех органических соединений в воде. Он является важнейшим индикатором чистоты. Допустимые концентрации закреплены законодательно, а воду с высоким содержанием органических соединений запрещено сбрасывать в водоемы.
Что представляют из себя эти соединения и почему так важно знать их концентрацию? Органикой считаются вещества, содержащие углерод (С). Бытовым примером являются продукты питания. Также можно упомянуть природные источники. Например, если после сбора картошки промыть ее водой, то количество органических соединений в воде увеличится.
Концентрации, если мы говорим о производстве, необходимо знать для того, чтобы не получить штраф за сброс загрязненной воды в реку или озеро. Если смотреть глобальнее, то для разработки системы очистки воды необходимо провести количественный и качественный анализы. Говоря иначе, понимать, что в ней содержится и в каком количестве.
Поговорим, о массовом производстве картофеля. Его выращивают, собирают, промывают от земли, сортируют и упаковывают. После промывки воду нельзя просто так слить в водоем, так как она загрязнена, ее нужно сначала очистить.
Для сохранения водоемов нужно очищать воду, а чтобы ее правильно очищать, нужно знать сколько в ней органических соединений. Итак, как это измерить и, при чем тут интеграл?
Измерение можно провести с помощью специального прибора для мониторинга качества воды. Прибор берет пробу воды, за несколько минут проводит измерение и, вот, уже известна концентрация. Ниже представлено само устройство.
Без интегрирования прибор не смог бы определить степень загрязненности воды и, возможно, водоемы бы гибли один за другим. Для того, чтобы докопаться до истины, нам придется углубиться в прибор и понять, по какому принципу строится измерение.
При окислении углерода (С) образуется углекислый газ (СО2). Окисление в данном случае можно заменить на горение или сжигание. Если сжечь С, получим СО2. Реакция выглядит следующим образом:
Это ключевой момент. Если сжечь ту воду, которая осталась после промывки картофеля, то получим углекислый газ и пар. Именно это и делает устройство. Прибор знает зависимость концентрации органических веществ в воде от количества углекислого газа, выделяемого при их сжигании. Зависимость линейна и может быть определена путем одного контрольного измерения. Cпециалист, работающий с устройством, готовит раствор с заранее известной концентрацией органических веществ, затем сжигает его в приборе, и далее прибор строит линейную зависимость С от СО2, которая впоследствии берется за основу. Упрощенно говоря, измерение строится от обратного. Первоначально необходимо измерить сколько СО2 выделится при известном количестве С, чтобы потом измерять неизвестные концентрации С. Как уже упоминалось выше, зависимость линейна, соответственно, чем больше органических веществ содержится в воде, тем больше углекислого газа выделится при ее сжигании.
Забирается вода с помощью специальной роботизированной системы. По сути, это шприц со стальной иглой, двигающийся по горизонтальной оси. Он перемещается до сосуда с пробой, опускается, забирает небольшой объем, потом поднимается и направляется к печи. Далее впрыскивает пробу в печь. Проба сжигается при температуре 1200 градусов Цельсия. Прибор измеряет количество выделенного углекислого газа, а затем, по заранее определенной зависимости, сопоставляет какой концентрации соответствует выделенное количество газа.
Теперь необходимо отправиться на последний уровень. Проблема интеграла в том, что он всегда где-то глубоко. Лежит не на поверхности. Но мы уже близко. Остался финальный рывок.
Итак, что значит измерить количество углекислого газа? В каких единицах измерения это количество выражено? Как оно выглядит в реальном времени? Начнем с последнего, выглядит оно, следующим образом:
По оси У, обозначен диапазон охвата прибора от 0 до 100 процентов, где 100 процентов — это максимальное количество углекислого газа, которое может быть измерено. По оси Х, обозначено время. Кривая начинает идти вверх при измерении первых молекул углекислого газа.
Предположим, что вы сидите за компьютером, а кто-то готовит вам пасту на кухне. Вдруг в пасту добавляется красное вино. Сидя за компьютером, вы сначала слегка чувствуете запах вина, потом до вас доходит кульминационная часть, далее запах начинает потихоньку пропадать, в итоге вы уже совсем не чувствуете, что в пасту когда-то было добавлено вино.
Заменим запах вина на углекислый газ и получим понимание графика выше. Сначала прибор измеряет первые молекулы углекислого газа, потом основную часть и далее остаточные частички.
А как посчитать площадь кривой, образованной процессом, описанным выше? Ответ, прост: интегрированием. Так как фигура на графике значительно сложнее прямоугольника, интеграл необходим для расчета площади под кривой. В моем примере эта кривая образована сжиганием воды с органическими соединениями. Процесс выделения углекислого газа, образованного при сжигании, описан математически и изображен графически. Единицы измерения в данном случае — это проценты помноженные на время (%*с)
Возможно, математика – это не самая захватывающая наука по сравнению с физикой, химией, механикой или электротехникой. Можно рассматривать химические реакции и вещества, образованные в результате этих реакций, проектировать приборы и программировать роботизированные системы, но все это было бы проблематично, не имей мы некую сухую точу отсчета. Математика – это средство описания мира вокруг нас, она помогает изложить интересные процессы на бумаге, в краткой и сухой форме, а также выразить некие сложные величины в количественном виде.
Вполне вероятно, что без интегралов, вода, которую мы пьем, была бы не пригодна к употреблению. Так проникнемся же к ним уважением.
Применение интеграла в жизни
Понятие интеграла широко применимо в жизни. Интегралы применяется в различных областях науки и техники. Основными задачами, вычисляемыми с помощью интегралов являются задачи на:
1. Нахождение объема тела
2. Нахождение центра масс тела.
Нахождение объема тела
Рассмотрим следующий рисунок. Допустим, имеется некоторое тело, объем которого равен V. Так же имеется прямая такая, что если мы возьмем некоторую плоскость, перпендикулярную этой прямой, на будет известна площадь сечения S данного тела этой плоскостью.
Получается, на отрезке будет задана некоторая функция S(x). Если эта функция будет непрерывна на этом отрезке, то будет справедлива следующая формула:
Доказательство этого утверждения выходит за рамки программы школьного курса.
Вычисление центра масс тела
Центр масс чаще всего используется в физике. Например, есть некоторое тело которое движется с какой-либо скорость. Но большое тело рассматривать неудобно, и поэтому в физике рассматривается это тело, как движение точки, в предположении, что эта точка имеет такую же массу, как и все тело.
А задача вычисления цетра масс тела, является основной в этом вопросе. Потому как тело-то большое, и какую именно точку надо взять за центр масс? Может быть ту, которая находится в середине тела? Или может саму ближнюю точку к переднему краю? Тут приходит на помощь интегрирование.
Для нахождения центра масс используется следующие два правила:
1. Координата x’ центра масс некоторой системы материальных точек A1, A2,A3, … An с массами m1,m2,m3, … mn соответственно расположенных на прямой в точках с координатами x1, x2, x3, … xn находится последующей формуле:
x’ = (m1*x1 + ma*x2 + … + mn*xn)/(m1 + m2 + m3 +… + mn)
2. При вычислении координаты центра масс можно любую часть рассматриваемой фигуры заменить на материальную точку, при этом поместив ее в центр масс этой отдельной части фигуры, а массу взять равную массе этой части фигуры.
Определение Интеграл функции аналог суммы бесконечно большого количества бесконечно малых слагаемых. В простейшем случае имеется в виду разбиение области интегрирования, являющейся отрезком, на бесконечно малые отрезки, и сумма произведений значения функции аргумента, принадлежащего каждому отрезку, и длины соответствующего бесконечно малого отрезка области интегрирования, в пределе, при бесконечно мелком разбиении:
Интеграл в древности Интегрирование прослеживается ещё в древнем Египте, примерно в 1800 г. до н. э. Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближённого расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н. э. Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод впоследствии использовали Цзу Чунчжи и Цзу Гэн для нахождения объёма шара. Следующий крупный шаг в исчисление интегралов был сделан в Ираке, в XI веке, математиком Ибн ал-Хайсамом (известным как Alhazen в Европе), в своей работе «Об измерении параболического тела» он приходит к уравнению четвёртой степени. Решая эту проблему, он проводит вычисления, равносильные вычислению определённого интеграла, чтобы найти объём параболоида. Используя математическую индукцию, он смог обобщить свои результаты для интегралов от многочленов до четвёртой степени. Таким образом, он был близок к поиску общей формулы для интегралов от полиномов, но он не касается любых многочленов выше четвёртой степени. Следующий значительный прогресс в исчислении интегралов появится лишь в XVI веке. В работах Кавальери с его методом неделимых, а также в работах Ферма, были заложены основы современного интегрального исчисления. Дальнейшие шаги были сделаны в начале XVII века Барроу и Торричелли, которые указали на связь между интегрированием и дифференцированием.
Зачем нужны интегралы? Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл это один из основных инструментов работы с функциями. Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.
Применение в науке Все процессы в природе, в которых постоянно меняются какие-то параметры, например время, температура, давление, координаты, изучаются и вычисляются только с помощью дифференциального и интегрального исчисления. Интегралы при этом только азы. Без них не вычислишь даже площадь какой-либо криволинейной поверхности. Математика вообще развивает логическое мышление, что всем полезно. Конечно, они забываются, если эти знания по жизни не востребованы. Но это не значит, что их вообще не нужно изучать.
При обучении важно понять смысл мат. аппарата в целом и научиться применять его к решению бытовых задач, выработать определенный стиль мышления при котором ты не будешь полагаться на интуицию при принятии каких-то решений, а сможешь точно оценить результат и следствия поступков. Большинство интегралов получены как мат. модели каких-либо естественных процессов в рамках медицины, биологии, химии, экономики, и т.д. Конкретно математический анализ, внутри которого выводятся методы решения интегралов, помогает понять откуда что взялось.
Применение в технике Так же интегралы нашли себе широкое применение в технике. Например в ПИД-регуляторе с использованием его интегральной составляющей. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку.
Вот примерный принцип работы интегральной составляющей. Интегрирующая составляющая пропорциональна интегралу по времени от отклонения регулируемой величины. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку. Если система не испытывает внешних возмущений, то через некоторое время регулируемая величина стабилизируется на заданном значении, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечиваться интегрирующей составляющей. Тем не менее, интегрирующая составляющая также может приводить к автоколебаниям при неправильном выборе её коэффициента.
Список используемых источников
Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»
Подобные документы
Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.
Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.
История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.
Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.
История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.
Иванов Сергей, студент гр.14-ЭОП-33Д
Работа может быть использована на обобщающем уроке по темам «Производная», «Интеграл».
Скачать:
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Подписи к слайдам:
ГБПОУ КНТ им. Б. И. Корнилова Исследовательская работа по теме: « применение Производных и интегралов в физике, математике и электротехнике.» Студента гр. 2014-эоп-33д иванова сергея.
«Метод исчерпывания» Предположим, что нам надо вычислить объём лимона, имеющего неправильную форму, и поэтому применить какую-либо известную формулу объёма нельзя. С помощью взвешивания найти объём также трудно, так как плотность лимона в разных частях его разная. Поступим следующим образом. Разрежем лимон на тонкие дольки. Каждую дольку приближённо можно считать цилиндриком, радиус основания, которого можно измерить. Объём такого цилиндра вычислить легко по готовой формуле. Сложив объёмы маленьких цилиндров, мы получим приближенное значение объёма всего лимона. Приближение будет тем точнее, чем на более тонкие части мы сможем разрезать лимон.
Физическая величина Среднее значение Мгновенное значение Скорость Ускорение Угловая скорость Сила тока Мощность
Историческая справка
История понятия интеграла тесно связана с задачами нахождения квадратур, т.е. задачами на вычисление площадей. Вычислениями площадей поверхностей и объемов тел занимались еще математики Древней Греции и Рима. Первым европейским математиком, получившим новые формулы для площадей фигур и объемов тел, был знаменитый астроном И. Кеплер. После исследований ряда ученых (П.Ферма, Д.Валлиса) И. Барроу открыл связь между задачами отыскания площадей и проведением касательной (т.е. между интегрированием и дифференцированием). Исследование связи между этими операциями, свободное от геометрического языка, было дано И.Ньютоном и Г. Лейбницем. Современное обозначение интеграла восходит к Лейбницу, у которого оно выражало мысль, что площадь криволинейной трапеции есть сумма площадей бесконечно тонких полосок шириной d и высоты f(x). Сам знак интеграла является стилизованной латинской буквой S (summa). Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений.
Краткая история интегрального исчисления
Неопределенный интеграл
Определенный интеграл
Геометрический смысл определенного интеграла
Пусть функция y=f(x) непрерывна на отрезке и f(x) ≥ 0. Фигура, ограниченная графиком АВ функции y=f(x), прямыми x=a, x=b и осью Ох (см. рисунок), называется криволинейной трапецией. Интегральная сумма и ее слагаемые имеют простой геометрический смысл: произведение равно площади прямоугольника с основанием и высотой, а сумма представляет собой площадь заштрихованной ступенчатой фигуры, изображенной на рисунке. Очевидно, что эта площадь зависит от разбиенияотрезка на частичные отрезки и выбора количества точек разбиения. Чем меньше ∆ х, тем площадь ступенчатой фигуры ближе к площади криволинейной трапеции. Следовательно, за точную площадь S криволинейной трапеции принимается предел интегральной суммы. Таким образом, с геометрической точки зрения определенный интеграл от неотрицательной функции численно равен площади соответствующей криволинейной трапеции.
Методы интегрирования
Интеграл простыми словами
Интегралы начинают изучать еще в школе. Но никто из учителей не говорит, зачем это нужно, как использовать эти знания в жизни. Мало кто вообще способен объяснить простыми словами, что такое интеграл, даже в университете. А мы попробуем.
Простыми словами…
Если коротко — интеграл, это сумма маленьких частей. Да, точно так же как и сложение 2+2, только части бесконечно маленькие, естественно и количество их — бесконечно.
Знак интеграла ∫ — это вытянутая буква s (длинная «эс» существовала до начала 19-ого века писалась так — ſ). Первая буква слова summa.
Интегрирование — это сложение бесконечного количества частей бесконечно маленького значения.
Почему обычного «плюсования» не достаточно? Просто в алгебре нет никаких бесконечно малых или больших.
Бесконечно малая величина, это не какое-то конкретное число. Это абстракция, в реальном мире аналогов просто нет. Мы придумали так для удобства. Что-то настолько маленькое, что измерять его бессмысленно, но в расчетах использовать можно.
Слово «интеграл» происходит от латинского integer, что означает «целый». Даже в названии есть намек некое действие, что-то вроде восстановления чего-то целого.
Лучше всего показать «на пальцах», точнее на примере. Предположим, мы хотим узнать площадь фигуры как на картинке (она называется криволинейная трапеция, потому, что одна из сторон создана кривой линией). Зачем нам это нужно? Например, это часть крыла самолета и нужно знать его площадь.
Можно, конечно, разбить фигуру на две, прямоугольник и треугольник.
Но останется «пробел», площадь которого будет неизвестна. Чтобы увеличить точность, можно разделять на большее количество фигур, но все равно будет оставаться какая-то, пусть и небольшая, но «не закрашенная» область. Фигуры будут становиться все меньше и меньше… Очевидно, что процесс измельчения будет бесконечным, по крайней мере в воображении.
Но, в реальности, бесконечный процесс попросту не нужен. На самом деле вычислить такие вещи как площадь круга, длину диагонали квадрата или объем пирамиды невозможно, значение будет бесконечным, естественно, практического смысла бесконечные числа не имеют и мы их «округляем» до нужного предела точности — приблизительно.
Такой метод в Древней Греции назывался «исчерпание». Аналогия с водой тут очень уместна, если представить, что черпаешь из ведра при помощи кружки, то сначала кружки будут полные, но чем ближе ко дну, тем меньший объем будет попадать в кружку. Первой известной личностью «взявшей интеграл» был Архимед, он фактически решил задачу по нахождению площади круга и площади параболы ничего не зная ни про пределы, но даже про число «пи».
Чем больше будет фигур, тем больше будет и точность расчета и тем меньше будут сами фигурки. Если площадь маленьких фигурок будет бесконечно малой, то есть стремится к нулю (но не равняться ему), сумма всех этих площадей будет равна сумме большой фигуры с бесконечно большой точностью.
То же самое происходит при интегрировании:
Фигура на картинке разбивается на столбцы бесконечно маленькой ширины. Ширина у нас Х. Бесконечно малое число обозначается d. То есть dx — это бесконечно малый «икс».
Сложение бесконечного числа частей бесконечно маленького размера это и есть интегрирование.
Чтобы узнать площадь фигуры нужна еще высота, а это y. Высота везде не одинаковая, она постоянно меняется. И мы знаем как именно! Ведь кривая может быть (а может и не быть, но в нашем случае так и есть) функцией y=f(x), то есть значение у меняется по закону (буква f об этом говорит) зависимому от х. Поэтому «эф от икс». Значит высота это f(x). Функция, кстати, тоже бесконечная.
Высота конкретного прямоугольничка, это значение функции в этой конкретной точке (почему точке, потому, что ширина полоски у нас бесконечно маленькая, мы так договорились в самом начале).
Площадь, это высота умноженная на ширину. За высоту можем брать и y и f(x), они равны. За ширину у нас играет dx. Итак, момент истины:
f(x)dx — площадь нашего маленького столбика. В если собрать из все вместе, будет сумма бесконечно маленьких столбиков.
А площадь нужна не бесконечной фигуры, а той что начинается от 1 и закачивается на 5. Если написать эти цифры над и под значком интеграла, получится определенный интеграл.
Собственно и все, интеграл — это сумма бесконечно малых приращений (то есть значений) какой-то функции. Не сложно и не страшно, если не усложнять.
Что мы делаем? Разрезаем фигуру на «ленточки» изменяем площадь этих ленточек и собираем все обратно (суммируем).
Интересно, везде идет речь о сумме, а площадь считается умножением. Парадокс? Нет, умножение это ведь то же самое, что и сложение: 2+2+2+2=2*4. То же самое происходит и с площадью. Чтобы выяснить какова площадь прямоугольника со сторонами 5 и 4, перемножаем 5 на 4, или разделяем прямоугольник на 5 полосок шириной в «единицу» и складываем 4+4+4+4+4=5*4=20.
Никакого противоречия здесь нет. Вот только умножение работает в случае одинаковых величин, простых фигур или прямолинейного движения без ускорения. В остальных случаях — интегрирование.
Зачем нужен интеграл
Из примера выше уже понято, что одна из полезных задач интегрирования — это расчет площади криволинейных фигур. В любой сложной ситуации, если сложность эта заключается криволинейности или неравномерности мы используем интеграл.
Но лучший способ объяснить, что такое интеграл простыми словами — показать еще пару примеров. Как когда-то в детстве объяснили сложение на яблоках. Для чего интеграл может понадобиться?
Предположим, нужно построить храм кому-то из древнегреческих богов, такой чтобы место в нем хватило всем, крыша была прямоугольной, а колоны круглыми, ведь так красивее (а еще прочнее).
Давление колонны на фундамент легко посчитать, если она квадратного сечения, делим силу на площадь и вуаля. А если колонна круглого сечения? Какова площадь круга?
Можно конечно, не напрягаться, и заменить круг эквивалентным квадратом (квадратура круга), но каким? На всякий случай побольше, чтобы наверняка ничего не развалилось. Но это не наш метод, особенно, если ни бесконечного числа рабочих, ни бесконечного числа мрамора в действительности нет и взять негде, а казнить за неэффективное использование бюджета никто не запрещает.
Прием с эквивалентом площади на самом деле простой, использовался древними людьми. Очень-очень древние греки ничего не знали об интегрировании, а Архимед еще не родился, тем не менее, чтобы рассчитать площадь круга, в него выкладывались камешки. Когда круг заполнялся, камешки собирались и раскладывались в виде квадрата. Чем меньше камешки тем… Ничего не напоминает?
Еще примеры из жизни
Конечно, в физике интеграл «берут» постоянно. Вместо Х, может быть время, и тогда мы будем иметь дело с функцией времени, такой, например, как скорость. Ускорение — это скорость изменения скорости. Скорость, это скорость изменения координат. Пробежавшись от ускорения к скорости мы уже дважды использовали интеграл.
В обратную сторону: первая производная пути, это скорость, вторая производная — ускорение. Если ускорение равно нулю, значит скорость не менялась.
Интегрирование и дифференцирование, такие же «парочка» как и умножение и деление, суммирование и вычитание, только не с цифрами, а с функциями. Это взаимно-обратные операции. В случае производной, мы не «складываем», а «отнимаем».
Если проинтегрировав функцию изменения скорости (ускорение) получим константу (число, например, 60, а не формулу y=2x), значит, скорость не изменялась со временем, ускорения не было. Если, взяв приводную (дифференциал) функции скорости по времени, получим ноль — скорость не менялась, ускорение равно нулю.
То есть, имея в своем распоряжении какую-то функцию (зависимость чего-то от чего-то), мы можем ее дифференцировать или интегрировать. Точно также как если бы умножали и или, вычитали и складывали обычные числа.
Например, у нас есть функция изменения координат от времени. В реальном мире мы вышли на пробежку. Бежал наш виртуальный спортсмен 30 минут, первые 10 минут очень быстро, вторые 10 минут уже с одышкой, ну а последние 10 прошел пешком.
Очевидно, что координаты бегуна в начале и в конце разные (он же не стоял на месте). Если координаты менялись — скорость не равнялась нулю.
Скорость не была одинаковой, а менялась в зависимости от времени (больше времени, больше усталость, меньше скорость).
Итак, у нас есть функция изменения координат. Первая производная даст нам новую функцию — изменения координат, вторая производная — функцию ускорения. И первая и вторая функции зависят от одной и той же переменной — времени.
Еще один пример, вычисление массы. Масса, это произведение плотности на объем. Если плотность и объем одинаковы (это стакан воды) никаких проблем нет. А если плотность меняется (тот же стакан, только с коктейлем в несколько слоев)? В таком случае нужно знать закон (зависимость с которой изменяться плотность жидкости в стакане).
Если вам такие примеры не близки, то представьте себе, что взяли кредит под сложный процент. Тогда ваш долг будет расти не линейно. И вы будете интегрировать…
Если нужно узнать какую работу нужно затратить на перемещение предмета не по прямой, а если, нужно рассчитать лучшую цену, зная зависимость спроса от предложения, а если нужно посчитать за какое время рабочие выкопают яму, если это не роботы, а живые люди, которые устают со временем, а если…
Если посмотреть вокруг, не найдется в реальном мире ни идеальных фигур, ни ровных графиков, ни равномерного движения без ускорения, ни линейных зависимостей в поведении человека «разумного».
Все эти простые штуки из науки, просто частные случаи. А значит, в реальном мире интеграл более полезен, чем кажется. Конечно, кривые сложнее прямых и именно поэтому всю свою историю люди упрощали себе жизнь: делили поле прямыми, на квадраты и прямоугольники при помощи натянутой веревки. Считали среднюю скорость, а не мгновенную в каждой точке маршрута, полагали, что тело прошенное под углом к горизонту летит по параболе, а не баллистической кривой… Но, просто — не значит точно.
Говоря простым языком, интегрирование — это такой же инструмент, как и суммирование, в нем нет никаких особых тайн и сложностей. Кроме одной — представить себе бесконечность сложнее, чем натуральные числа, у которых есть наглядные представления в природе. Но справляемся же мы как-то с представлениями таких абстракций как «ноль» или «отрицательное число». С матанализом просто нужно чуть больше воображения.
Ну а если уж совсем просто, для гуманитариев, то производная винограда — это вино. Интеграл вина — это виноград.