Что значит рациональный корень
Нахождение рациональных корней
Содержание:
Теорема о рациональных корнях
Если для многочлена с целыми коэффициентами существует рациональный корень, то этот корень имеет вид
Доказательство:
Пусть несократимая дробь является корнем многочлена
с целыми коэффициентами:
Умножим обе части равенства на :
Так как в последнем равенстве каждый член, кроме члена , содержит множитель
и каждый член, кроме члена
, содержит множитель
, то коэффициент
должен делится на
, а коэффициент
должен делится на
.
Задача пример №8
Найдите рациональные корни многочлена .
Решение:
свободный член 6, старший коэффициент 2.
Для ,
запишем все возможные числа вида
, т.е. одним из множителей является двучлен
. Другие множители найдем, используя синтетическое деление:
Так как, , получим, что
являются корнями многочлена.
Следствие 1. Если старший коэффициент ±1 и многочлен имеет рациональный корень, то он является целым числом.
Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.
Задача пример №9
Найдите корни многочлена .
Решение:
по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.
Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.
Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми.
Например, для нахождения корней многочлена надо умножить все члены уравнения
на 12, а затем решить полученное уравнение
.
Для нахождения рациональных корней выполните следующие действия:
1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.
2. Из этих чисел выбирается число (обращающее значение многочлена в нуль), которое является корнем многочлена, т.е. определяется двучлен
, на который многочлен делится без остатка.
3. Для данного многочлена при помощи синтетического деления на двучлен определяется другой множитель.
4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.
5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена могут являться числа ±1.
Проверим: ;
. Значит, многочленах
не имеет рациональных корней.
Исследование:
1) Перепишите примеры в тетрадь и проведите обсуждение.
a) Многочлен первой степени имеет один корень:
b) Многочлен второй степени имеет два корня:
,
;
c) Многочлен третьей степени имеет три корня:
d) Многочлен четвертой степени имеет четыре корня:
e) Принимая во внимание, что уравнение имеет кратные корни, получим 5 корней:
2) Укажите степень и найдите корни многочленов, разложение на множители которых имеет вид .
3) Равна ли степень произвольного многочлена количеству его корней?
Покажем на примере, что многочлен n-ой степени имеет n корней.
Задача пример №10
Найдите все корни многочлена .
Решение:
рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:
.
Значит, является корнем данного многочлена
. Другие корни найдем синтетическим делением.
В выражении для множителя
вновь применим теорему о рациональных корнях и синтетическое деление. Тогда
;
. Решим уравнение
;
;
(корень кратности 2);
;
Корни:
Во всех рассмотренных нами примерах уравнение n-ой степени всегда имеет n корней, включая кратные корни (действительных или комплексных).
Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:
Другие темы которые вам помогут понять математику:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Что такое Рациональные числа?
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение рациональных чисел
Рациональное число — это число, которое можно представить в виде положительной или отрицательной обыкновенной дроби или числа ноль. Если число можно получить делением двух целых чисел, то это число рациональное.
Рациональные числа — это те, которые можно представить в виде
где числитель m — целое число, а знаменатель n — натуральное число.
Рациональные числа – это все натуральные, целые числа, обыкновенные дроби, бесконечные периодические дроби и конечные десятичные дроби.
Множество рациональных чисел принято обозначать латинской буквой Q.
Примеры рациональных чисел:
Свойства рациональных чисел
У рациональных чисел есть определенные законы и ряд свойств — рассмотрим каждый их них. Пусть а, b и c — любые рациональные числа.
Кроме основных перечисленных есть еще ряд свойств:
Мы знаем, что 0 = d + (-d) для любого рационального d, значит a * 0 = a * (d + (-d)).
Распределительный закон позволяет переписать выражение:
Так получилась сумма двух противоположных чисел, которая в результате дает нуль, что доказывает равенство a * 0 = 0.
Определение иррационального числа
Иррациональное число — это действительное число, которое невозможно выразить в форме деления двух целых чисел, то есть в рациональной дроби
Оно может быть выражено в форме бесконечной непериодической десятичной дроби.
Бесконечная периодическая десятичная дробь — это такая дробь, десятичные знаки которой повторяются в виде группы цифр или одного и того же числа.
Обозначение множества иррациональных чисел: латинская буква I.
Действительные или вещественные числа — это все рациональные и иррациональные числа: положительные, отрицательные и нуль.
Свойства иррациональных чисел:
Различие между целыми, натуральными и рациональными числами
Натуральные числа — это числа, которые мы используем, чтобы посчитать что-то конкретное, осязаемое: один банан, две тетрадки, десять стульев.
А вот, что точно не является натуральным числом:
Целые числа — это натуральные числа, противоположные им и нуль.
Какие числа называются рациональными мы уже знаем из первой части статьи. Повторим еще раз.
Рациональные числа — это конечные дроби и бесконечные периодические дроби.
Например:
Любое рациональное число можно представить в виде дроби, у которой числитель принадлежит целым числам, а знаменатель — натуральным. Поэтому во множество рациональных чисел входит множество целых и натуральных чисел.
Но не все числа можно назвать рациональными. Например, бесконечные непериодические дроби не принадлежат множеству рациональных чисел. Так √3 или 𝜋 (число пи) нельзя назвать рациональными числами.
Иррациональность корня
Теорема о свойстве рационального числа — аналитическое доказательство
Алгоритм Евклида для нахождения НОД
Алгоритм Евклида для нахождения наибольшего общего делителя двух данных чисел заключается в том, чтоб делить большее число на меньшее, а затем делить меньшее на остаток. Так повторяют, пока в остатке не получится 0, и тогда остаток, получившийся на предыдущем шаге — это и будет НОД.
Алгоритм Евклида — геометрическое изложение
Алгоритм Евклида для нахождения наибольшего общего делителя. Даны два отрезка :
отрезки:
150 см
96 см
И надо найти наибольший отрезок, которому кратны оба данных отрезка. Алгоритм Евклида — это большее делим на меньшее, а потом меньшее на остаток. Сначала больший отрезок делим на меньший. Замеряю меньший отрезок и откладываю меньший на большем — получается один целый кусочек и остаток:
150 / 96 = 1 ост 54
отрезки:
150 см = 96 см + 54 см
96 см
Замеряю остаток и откладываю на меньшем отрезке. Получается опять один целый кусочек и остаток.
96 / 54 = 1 ост 42
отрезки:
150 см = 96 см + 54 см
96 см = 54 см + 42 см
Замеряю остаток и откладываю на предыдущем остатке. Получается опять один целый кусочек и остаток.
54 / 42 = 1 ост 12
отрезки:
150 см = 96 см + 42 см + 12 см
96 см = 54 см + 42 см
Замеряю остаток и откладываю на предыдушем остатке. Получается три целых кусочка и остаток.
42 / 12 = 3 ост 6
отрезки:
150 см = 96 см + 42 см + 12 см
96 см = 54 см + 12 см + 12 см + 12 см + 6 см
Замеряю остаток и откладываю на предыдущем остатке. Получается ровно два целых кусочка.
12 / 6 = 2
Этот целый кусочек 6 и есть НОД. И вот почему: предыдущий остаток содержит два целых кусочка, а каждый предыдущий остаток укладывается в предпредыдущем целое число раз, то есть и предпредыдущий остаток и остаток до него и изначальное целое — все делятся на наш последний кусочек нацело.
отрезки:
150 см = 16 × 6 см + 7 × 6 см + 2 × 6 см
96 см = 9 × 6 см + 2 × 6 см + 2 × 6 см + 2 × 6 см + 6 см
Даны два отрезка — и надо найти наибольший отрезок, которому кратны оба данных отрезка. Алгоритм Евклида — это большее делим на меньшее, а потом меньшее на остаток. Сначала больший отрезок делим на меньший. Замеряю меньший отрезок и откладываю меньший на большем — получается один целый кусочек и остаток. 150 / 96 = 1 ост 54 Замеряю остаток и откладываю на меньшем отрезке. Получается опять один целый кусочек и остаток. 96 / 54 = 1 ост 42 Замеряю остаток и откладываю на предыдущем остатке. Получается опять один целый кусочек и остаток. 54 / 42 = 1 ост 12 Замеряю остаток и откладываю на предыдушем остатке. Получается три целых кусочка и остаток. 42 / 12 = 3 ост 6 Замеряю остаток и откладываю на предыдущем остатке. Получается ровно два целых кусочка. 12 / 6 = 2 Этот целый кусочек 6 и есть НОД. И вот почему: предыдущий остаток содержит два целых кусочка, а каждый предыдущий остаток укладывается в предпредыдущем целое число раз, то есть и предпредыдущий остаток и остаток до него и изначальное целое — все делятся на наш последний кусочек нацело.
Теорема о свойстве рационального числа — геометрическое доказательство. Несоизмеримость диагонали квадрата с его стороной.
Диагональ квадрата несоизмерима с его стороной, то есть их отношение выражается иррациональным числом. Вот наш квадрат, вот его сторона (помечена кружком), вот диагональ. Если бы отношение диагонали к стороне было рациональным числом, и диагональ к стороне относилась бы как сколько-то единиц к скольки-то единицам, то найти эту единицу можно было бы с помощью алгоритма Евклида. Вот мы и поищем единицу. Разделим большее (диагональ) на меньшее (сторону). Получается 1, и остаток помечен двойным штрихом. Из начала остатка восставим перпендикуляр к диагонали. Получились ТРИ равнобедренных треугольника. 1) треугольник с равными сторонами-кружками (У его основания — равные углы, помеченные кружками). 2) прямоугольный равнобедренный треугольник с прямым углом при вершине и половинами прямого угла при основании. 3) треугольник с равными углами (с двойной дужкой) при основании. Углы с двойной дужкой равны, потому что оба они — это разность между прямым углом и углом с кружком (здесь прямой угол минус уголс кружком — это угол с двойной дужкой и здесь так же прямой угол минус угол с кружком — это угол с двойной дужкой). Из равнобедренности треугольников следует равенство ЭТИХ отрезков и ЭТИХ отрезков. Теперь будем меньшее (сторону) делить на остаток (с двойным штрихом). У нас получится 2. Но маленький равнобедренный прямоугольный треугольник подобен исходному равнобедренному прямоугольному треугольнику. Следовательно второй шаг алгоритма — это уменьшенное подобие первого шага. А значит и третий шаг будет уменьшенным подобием второго и т. д. Такой процесс можно продолжать до бесконечности, а для успешного нахождения единицы у алгоритма должно быть конечное число шагов. Значит единицы не существует, и отношение диагонали квадрата к его стороне не является рациональным числом.
Что такое квадратный корень
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Что такое квадратный корень
Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:
Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.
Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0
Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.
Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.
Попробуем найти корень из √-16
Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.
Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.
Числа, стоящие под знаком корня, должны быть положительными.
Исходя из определения, значение корня также не должно быть отрицательным.
Разница между квадратным корнем и арифметическим квадратным уравнением
Прежде всего, чтобы разграничить эти два понятия, запомните:
Это два нетождественных друг другу выражения.
Из выражения x 2 = 16 следует, что:
Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.
В то же самое время, из выражения x = √16 следует, что x = 4.
Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:
Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.
Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.
Даны два выражения:
Первое выражение — квадратное уравнение.
Второе выражение — арифметический квадратный корень.
Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.
Запись иррациональных чисел с помощью квадратного корня
Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.
Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.
Примеры иррациональных чисел:
Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.
Дано уравнение: x 2 = 2.
Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.
Переберем числа, чтобы удостовериться в этом:
1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.
Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.
Извлечение корней
Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.
Таблица квадратов
Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:
Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.
Ищем в таблице число 3025.
Влево — 5, вверх — 5.
Ищем в таблице число 7396.
Ищем в таблице число 9025.
Ищем в таблице число 1600.
Извлечением корня называется нахождение его значение.
Свойства арифметического квадратного корня
У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.
Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.
Умножение арифметических корней
Для умножения арифметических корней используйте формулу:
Примеры:
Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.
Если нет возможности извлечь корни из чисел, то поступаем так:
Деление арифметических корней
Для деления арифметических корней используйте формулу:
Примеры:
Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.
Возведение арифметических корней в степень
Для возведения арифметического корня в степень используйте формулу:
Примеры:
Эти две формулы нужно запомнить:
Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.
Внесение множителя под знак корня
Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.
А теперь давайте разберемся, как вносить множитель под знак корня.
Число семь умножено на квадратный корень из числа девять.
Извлечем квадратный корень и умножим его на 7.
В данном выражение число 7 — множитель. Давайте внесем его под знак корня.
Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.
Вы помните, что (√a) 2 = a
Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.
7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.
Формула внесения множителя под знак корня:
Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.
Вынесение множителя из-под знака корня
С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.
Дано выражение в виде квадратного корня из произведения.
Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.
Извлекаем корень из всех имеющихся множителей.
В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:
Таким образом множитель выносится из-под знака корня.
Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.
Раскладываем подкоренное выражение на множители 28 = 7*4.
Сравнение квадратных корней
Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.
Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.
Если:
Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.
Ответ: преобразовываем выражение 9√5.
9√5 = √81 * √5 = √81*5 = √405
Ответ: преобразовываем выражение 7√12.
7√12 = √49 * √12 = √49*12 = √588
Это значит, что 7√12 > √20.
Как видите, ничего сложного в сравнении арифметических квадратных корней нет.
Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.
Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.
Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.
Таких калькуляторов в интернете много, вот один из них.
Извлечение квадратного корня из большого числа
Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.
Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.
Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:
Извлечь корень из большого числа можно разными способами — вот один из них.
Извлечем корень из √2116.
Наша задача в том, чтобы определить между какими десятками стоит число 2116.
Мы видим что, 2116 больше 1600, но меньше 2500.
41, 42, 43, 44, 45, 46, 47, 48, 49.
Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.
Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.
Как пользоваться таблицей
4 2 = 16 ⇒ 6
5 2 = 25 ⇒ 5
6 2 = 36 ⇒ 6
7 2 = 49 ⇒ 9
8 2 = 64 ⇒ 4
9 2 = 81 ⇒ 1
Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.
Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.
Число 43, возведенное в квадрат, даст число, на конце которого — 9.
Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.
Далее вычисляем: 44 * 44 = 1936.
Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.
Еще пример. Извлечем корень из числа √11664
Разложим число 11664 на множители:
Запишем выражение в следующем виде:
Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.
Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.
109004, Москва, ул. Александра Солженицына, 23а, строение 1, подъезд 10