Что значит коэффициент гармоник
Коэффициент гармоник
Коэффицие́нт нелине́йных искаже́ний (КНИ) — величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы спектральных компонентов выходного сигнала, отсутствующих в спектре входного сигнала, к среднеквадратичной сумме спектральных компонентов входного сигнала, иногда используется нестандартизованный синоним — клирфактор (заимств. с нем.). КНИ — безразмерная величина, выражается обычно в процентах. Кроме КНИ уровень нелинейных искажений можно выразить с помощью коэффициента гармоник.
Содержание
Измерения
Литература
Ссылки
См. также
Полезное
Смотреть что такое «Коэффициент гармоник» в других словарях:
коэффициент гармоник — Ндп. коэффициент нелинейных искажений клирфактор Коэффициент, характеризующий отличие формы данного периодического сигнала от гармонической, равный отношению среднеквадратического напряжения суммы всех гармоник сигнала, кроме первой, к… … Справочник технического переводчика
коэффициент гармоник — 3.1.3 коэффициент гармоник: Величина, определяемая отношением среднего квадратического напряжения суммы высших гармонических составляющих сигнала модуляции к среднему квадратическому напряжению основной (первой) гармоники этого сигнала. Источник … Словарь-справочник терминов нормативно-технической документации
Коэффициент гармоник — 1. Коэффициент, характеризующий отличие периодического сигнала от гармонической формы, равный отношению среднего квадратического значения напряжения суммы всех гармоник сигнала, кроме первой, к среднему квадратическому значению напряжения первой… … Телекоммуникационный словарь
коэффициент гармоник интегральной микросхемы — коэффициент гармоник Отношение среднеквадратического напряжения суммы всех, кроме первой, гармоник сигнала интегральной микросхемы к среднеквадратическому напряжению суммы всех гармоник. Обозначение Kг Kh [ГОСТ 19480 89] Тематики микросхемы… … Справочник технического переводчика
коэффициент гармоник микрофона телефонного аппарата — Ндп. суммарный коэффициент гармонических искажений микрофона Величина, определяемая отношением суммы эффективных напряжений всех гармоник, кроме первой, к эффективному напряжению первой гармоники электрического сигнала, действующих на зажимах… … Справочник технического переводчика
коэффициент гармоник телефона — Ндп. суммарный коэффициент гармонических искажений телефона Величина, определяемая отношением суммы эффективных напряжений всех гармоник, кроме первой, к эффективному напряжению первой гармоники электрического сигнала, выраженная в процентах,… … Справочник технического переводчика
коэффициент гармоник движения вибростола — 3.14 коэффициент гармоник движения вибростола: Величина, численно характеризующая отклонение от синусоиды закона колебаний вибростола. Источник: МИ 1929 2007: Государственная система обеспечения единства изм … Словарь-справочник терминов нормативно-технической документации
Коэффициент гармоник микрофона телефонного аппарата — 1. Величина, определяемая отношением суммы эффективных напряжений всех гармоник, кроме первой, к эффективному напряжению первой гармоники электрического сигнала, действующих на зажимах микрофона телефонного аппарата, оценивающая нелинейность… … Телекоммуникационный словарь
Что такое коэффициент нелинейных искажений в звуковой аппаратуре? На что он влияет?
Коэффициент нелинейных искажений – это количественная характеристика, показывающая соотношение среднеквадратических амплитуд гармоник, начиная со второй, прошедшего через звуковой тракт идеального гармонического сигнала к среднеквадратическому выходному значению амплитуды этого сигнала вместе с гармониками. Гармоники – это частоты, которые кратны частоте первой гармоники. То есть, частота второй гармоники равна частоте перовой, умноженной на два, третей – умноженной на три и т.д. Чем КНИ меньше, тем лучше. Заметить на слух КНИ усилительного тракта возможно при плавном увеличении до КНИ 0,1-2 % (без учета КНИ акустической системы). Заметность искажений на слух также зависит от качественного состава этих новых гармоник. Например, соотношения величин четных и нечетных гармоник. Одинаковое значения КНИ могут иметь устройства с разным спектральным составом гармоник на выходе, из-за чего могут быть случаи большей заметности малых значений КНИ, чем больших. То есть бывает, когда 1 % лучше, чем 0,1 %. Лаповость звука – это чисто субъективный критерий. Эпитет, не более. Современные усилительные устройства и другие электрические компоненты звуковоспроизводящего тракта имеют КНИ меньше 0,1 %.
Самые большие искажения в звуковом тракте имеют акустические системы, особенно на низких частотах. Обычные значения около 1 % на средних и высоких частотах, а на низких (ниже 250 Гц) эти значения могут достигать десятков и более процентов, из-за этого качество звучания звукоусилительного комплекса в основном зависит от качества акустической системы.
При увеличении громкости искажения нелинейно растут.
Коэффициент мощности и гармоники в электросети
Контроллер компенсаторной установки для увеличения cos φ
В прошлой статье я рассказал при исследование качества электроэнергии при помощи анализатора HIOKI. Там я обещал продолжить рассказ и поделиться своими знаниями по таким понятиям, как коэффициент мощности (известный в народе как cos φ) и гармоники питающего напряжения.
Кроме того, расскажу, что такое PF, DPF, и докажу, что косинус и синус – две большие разницы! 🙂
Для примера разберём, как обстоят дела с косинусом и гармониками на предприятии, которое мы обследовали совместно с “ИК Энергопартнер”.
Косинус угла в электротехнике
Кто хочет, почитайте про cos φ в Википедии, а я расскажу своими словами.
Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.
На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:
Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:
Формула коэффициента мощности через активную и реактивную мощности
На самом деле, всё не так просто, подробности ниже.
Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:
В видео подробно и доступно изложена вся теория по теме.
Размерности. Что в чём измеряется
Активная мощность Р ⇒ Вт (то, что измеряет домашний счетчик),
Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),
Полная мощность S ⇒ ВА (Вольт · Ампер).
Кстати, в стабилизаторах и генераторах мощность указана в ВА. Так больше. Маркетологи знают лучше.
Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в Вт. Так меньше.
Минусы и плюсы наличия реактивной составляющей
При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.
Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.
В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.
Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.
Чисто реактивная нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.
Реактивная составляющая мощности питания является негативным фактором, поскольку:
По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.
Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…
Реактивная мощность – это часть мощности источника питания, эта мощность была накоплена в магнитном поле, а затем возвращена обратно источнику.
Как компенсируют реактивную составляющую мощности?
Для понижения (компенсации) индуктивного характера реактивной составляющей используют введение емкостной составляющей в нагрузку, которая имеет положительный сдвиг фаз напряжения и тока (ток опережает напряжение). Реализуется это путем подключения параллельно нагрузке конденсаторов необходимой емкости. В результате происходит компенсация, и нагрузка со стороны питающей сети становится активной, с малой долей реактивной составляющей.
Компенсаторная установка на контакторах
Важно, чтобы не происходило перекомпенсации. То есть, даже после компенсации косинус не должен быть выше 0,98 – 0,99, и характер мощности всё равно должен оставаться индуктивным. Ведь компенсация имеет ступенчатый характер (контакторами переключаются трехфазные конденсаторы).
Конденсатор компенсатора реактивной мощности
Однако, для конечного потребителя компенсация реактивной мощности не имеет особого смысла. Польза в её компенсации есть только там, где имеются длинные сети передачи, которые “забиваются” реактивной мощностью, что в итоге снижает их пропускную способность.
Поэтому компенсация реактивной мощности относится к вопросу энергосбережения – она позволяет экономить расход топлива на электростанциях, и выработку бесполезной реактивной энергии, которая в конечном счете преобразуется в тепловую энергию и выбрасывается в атмосферу.
На предприятиях учитывается и активная, и реактивная потребляемые мощности, и при составлении договора оговаривается минимальное значение коэффициента мощности, которое нужно обеспечить. Если косинус упал – включается повышающий коэффициент при оплате.
Отрицательный косинус
Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!
В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ Коэффициент реактивной мощности Тангенс φ
Часто более удобным является коэффициент реактивной мощности tg φ, который показывает отношение реактивной мощности к активной. Понятно, что при tg φ = 0 достигается идеал cos φ = 1.
Гармоники питающего напряжения
Кроме образования реактивной мощности, на промышленных предприятиях существует такой негативный фактор, как выработка гармоник напряжения питающей сети.
Гармоники – это та часть спектра питающего напряжения, которая отличается частоты промышленной сети 50 Гц. Как правило, гармоники образуются на частотах, кратных основной. Таким образом, 1-я (основная) гармоника имеет частоту 50 Гц, 2-я – 100, 3-я – 150, и так далее.
Для измерения гармоник напряжения существует формула:
Гармоники напряжения – формула расчета
Однако, эта формула не удобна на практике, поскольку не дает представления об уровне каждой гармонике в отдельности. Поэтому для практических целей используют формулу:
Коэффициент каждой гармоники напряжения
Таким образом, при измерении мы получим детальное распределение гармоник в спектре питающего напряжения, что позволит провести детальный анализ полученной информации и сделать правильные выводы.
Есть ещё гармоники тока, но там всё гораздо хуже…
На основе увеличения гармоник тока построен прибор для обмана счетчика. Кстати, там Автор прибора довольно убедительно доказал пользу своего изобретения)
PF или DPF?
Здесь надо сделать оговорку. Всё, что я говорил выше про косинус – относится к линейной нагрузке. Это означает, что напряжение и ток, хоть и гуляют по фазе, имеют форму синуса.
Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.
Вот как обстоят иногда дела:
Формы напряжения и тока при нелинейной нагрузке
Гармоники напряжения, тока и мощности
Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.
Поэтому надо понимать, что та теория, что я расписал выше – для идеальных условий (без нелинейных искажений), которых в реале не бывает. Либо, если пренебречь высшими гармониками тока, и взять только первую (50 Гц), что обычно и происходит в жизни.
И если подходить к терминологии строго, то cos φ и PF (Power Factor) – это не одно и то же. PF учитывает также все гармоники напряжения и тока. И с учетом нелинейности реальный PF будет меньше.
Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.
Коэффициенты мощности полный PF и смещённый DPF (для чистого синуса)
В итоге можно сказать, что справедливо выражение:
cos φ = DPF ≤ PF
Измерения на предприятии
При индуктивном характере нагрузки, который наблюдается на практике в большинстве случаев, ток отстает от напряжения (отрицательный сдвиг фаз), что видно на экране прибора HIOKI 3197 (табличные данные) при проведении измерений:
В данном случае видно, что ток отстает от напряжения примерно на 26°.
Из вышеприведенного измерения видно, что при угле отставания тока (сдвиге фаз) 26° cos φ = 0,898. Данный расчет подтверждается измеренным значением.
Измерение проводилось в течение около двух часов, за это время оборудование (нагрузка) циклически включалось и выключалось. За всё время измерения коэффициент нелинейных искажений напряжения THD не превысил 1,3% по каждой из фаз.
Результаты измерений приведены ниже:
Измеренные гармоники напряжения, тока и мощности
Режим мультиметра – на экране разные параметры
Для проверки проведём расчет по выше приведенной формуле для самых интенсивных гармоник (5, 7, 11):
Расчет гармоник напряжения
Как видно, остальные гармоники имеют пренебрежимо малый вес.
Временной график THD:
График THD (коэфта нелинейных искажений)
Временной график cosϕ:
Анализ полученных результатов обследования
На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности. Но перед её покупкой было решено обратить внимание на гармоники.
Были реальные случаи, когда из-за высокого уровня гармоник напряжения взрывались и загорались конденсаторные установки
В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.
Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.
Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).
Рекомендации по уменьшению гармонических составляющих питающего напряжения
Для уменьшения гармоник напряжение рекомендуется сделать следующее:
Для выполнения приведенных рекомендаций желательно обратиться к инструкциям производителей и специалистам.
Креме того, рекомендуется проверить состояние питающих проводов, кабелей, клемм, переходных сопротивлений силовых соединений фазных и нейтральных проводов, качество соединений заземления корпусов электроприборов и т.д. В результате обследования выявлены преобразователи с отключенным заземлением.
Рекомендации по выбору компенсирующих устройств реактивной мощности
Мощность компенсирующего устройства выбирается исходя из мощности нагрузки, а также существующего и желаемого коэффициентов мощности.
Для расчета параметров можно воспользоваться следующей методикой.
Определить из таблицы коэффициент К, который считается по формулам на основе углов фаз некомпенсированного и компенсированного питания:
Таблица для определения коэффициента выбора конденсаторов
Например, текущий cosϕ = 0,7, желаемый cosϕ = 0,96. Тогда К = 0,73.
Как я уже говорил, не рекомендуется компенсировать реактивную мощность полностью (до cosϕ = 1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов)
Этот тот самый случай, когда к идеалу стремиться не нужно)
Далее, необходимую емкостную мощность конденсаторных батарей определяют по формуле: Qc = КP (ВАр).
Например, в нашем случае, при мощности 1000 кВт полная мощность конденсаторной батареи будет 730 кВАр.
При выборе конденсаторной батареи она должна обладать следующими параметрами (не хуже):
(рекомендации даны поставщиком КУ)
На этом всё. Если есть желание что-то добавить, или поправить меня – как всегда, рад вашим комментариям!
Что значит коэффициент гармоник
При выборе усилителя мощности покупатели часто допускают похожую ошибку, полагая, что указанные в паспорте технические характеристики позволят им понять, какого звука стоит ожидать от приобретаемого усилителя. Дело в том, что основные параметры не отражают «характер» усилителя, хотя бы потому, что они измерены в рафинированных лабораторных
условиях и вообще могут быть недостоверными. Равные по техническим характеристикам усилители могут звучать по-разному. А бывает, что усилитель с худшими характеристиками звучит гораздо лучше. Можно сделать предположение, что эти явления в основном связаны с субъективным восприятием звукового поля разными людьми. Однако правильнее предположить, что если при одинаковых «цифрах» имеются различия, это означает, что что-то измерить попросту забыли. В итоге получается, что оценивать усилитель по основным характеристикам – все равно, что оценивать человека лишь по его физическим параметрам.
К основным характеристикам усилителя мощности звуковой частоты относятся:
Дополнительно могут указываться:
Разумеется, в паспорте присутствуют и немаловажные эксплуатационные характеристики:
Выходная мощность
Данный параметр имеет множество разновидностей и методик измерения, и некоторые производители используют это в рекламных целях, намеренно не указывая условия, при которых выходная мощность была измерена. Именно поэтому покупатель недоумевает, сравнивая в магазине крохотный музыкальный центр с наклейкой 2х1000W и увесистый усилитель мощности внушительных размеров с характеристикой 30 Вт на канал.
Для отечественных усилителей в основном использовались такие характеристики, как номинальная и максимальная выходная мощность:
Номинальная мощность – выходная мощность усилителя при заданном коэффициенте нелинейных искажений. Такая методика измерения предоставляет определенную свободу выбора изготовителю, который волен указать значение номинальной мощности, соответствующее наиболее выгодному значению нелинейных искажений. А ведь широко известно, что в усилителях класса АВ при малых уровнях выходной мощности, например 1Вт, уровень искажений может достигать огромных значений. Существенно уменьшаться он может только при увеличении выходной мощности до номинальной. В паспортах отечественными производителями указывались рекордные номинальные характеристики, с крайне низким уровнем искажений при высокой номинальной мощности усилителя. Тогда как наивысшая статистическая плотность музыкального сигнала лежит в диапазоне амплитуд 5-15% от максимального значения. Вероятно, поэтому советские усилители заметно проигрывали на слух западным, у которых оптимум искажений мог быть на средних уровнях громкости. В СССР же шла гонка за минимумом гармонических и иногда интермодуляционных искажений любой ценой на одном, номинальном (почти максимальном) уровне мощности.
Максимальная мощность – выходная мощность усилителя при ненормированном коэффициенте нелинейных искажений. Данный параметр является еще менее информативным, чем номинальная мощность и характеризует только запас прочности усилителя – способность работать длительное время при перегрузках по входу.
Среди зарубежных чаще всего используются характеристики RMS, PMPO и DIN POWER:
Данный параметр наиболее адекватно характеризует выходную мощность усилителя. Иногда он встречается в паспорте усилителя под обозначением IEJA. Его разновидность IHF определяет выходную мощность при 0,1% КНИ.
Строго говоря, есть и многие другие виды измерений, например, DIN MUSIC POWER, описывающая мощность не синусоидального, а музыкального сигнала. В последнее время из-за отсутствия единого стандарта производители стараются указывать выходную мощность вкупе с другими характеристиками, при которых она измерена. Например,
650 W (8 Ω, 20 – 20000 Hz, 0,1% THD)
750 W (8 Ω, 1000 Hz, 0,1% THD)
Учитывая тот факт, что музыкальный сигнал имеет большой частотный и динамический диапазон, правильнее проводить измерения с помощью музыкальных сигналов. И указывать не номинальную мощность, а график зависимости коэффициента нелинейных искажений от выходной мощности.
Можно добавить, что каждый усилитель рассчитан на определенное сопротивление нагрузки. Тем не менее, оно может варьироваться, и в технических паспортах указываются основные параметры для каждого допустимого сопротивления.
Частотный диапазон
Практически любой современный усилитель мощности звуковой частоты способен усиливать сигналы с частотой, выходящей далеко за рамки слышимого диапазона. Поэтому указывать в чистом виде частотный диапазон, например, от 5 Гц до 100 кГц – совершенно бессмысленно.
Назначение усилителя мощности звуковой частоты (если он не имеет специального назначения, как, например, гитарный усилитель) – формирование на выходе электрического сигнала, по форме в точности повторяющего входной сигнал, но имеющего большую мощность. Так как музыкальный сигнал, даже если он формируется одним музыкальным инструментом, далек от гармонического, то минимизации коэффициента нелинейных искажений в усилителях для качественного воспроизведения звука, недостаточно. Необходимо, чтобы в диапазоне слышимых частот от 16 до 20000 Гц амплитудно-частотная и фазо-частотная характеристики усилителя были абсолютно горизонтальными. На практике, этого добиться не удается, да и акустическая система имеет АЧХ с более существенными провалами и подъемами.
Частотный диапазон указывается при нормированной неравномерности амплитудно-частотной характеристике, выраженной в относительных величинах. Самые удачные модели усилителей имеют неравномерность АЧХ +/-0,1 дБ в диапазоне от 20 до 20000 Гц. Если при измерении принять стандартную неравномерность амплитудно-частотной характеристики 3 дБ, то частотный диапазон составит 10 – 100000 Гц.
Коэффициент гармонических искажений
Искажения сигнала вызваны нелинейностью входных и выходных характеристик усилительных элементов и присущи любым усилителям мощности. Если подать на вход усилителя синусоидальный сигнал, то в спектре выходного сигнала, кроме основной гармоники, обнаружатся дополнительные, частота которых кратна частоте полезного сигнала. Такие гармоники являются паразитными и их мощность, как правило, невелика. Однако их суммирование с полезным сигналом приводит к существенному искажению его формы, и как следствие, искаженному звучанию.
Коэффициент гармонических искажений (Total Harmonic Distortion) показывает слышимую составляющую гармонических искажений в выходном сигнале и определяется как отношение суммарной мощности паразитных сигналов к мощности полезного гармонического сигнала. Как правило, измерения проводятся на частоте 1 кГц.
При замерах обращается внимание на спектральное распределение и характер искажений. Слышимость паразитных гармоник зависит от относительного уровня по отношению к тестовому сигналу, от порядка гармоники, от типа (четная/нечетная), а так же от того, на какой громкости прослушивается тестовый фрагмент.
Типовое значение THD для Hi-Fi усилителя составляет 0,1%. Однако, уже не раз отмечалось: усилитель с THD 0,001% может оказаться хуже по звуку, чем другой, с THD 0,1%. Дело в том, что при таких малых значениях этого параметра, искажения сложно проследить в форме выходного сигнала или ощутить на слух. Поэтому, разницы между 0,1% и 0,001% слышно не будет.
Отношение сигнал / шум
Отношение сигнал / шум определяется как отношение мощности полезного гармонического сигнала к мощности собственных шумов усилителя мощности. Данный параметр для современной звукоусилительной техники превышает значение 100дБ. Это означает, что мощность собственных шумов усилителя в 10 миллиардов раз меньше мощности полезного музыкального сигнала. Можно с уверенностью сказать, что в настоящее время этот параметр – лишь предмет гордости производителя. Он не имеет для пользователя никакого значения. Кто сможет ощутить различия между ОСШ 95 и 100 дБ?!
Демпинг-фактор (коэффициент демпфирования)
Коэффициент демпфирования определяется как отношение номинального сопротивления нагрузки к выходному сопротивлению усилителя и характеризует способность подавлять паразитные напряжения, которые возникают в динамических головках при движении катушки в магнитном поле. Если демпфирование недостаточно, то диффузор будет совершать свои собственные «телодвижения», никак не связанные с музыкой, но зависящие от упругости подвески. Необходимо отметить, что в подавляющем большинстве моделей акустических систем эта проблема успешно решается. Можно считать достаточным, если значение коэффициента превышает 100.
Демпфирование зависит не только от выходного сопротивления усилителя и сопротивления акустической системы. Необходимо учитывать, что способность поглощать возвращаемую громкоговорителем энергию зависит от индуктивностей фильтров и от сопротивления разъемов и кабеля, которым подключены акустические системы.
Минимальным значением коэффициента демпфирования можно считать 20, хорошим — 150-400. Современные усилители высокого класса имеют значение этого параметра 150 и выше.
Коэффициент интермодуляционных искажений
Нелинейность характеристик усилительных элементов приводит к возникновению нелинейных искажений. Большинство производителей усилителей измеряют и указывают в паспорте только коэффициент гармонических искажений (THD). Измерения проводятся с помощью гармонического сигнала. При подобном тестировании на выходе усилительного тракта появляются высшие гармоники, частота которых кратна частоте основного тона. Однако, как уже упоминалось, музыкальный сигнал далек от гармонического. Более того, любой музыкальный инструмент воспроизводит не только основной тон, но «обертона», которые являются ярким примером гармонических искажений. Известно, что наличие в музыкальном сигнале «обертонов» вовсе не портят, а обогащают звук. Поэтому очень важно указывать не коэффициент гармонических искажений, а весь спектр выходного сигнала, из которого можно определить тип (четные или нечетные) паразитных гармоник и их уровень относительно полезного сигнала. С точки зрения психоакустики, например, наличие в выходном сигнале ощутимых по уровню четных гармоник воспринимается на слух лучше, чем наличие малых нечетных.
Наибольший вред музыкальному сигналу приносят интермодуляционные искажения (Inter Modulation Distortion), которые возникают при подаче на вход нелинейной системы мультитонового сигнала. При этом на выходе появляются паразитные сигналы с частотами, являющимися суммой или разностью частот входных сигналов, а также суммой или разностью частот сигналов, вызванных гармоническими искажениями и через обратную связь возвращенных на вход усилителя. Подобные искажения не соотносятся с основными тонами музыкального сигнала и привносят в него фоновый шум.
Необходимо отметить, что единых стандартов по измерению интермодуляционных искажений не существует, а результаты измерений существенно зависят от уровней входных сигналов и их частот. Чаще всего, IMD не указывается просто потому, что неизвестно как его измерять. Тем не менее, данный параметр является наиболее перспективным для оценки нелинейных свойств усилителя мощности.
Скорость нарастания выходного сигнала
Данный параметр характеризует уровень динамических искажений, которые возникают вследствие ограничения скорости нарастания выходного сигнала в усилителе, охваченного глубокой обратной связью. Введение ООС, как правило, приводит к нестабильности усилителя на высоких частотах. Это вынуждает применять частотную коррекцию. В свою очередь недостаточно высокая частота среза образуемого фильтра низких частот и вызывает динамические искажения.
В музыкальном сигнале всегда присутствуют резкие всплески по уровню, например, при работе ударных инструментов. Недостаточная скорость нарастания сигнала приводит к ухудшению звучания, которое выражается в потере энергичности.
Перекрестные помехи
Данный параметр определяет степень проникновения сигнала из одного канала в другой. Высокий уровень перекрестных помех приводит к незначительному ухудшению четкости восприятия стереобазы. Однако чуткий слушатель сразу ощутит, что звук не дает представления о взаимном расположении и размерах музыкальных инструментов, т.е. отсутствие или нечеткость звуковой 3D картинки.
Не в последнюю очередь при выборе усилителя обращается внимание на его внешний вид и удобство в эксплуатации. В силу субъективности эти показатели не поддаются никакому измерению и выражаются в виде звездочек в многочисленных рейтингах и наклеек типа «Gold Design» на корпусе устройства. Вне сомнений, это также является характеристикой усилителя мощности.