период полураспада и время жизни радиоактивного ядра
Период полураспада и время жизни радиоактивного ядра
Проинтегрировав (1) получим закон радиоактивного распада
Активность измеряется в кюри (Ки) и беккерелях (Бк)
1 Ки = 3.7·10 10 распадов/c,
1 Бк = 1 распад/c.
Распад исходного ядра 1 в ядро 2, с последующим его распадом в ядро 3, описывается системой дифференциальных уравнений
Количество ядер 2 достигает максимального значения при
.
Если λ2
), суммарная активность будет монотонно уменьшаться.
Если λ2 >λ1 ( >λ1, при достаточно больших временах вклад второй экспоненты в (7б) становится пренебрежимо мал, по сравнению со вкладом первой и активности второго A2 = λ2N2 и первого изотопов A1 = λ1N1 практически сравняются. В дальнейшем активности как первого так и второго изотопов будут изменяться во времени одинаково.
Поэтому в естественном состоянии все изотопы, генетически связанные в радиоактивных рядах, обычно находятся в определенных количественных соотношениях, зависящих от их периодов полураспада.
В общем случае, когда имеется цепочка распадов 1→2→. n, процесс описывается системой дифференциальных уравнений
Решением системы (10) для активностей с начальными условиями N1(0) = N10; Ni(0) = 0 будет
Штрих означает, что в произведении, которое находится в знаменателе, опускается множитель с i = m.
Физика. 11 класс
§ 39. Закон радиоактивного распада
|
Таблица 11. Периоды полураспада радиоактивных изотопов веществ | |
Вещество | Период полураспада |
30,17 лет | |
5,3 года | |
8,04 суток | |
24 390 лет | |
1600 лет | |
3,8 суток | |
700 млн лет | |
4,5 млрд лет |
В 1943 г. Дьердь фон Хевеши была присуждена Нобелевская премия по химии «за работу по использованию изотопов в качестве меченых атомов при изучении химических процессов».
Закон радиоактивного распада
Появление «ручных» сцинтилляционных счетчиков и, главным образом, счётчиков Гейгера–Мюллера, которые помогли автоматизировать подсчёты частиц (см. § 15-е), привело физиков к важному выводу. Любой радиоактивный изотоп характеризуется самопроизвольным ослабеванием радиоактивности, выражающимся в уменьшении количества распадающихся ядер в единицу времени.
Построение графиков активности различных радиоактивных изотопов приводило учёных к одной и той же зависимости, выражающейся показательной функцией (см. график). По горизонтальной оси отложено время наблюдения, а по вертикальной – количество нераспавшихся ядер. Кривизна линий могла быть различной, однако сама функция, которой выражались описываемые графиками зависимости, оставалась одной и той же:
N – количество нераспавшихся ядер N0 – начальное количество ядер t – время наблюдения, с T – период полураспада, с |
Эта формула выражает закон радиоактивного распада: количество нераспавшихся с течением времени ядер определяется как произведение начального количества ядер на 2 в степени, равной отношению времени наблюдения к периоду полураспада, взятой с отрицательным знаком.
Как выяснилось в ходе опытов, различные радиоактивные вещества можно охарактеризовать различным периодом полураспада – временем, за которое количество ещё нераспавшихся ядер уменьшается вдвое (см. таблицу).
Йод-129 | 15 млн лет | Углерод-14 | 5,7 тыс лет |
Йод-131 | 8 дней | Уран-235 | 0,7 млрд лет |
Йод-135 | 7 часов | Уран-238 | 4,5 млрд лет |
Период полураспада – общепринятая физическая величина, характеризующая скорость радиоактивного распада. Многочисленные опыты показывают, что даже при очень длительном наблюдении за радиоактивным веществом его период полураспада постоянен, то есть не зависит от числа уже распавшихся атомов. Поэтому закон радиоактивного распада нашёл применение в методе определения возраста археологических и геологических находок.
Метод радиоуглеродного анализа. Углерод – очень распространённый на Земле химический элемент, в состав которого входят стабильные изотопы углерод-12, углерод-13 и радиоактивный изотоп углерод-14, период полураспада которого составляет 5,7 тысяч лет (см. таблицу). Живые организмы, потребляя пищу, накапливают в своих тканях все три изотопа. После прекращения жизни организма поступление углерода прекращается, и с течением времени его содержание убывает естественным путём, за счёт радиоактивного распада. Поскольку распадается только углерод-14, с течением веков и тысячелетий изменяется соотношение изотопов углерода в ископаемых останках живых организмов. Измерив эту «углеродную пропорцию», можно судить о возрасте археологической находки.
Метод радиоуглеродного анализа применим и для геологических пород, а также для ископаемых предметов быта человека, но при условии, что соотношение изотопов в образце не было нарушено за время его существования, например, пожаром или действием сильного источника радиации. Неучёт подобных причин сразу после открытия этого метода приводил к ошибкам на несколько веков и тысячелетий. Сегодня применяются «вековые калибровочные шкалы» для изотопа углерода-14, исходя из его распределения в долгоживущих деревьях (например, в американской тысячелетней секвойе). Их возраст можно подсчитать весьма точно – по годовым кольцам древесины.
Предел применения метода радиоуглеродного анализа в начале XXI века составлял 60 000 лет. Для измерения возраста более древних образцов, например горных пород или метеоритов, используют аналогичный метод, но вместо углерода наблюдают за изотопами урана или других элементов в зависимости от происхождения исследуемого образца.
Период полураспада и время жизни радиоактивного ядра
Радиоактивность заключается в самопроизвольном (спонтанном) распаде ядер с испусканием одной или нескольких частиц. Такие ядра и соответствующие им нуклиды называют радиоактивными (в отличие от стабильных ядер). Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, дочерними.
Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии.
Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая – к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.
К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.
Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt, пропорционально как числу N имеющихся ядер в этот момент, так и dt:
−dN = λNdt, |
dN – убыль числа ядер за время dt (это и есть число распавшихся ядер за промежуток dt), λ – постоянная распада, величина, характерная для каждого радиоактивного препарата. |
Интегрирование уравнения (3.4) дает:
N0, N(t) – начальное и текущее значение количества радиоактивного нуклида, λ – постоянная распада, представляющая собой вероятность распада в единицу времени. |
Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.
Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN. Ее называют активностью A. Таким образом активность:
τ = 1/λ. |
λ1N1 = λ2N2, |
t | e −λt | 1 − e −λt | ||||
0 | 1 | 0 | ||||
1T | 1/2 = 0.5 | 0.5 | ||||
2T | (1/2) 2 = 0.25 | 0.75 | ||||
3T | (1/2) 3 = 0.125 | 0.875 | ||||
. | . | . | ||||
10T | (1/2) 10 ≈ 0.001 | Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3): |