Что значит константа в физике
Физическая константа
Фундамента́льная физи́ческая постоя́нная (вар.: конста́нта) — физическая величина, характеризующая не отдельные тела, а физические свойства нашего мира в целом. Фундаментальные физические постоянные возникают при математическом описании окружающего мира с помощью теоретической физики. Часто сюда же относят и некоторые другие физические постоянные, так или иначе связанные с конкретными телами.
Слово «постоянная» подразумевает, что численное значение этой величины не меняется со временем. В реальности это может быть и не так (например, в последние годы появились свидетельства в пользу того, что постоянная тонкой структуры меняется в ходе эволюции Вселенной). Однако даже если эти величины и меняются со временем, то крайне медленно, и сколько-нибудь заметные изменения стоит ожидать лишь на масштабах порядка возраста Вселенной.
Стоит различать размерные и безразмерные физические постоянные. Численное значение размерной величины зависит от выбора единиц измерения. Численное же значение безразмерных постоянных более фундаментально, так как оно не зависит от системы единиц.
Содержание
Фундаментальные физические постоянные
Размерные комбинации фундаментальных постоянных
Название | Символ | Значение | Прим. |
---|---|---|---|
планковская масса | 2,176 44(11)×10 −8 кг | a | |
планковская длина | 1,616 252(81)×10 −35 м | a | |
планковское время | 5,391 24(27)×10 −44 с | a |
Постоянные, связывающие разные системы единиц
Некоторые другие физические постоянные
Примечания
Ссылки
Полезное
Смотреть что такое «Физическая константа» в других словарях:
физическая константа — fizikinė konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Pastovus dydis, įeinantis į kurio nors fizikos dėsnio matematinę išraišką. atitikmenys: angl. physical constant vok. physikalische Konstante, f rus. физическая… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Фундаментальная физическая константа — Фундаментальная физическая постоянная (вар.: константа) физическая величина, характеризующая не отдельные тела, а физические свойства нашего мира в целом. Фундаментальные физические постоянные возникают при математическом описании окружающего… … Википедия
Константа — Константа: Постоянная Математическая Физическая Константа (в программировании) Константа диссоциации кислоты Константа равновесия Константа скорости реакции Константа (Остаться в живых) См. также Констанция Констанций Константин Констант… … Википедия
Константа диссоциации — Константа диссоциации вид константы равновесия, которая показывает склонность большого объекта диссоциировать (разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющие молекулы, или когда… … Википедия
КОНСТАНТА ВЗАИМОДЕЙСТВИЯ — (константа связи) (от лат. constans постоянный) в квантовой теории поля (КТП) параметр, определяющий силу (интенсивность) взаимодействия частиц или полей. В общем виде К. в. задаётся как значение вершинной части (вершины) при определ. значениях… … Физическая энциклопедия
Константа автопротолиза — Константа автопротолиза физическая величина, характеризующая способность протонного растворителя к диссоциации. Обозначается KS. Является произведением концентраций иона лиония и иона лиата. Так, например, для растворителя, который… … Википедия
Константа равновесия — У этого термина существуют и другие значения, см. Константа. Для улучшения этой статьи желательно?: Проверить достоверность указанной в статье информации … Википедия
ФИЗИЧЕСКАЯ ХИМИЯ — раздел химии, в котором изучаются химические свойства веществ на основе физических свойств составляющих их атомов и молекул. Современная физическая химия широкая междисциплинарная область, граничащая с различными разделами физики, биофизики и… … Энциклопедия Кольера
Константа диссоциации кислоты — У этого термина существуют и другие значения, см. Константа. Константа диссоциации кислоты (Ka) константа равновесия реакции диссоциации кислоты на ион водорода и анион кислотного остатка. Для многоосновных кислот, диссоциация которых… … Википедия
Действие (физическая величина) — У этого термина существуют и другие значения, см. Действие (физика). Действие Размерность L2MT−1 Действие в физике скалярная физическая величина, являющаяс … Википедия
Физические константы
Фундамента́льная физи́ческая постоя́нная (вар.: конста́нта) — физическая величина, характеризующая не отдельные тела, а физические свойства нашего мира в целом. Фундаментальные физические постоянные возникают при математическом описании окружающего мира с помощью теоретической физики. Часто сюда же относят и некоторые другие физические постоянные, так или иначе связанные с конкретными телами.
Слово «постоянная» подразумевает, что численное значение этой величины не меняется со временем. В реальности это может быть и не так (например, в последние годы появились свидетельства в пользу того, что постоянная тонкой структуры меняется в ходе эволюции Вселенной). Однако даже если эти величины и меняются со временем, то крайне медленно, и сколько-нибудь заметные изменения стоит ожидать лишь на масштабах порядка возраста Вселенной.
Стоит различать размерные и безразмерные физические постоянные. Численное значение размерной величины зависит от выбора единиц измерения. Численное же значение безразмерных постоянных более фундаментально, так как оно не зависит от системы единиц.
Содержание
Фундаментальные физические постоянные
Размерные комбинации фундаментальных постоянных
Название | Символ | Значение | Прим. |
---|---|---|---|
планковская масса | 2,176 44(11)×10 −8 кг | a | |
планковская длина | 1,616 252(81)×10 −35 м | a | |
планковское время | 5,391 24(27)×10 −44 с | a |
Постоянные, связывающие разные системы единиц
Некоторые другие физические постоянные
Примечания
Ссылки
Полезное
Смотреть что такое «Физические константы» в других словарях:
ФИЗИЧЕСКИЕ КОНСТАНТЫ — (физические постоянные), постоянные величины, входящие в математические выражения физических законов (например, постоянная Авогадро). Физические константы, входящие в фундаментальные физические законы (например, всемирного тяготения закон) или… … Современная энциклопедия
ФИЗИЧЕСКИЕ КОНСТАНТЫ — (физические постоянные) постоянные величины, входящие в математические выражения физических законов (напр., газовая постоянная R в Клапейрона уравнении). Физические константы, входящие в фундаментальные физические законы (напр., закон всемирного… … Большой Энциклопедический словарь
Физические константы — (физические постоянные), постоянные величины, входящие в математические выражения физических законов (например, постоянная Авогадро). Физические константы, входящие в фундаментальные физические законы (например, всемирного тяготения закон) или… … Иллюстрированный энциклопедический словарь
ФИЗИЧЕСКИЕ КОНСТАНТЫ — см. Фундаментальные физические константы. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 … Физическая энциклопедия
физические константы — (физические постоянные), постоянные величины, входящие в математические выражения физических законов (например, газовая постоянная R в Клапейрона уравнении). Физические константы, входящие в фундаментальные физические законы (например, закон… … Энциклопедический словарь
физические константы — fizikinės konstantos statusas T sritis chemija apibrėžtis Pastovūs dydžiai, įeinantys į fizikos dėsnių matematines išraiškas. atitikmenys: angl. physical constants; universal constants rus. мировые константы; универсальные постоянные; физические… … Chemijos terminų aiškinamasis žodynas
ФИЗИЧЕСКИЕ КОНСТАНТЫ — (физические постоянные), пост. величины, входящие в матем. выражения физ. законов (напр., газ. постоянная R в Клапейрона уравнении). Ф. к., входящие в фундам. физ. законы (напр., закон всемирного тяготения) или являющиеся характеристиками частиц… … Естествознание. Энциклопедический словарь
Физические константы — то же, что Физические постоянные … Большая советская энциклопедия
Физические константы сложных виниловых эфиров — Виниловый эфир Температура кипения, °С/мм рт. ст. Плотность, г/см3 Показатель преломления, nD Винилформиат 46,6/760 0,9651* 1,4757* … Химический справочник
ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ — постоянные, входящие в ур ния, описывающие фундам. законы природы и свойства материи. Ф. ф. к. определяют точность, полноту и единство наших представлений об окружающем мире, возникая в теоретич. моделях наблюдаемых явлений в виде универсальных… … Физическая энциклопедия
Фундаментальные константы
| Физика, свободная от метафизических гипотез, невозможна. ( Макс Борн) Разделы микроскопической физики (микрофизики или физики микромира): Базовые единицы измерения в природе и их кванты
В разделе ниже даются «первичные» физические константы, от которых завсисят другие, «вторичные». Эти первичные константы (или их часть) можно считать некими «квантами». Авторские рассуждения о квантах мира и вычисления кванта массыПоскольку материя в нашем мире мыслится в понятии массы, а располагается в пространственно-временных координатах, то нам интересны, прежде всего, «кванты» пространства и времени: Вычисление кванта массы на основе постоянной ПланкаВычисление кванта массы на основе первичных константВычисление кванта массы на основе гравитационной постояннойУниверсальные физические постоянные (фундаментальные константы)
Первичные физические постоянныеСвет от квазаров на своем пути длиной в миллиарды лет проходит через межзвездные облака металлов (железа, никеля, хрома). В 1997 при его исследовании обнаружили, что он поглотил некоторые из фотонов света квазара. Но не те, которые ожидалось. Единственное непроверенное разумное объяснение состоит в том, что постоянная тонкой структуры, или альфа (α), имела различное значение в то время, когда свет проходил через облака. Но ведь альфа определяет, как свет взаимодействует с материей, и не должна меняться. Ее значение зависит от заряда электрона, скорости света и постоянной Планка. Какая же постоянная изменилась? Согласно Н. Косинову, проведенные исследования показали, что используемые в современной физике фундаментальные физические константы непосредственно происходят от перечисленных ниже констант вакуума : [А я бы не исключил возможность, что некоторые физические константы зависят не только от этих первичных, которые можно назвать «квантами» и которые по сему относятся к области микромира, но и от значений, которые относятся к области мегамира, например, возраста и радиуса Вселенной.] Вторичные физические постоянныеНовые фундаментальные физические константы дают широкие возможности для установления новых физических законов и поиска констант взаимодействия для различных физических законов. Все фундаментальные физические постоянные: Ресурсы о фундаментальных постоянныхСетевые статьи и новости о физических константах: Фундаментальная физическая константаФундамента́льная физи́ческая постоя́нная (вар.: конста́нта) — физическая величина, характеризующая не отдельные тела, а физические свойства нашего мира в целом. Фундаментальные физические постоянные возникают при математическом описании окружающего мира с помощью теоретической физики. Часто сюда же относят и некоторые другие физические постоянные, так или иначе связанные с конкретными телами. Слово «постоянная» подразумевает, что численное значение этой величины не меняется со временем. В реальности это может быть и не так (например, в последние годы появились свидетельства в пользу того, что постоянная тонкой структуры меняется в ходе эволюции Вселенной). Однако даже если эти величины и меняются со временем, то крайне медленно, и сколько-нибудь заметные изменения стоит ожидать лишь на масштабах порядка возраста Вселенной. Стоит различать размерные и безразмерные физические постоянные. Численное значение размерной величины зависит от выбора единиц измерения. Численное же значение безразмерных постоянных более фундаментально, так как оно не зависит от системы единиц. СодержаниеФундаментальные физические постоянныеРазмерные комбинации фундаментальных постоянных
Постоянные, связывающие разные системы единицНекоторые другие физические постоянныеПримечанияСсылкиПолезноеСмотреть что такое «Фундаментальная физическая константа» в других словарях:ФУНДАМЕНТАЛЬНАЯ ДЛИНА — (элементарная длина), гипотетич. универсальная постоянная размерности длины, определяющая пределы применимости фундам. физ. представлений теории относительности, квант. теории, принципа причинности. Через Ф. д. l выражаются масштабы областей… … Физическая энциклопедия ФАРАДЕЯ ПОСТОЯННАЯ — (Фарадея число), фундаментальная физическая константа, равная произведению Авогадро постоянной NA на элем. электрич. заряд е (заряд эл на): F=NA •e=96484,56(27) Кл моль 1. Ф. п. широко применяется в электрохимических расчётах. Названа в честь М.… … Физическая энциклопедия РИДБЕРГА ПОСТОЯННАЯ — (R), фундаментальная физическая константа, входящая в выражения для уровней энергии и частот излучения атомов (см. СПЕКТРАЛЬНЫЕ СЕРИИ); введена швед. физиком Й. Р. Ридбергом (1890). Если принять, что масса ядра атома бесконечно велика по… … Физическая энциклопедия ЭЛЕКТРОЛИТЫ — вещества, обладающие ионной проводимостью; их называют проводниками второго рода прохождение тока через них сопровождается переносом вещества. К электролитам относятся расплавы солей, оксидов или гидроксидов, а также (что встречается значительно… … Энциклопедия Кольера НУКЛОН — общее название протона и нейтрона частиц, из которых состоят ядра атомов. На нуклоны приходится основная часть массы атома. Несмотря на различие в некоторых свойствах и поведении, нейтроны и протоны, по мнению физиков, достаточно сходны, чтобы… … Энциклопедия Кольера СТЕФАНА — БОЛЬЦМАНА ПОСТОЯННАЯ — фундаментальная физическая константа s, входящая в закон, определяющий полную (по всем длинам волн) испускательную способность абсолютно чёрного тела (см. СТЕФАНА БОЛЬЦМАНА ЗАКОН ИЗЛУЧЕНИЯ): s=5,67032(71) •10 8 Вт/(м2•К4) (на 1982). Физический… … Физическая энциклопедия C (значения) — C: Содержание 1 Лингвистика 2 Компьютеры 3 Химия и биология 4 Физика 5 Ис … Википедия C — По техническим причинам C# перенаправляется сюда. О C# можно прочитать здесь: C Sharp. Содержание 1 Лингвистика 2 Компьютеры 3 Физика … Википедия С — C: Содержание 1 Лингвистика 2 Компьютеры 3 Химия и биология 4 Физика 5 Ис … Википедия С (буква) — C: Содержание 1 Лингвистика 2 Компьютеры 3 Химия и биология 4 Физика 5 Ис … Википедия Мировые константы «пи» и «e» в основных законах физики и физиологииДоктор геолого-минералогических наук, кандидат физико-математических наук Б. ГОРОБЕЦ. (напоминаем, что факториал n! =1 x 2 x 3 x … x n); (последним дан ряд Ньютона, есть и другие ряды). Все это так, но, как известно, числа Число Сначала сформулируем первый основной тезис, а затем поясним его смысл и следствия. 1. Число Отсюда вытекают общеизвестные следствия, которые изучают в средней школе. Разберем еще одну нетривиальную ситуацию, встречающуюся в теории вероятностей. Она касается важной формулы вероятности появления случайной ошибки (или нормального закона распределения вероятностей), в которую входит число «Замешано» ли число Попробуем разобраться в явлениях, причины которых далеко не ясны, но которые тоже, возможно, не обошлись без числа В основе указанных явлений, возможно, лежит так называемый закон распределения максимумов случайных рядов, или «закон троек», сформулированный еще в 1927 году Е. Е. Слуцким. Число е и однородность времени и пространства Ясно, что незатухающая волна демонстрирует соблюдение закона сохранения энергии для электромагнитной волны в вакууме. Такая ситуация имеет место при «упругом» взаимодействии волны со средой без потерь ее энергии. Формально это можно выразить так: если перенести начало отсчета по оси времени, энергия волны сохранится, так как у гармонической волны останутся те же амплитуда и частота, то есть энергетические единицы, а изменится лишь ее фаза, часть периода, отстоящая от нового начала отсчета. Но фаза на энергию не влияет именно по причине однородности времени при смещении начала отсчета. Итак, параллельный перенос системы координат (он называется трансляцией) законен в силу однородности времени t. Теперь, наверно, в принципе понятно, почему однородность по времени приводит к закону сохранения энергии. Далее, представим себе волну не во времени, а в пространстве. Наглядным примером ее может служить стоячая волна (колебания струны, неподвижной в нескольких точках-узлах) или прибрежная песчаная рябь. Математически эта волна вдоль оси О х запишется как e iх =cos х + isin х. Ясно, что и в этом случае трансляция вдоль х не изменит ни косинусоиды, ни синусоиды, если пространство однородно вдоль этой оси. Опять-таки изменится лишь их фаза. Из теоретической физики известно, что однородность пространства приводит к закону сохранения количества движения (импульса), то есть массы, умноженной на скорость. Пусть теперь пространство однородно по времени (и закон сохранения энергии выполняется), но неоднородно по координате. Тогда в различных точках неоднородного пространства оказалась бы неодинаковой и скорость, так как на единицу однородного времени приходились бы различные значения длины отрезков, пробегаемых за секунду частицей с данной массой (или волной с данным импульсом). Итак, можно сформулировать второй основной тезис: И все-таки, почему именно число е, а не какое-то другое вошло в формулу Эйлера и оказалось в основании волновой функции? Оставаясь в рамках школьных курсов математики и физики, ответить на этот вопрос непросто. Эту проблему автор обсуждал с теоретиком, доктором физико-математических наук В. Д. Эфросом, и мы попытались пояснить ситуацию следующим образом. А теперь запишем решение дифференциального уравнения с постоянными коэффициентами, описывающее распространение гармонической волны в среде с учетом неупругого взаимодействия с ней, приводящего к рассеянию энергии или же к приобретению энергии от внешних источников: f(t) = e (α+ib)t = e αt (cos βt + isin βt). Сформулированный принцип математически выглядит так: ∆I Этому закону подчиняются зрение, слух, обоняние, осязание, вкус, эмоции, память (естествен но, пока физиологические процессы не переходят скачком в патологические, когда рецепторы подверглись видоизменению или разрушению). Согласно закону: 1) малому приросту сигнала раздражения в любом его интервале отвечает линейный прирост (с плюсом или минусом) силы ощущения; 2) в области слабых сигналов раздражения прирост силы ощущения гораздо круче, чем в области сильных сигналов. Возьмем для примера чай: стакан чая с двумя кусками сахара воспринимается раза в два более сладким, чем чай с одним куском сахара; но чай с 20 кусками сахара едва ли покажется заметно слаще, чем с 10 кусками. Динамический диапазон биологических рецепторов колоссален: принимаемые глазом сигналы могут различаться по силе в Следствие 2. Наличие только мнимой части функции при α = 0, β Это следствие возвращает нас к уже рассмотренной выше модели. Положение о связи законов сохранения с однородностью времени и пространства, бесспорно, правильно для евклидова пространства в классической физике и для псевдоевклидова пространства Минковского в Общей теории относительности (ОТО, где четвертой координатой служит время). Но в рамках ОТО возникает естественный вопрос: а как обстоит дело в областях огромных гравитационных полей, вблизи сингулярностей, в частности, у черных дыр? Мнения физиков здесь расходятся: большинство считают, что указанные фундаментальные положения сохраняются и в этих экстремальных условиях. Однако есть и иные точки зрения авторитетных исследователей. И те и другие работают над созданием новой теории квантовой гравитации. Фундаментальные константы нашего мира, о природе которых мы говорили, известны не только физикам, но и лирикам. Так, иррациональное число
|