Пропан C3H8 – это предельный углеводород, содержащий три атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.
Гомологический ряд пропана
Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.
Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.
Название алкана
Формула алкана
Метан
CH4
Этан
C2H6
Пропан
C3H8
Бутан
C4H10
Пентан
C5H12
Гексан
C6H14
Гептан
C7H16
Октан
C8H18
Нонан
C9H20
Декан
C10H22
Общая формула гомологического ряда алканов CnH2n+2.
Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.
Строение пропана
В молекулах алканов встречаются химические связи C–H и С–С.
Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :
Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:
Это соответствует тетраэдрическому строению.
Например, в молекуле пропана C3H8 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет образует угол, т.е. геометрия молекулы — уголковая или V-образная.
Изомерия пропана
Для пропана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.
Химические свойства пропана
Пропан – предельный углеводород, поэтому он не может вступать в реакции присоединения.
Для пропана характерны реакции:
Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.
Поэтому для пропана характерны радикальные реакции.
Пропан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.
1. Реакции замещения
В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.
1.1. Галогенирование
Пропан реагирует с хлором и бромом на свету или при нагревании.
При хлорировании пропана образуется смесь хлорпроизводных.
Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:
Бромирование протекает более медленно и избирательно.
Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.
С третичный–Н > С вторичный–Н > С первичный–Н
Например, при бромировании пропана преимущественно образуется 2-бромпропан:
Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.
1.2. Нитрование пропана
Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.
Например. При нитровании пропана образуется преимущественно 2-нитропропан:
2.Дегидрирование пропана
Дегидрирование – это реакция отщепления атомов водорода.
В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.
При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.
Например, п ри дегидрировании пропана образуются пропен (пропилен) или пропин:
3. Окисление пропана
Пропан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).
3.1. Полное окисление – горение
Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.
Уравнение сгорания алканов в общем виде:
При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.
Получение пропана
1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.
При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.
Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.
Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.
R–COONa + NaOH→R–H + Na2CO3
Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.
При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:
CH3–CH2 – CH2 –COONa + NaOH→CH3–CH2– CH3 + Na2CO3
3. Гидрирование алкенов и алкинов
Пропан можно получить из пропилена или припина:
При гидрировании пропена образуется пропан:
При полном гидрировании пропина также образуется пропан:
4. Синтез Фишера-Тропша
Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:
Это промышленный процесс получения алканов.
Из угарного газа и водорода можно получить пропан:
Горелки и отравление угарным газом в палатках По материалам зарубежных источников
Илья Кижватов, Олег Один poga at westra.ru Версия 0.2, 2012-11-11 Версия для печати (PDF, 704 KB) Вместо введения
Перевод заключения из одной англоязычной статьи 2004 года [1]:
Описания произошедших случаев подтверждают, что отравление угарным газом в палатках и снежных пещерах — реальная проблема, которая обойдена вниманием. Эта проблема особо серьёзна на высоте из-за множества факторов, увеличивающих риск отравления CO. Несмотря на множество ходящих в альпинистских кругах баек о восходителях, почивших от отравления CO на гималайских пиках, не похоже, что эта опасность широко известна.
Ну а чистапаруски — некоторая практика показывает, что если пользоваться горелкой в палатке без определённой предосторожности, особенно в горных условиях, то можно отравиться угарным газом, что очень негативно сказывается на головном мозге, вызывая ряд весьма неприятных острых и хронических неврологических проявлений типа внезапной смерти. Пережившие острое отравление обычно страдают от различных пагубных последствий, которые могут преследовать несчастных в течение месяцев, лет, или даже пожизненно.
Цель этого обзора — заполнить пробел, наблюдаемый по теме в русскоязычном Интернете. Тема несколько раз всплывала в горных и туристических форумах при обсуждении ЧП (например 6), но какого-либо систематического материала нет1. При этом на английском языке информации об опасности отравления CO от горелок обнаружилось достаточно.
Обзор написан в практической последовательности: сначала краткие факты, без которых совсем никак, потом — список действий, снижающих риск отравления, и затем — чуть подробнее про сравнение горелок на предмет выделения угарного газа. Детали для «ботанов» (the devil is in the detail!) — в приложениях и в источниках. Факты
Или краткий курс молодого бойца, чтобы знать врага. Сначала общие:
1. Угарный газ, он же мон(о)оксид углерода, он же CO, выделяется вместе c углекислым газом (CO2) при сгорании газа (пропана, бутана, …), бензина, дров и прочих органических топлив. В зависимости от условий горения количество выделяемого CO может быть разным.
2. Туристические горелки, как газовые, так и бензиновые — не исключение. Они выделяют как CO2, так и некоторое количество CO. Подробнее — см. ниже.
3. Как и CO2, угарный газ бесцветен и не имеет запаха и вкуса. Без специального датчика вы его не заметите. Внимание: далеко не все портативные датчики хорошо работают в типичных для высоты условиях низкого давления, низкой температуры и высокой влажности; смотрите на характеристики! (Тема в разработке.)
4. В отличие от CO2, угарный газ немного легче воздуха (сухого). Но поднимется к потолку палатки он не из-за этого; см. ниже.
5. В отличие от CO2, угарный газ очень прочно связывается с гемоглобином в крови, не позволяя гемоглобину переносить кислород, и долго выходит из крови. Подробно про патофизиологию — см. в приложении.
7. Высокая концентрация CO в крови может наступить не только при высокой концентрации CO в воздухе, но и при длительном нахождении в простанстве с невыской концентрацией CO в воздухе. Таком, как закрытая от непогоды палатка с работающей горелкой или другим прибором, сжигающим органическое топливо.
8. Симптомы начала отравления угарным газом — мягкая головная боль, тошнота, ощущение разбитости. Чем-то очень похоже на горняшку. Подробности в приложении.
9. Избыток углекислого газа, напротив, стимулирует дыхательную активность. Именно поэтому часто описываемые случаи «проснулся от того, что задыхаюсь, чиркнул зажигалкой — не горит, полез откапывать палатку» связаны с избытком углекислого газа, а не с отравлением угарным газом. В случае угарного газа рассказчик скорее всего не проснулся бы.
И специфические для горного туризма и альпинизма:
10. На высоте из-за пониженного давления отравление CO наступает при более низких его концентрациях в крови, чем на уровне моря. Подробности — в приложении.
11. На высоте симптомы отравления CO легко перепутать с горной болезнью. И потому проигнорировать.
12. При отсидке в палатке в непогоду симптомы отравления CO легко не заметить. В основном из-за отсутствия двигательной активности.
13. При отсидке в снегопад вентиляция палатки ухудшается. От этого, конечно, тепло и хорошо… Как уменьшить риск отравления угарным газом в палатке?
Вот список с рекомендациями, как надо обращаться с горелкой, чтобы не отравиться CO. Список взят из [2] и немного изменён с учётом более свежей информации из [3]. Курсивом даны примечания авторов этого обзора. Объяснение причин — частично в следующих секциях и в первоисточнике.
Сравнение горелок по выделению CO.
Австралийский турист (и обладатель Ph.D. по физике) Роджер Каффин написал целый цикл статей [3] про выделение угарного газа горелками. Как и обзор [2], это «мастрид» по теме для тех, кто читает по-английски. Здесь — практические выжимки.
Во-первых, Каффин провёл много экспериментов с горелками на предмет того, в каких случаях выделяется больше CO. Кратко в таблице выше уже было об этом сказано: а) не ставить посуду прямо в пламя и б) не допускать жёлтого пламени. Потому что:
· Посуда в огне охлаждает пламя (англ. термин flame quenching) и препятствует полному окислению углерода, оставляя много угарного газа.
· Жёлтое пламя, а также длинное пламя — свидетельство такого неполного окисления.
Во-вторых, Каффин сравнил множество горелок на предмет выделения CO. В результате он выявил несколько патологических случаев, и попробовал разобраться, в чём там дело. Чтобы на такой патологических случай не нарваться при покупке горелки (либо при пользовании таковой, если уже есть) — вот выдержка из итоговой таблицы с результатами тестов для газовых горелок на разных режимах работы.
Горелка Достигаемая концентрация CO в воздухе, в ppm низкая мощность средняя мощность высокая мощность
Brunton Flex 160 158 142
Jetboil GCS, с ёмкостью 5 6 90
MSR PocketRocket 240 220 140
Primus Eta Power EF, с ёмкостью 3 8 13
Primus Micron Ti 2.5 40 88 90
В таблицу включены не все горелки из первоисточника. Включенные по-прежнему показывают, что а) горелки ведут себя очень по-разному и б) даже у одного производителя разные горелки показывают разные результаты. Условия эксперимента опускаем, оставляя здесь только сравнение. Кому нужны подробности — см. первоисточник.
Здесь приведём только данные из таблицы концентраций из статьи Каффина, без которых не очень понятно, что значат цифры в таблице выше. Таблица составлена на основе норм США и Великобритании (ВБ)2, которые рассчитаны для уровня моря. Ppm — это parts per million, частей на миллион, то есть 1 ppm — это 0.0001%.
Концентрация СO в воздухе, ppm Эффект, описание
0-1 Нормальный уровень
9 Макс. допустимое значение для кратковременной экспозиции в гостиной (США)
25 Часто встречается на главных дорогах
30 8-часовой предел, по нормам здоровья и безопасности (ВБ)
35 Предлагаемая макс. допустимая концентрация для непрерывной экспозиции в течение 8 часов (США)
100 Может наблюдаться на главных дорогах во время метеорологических инверсий (ВБ)
200 15-минутный предел по нормам здоровья и безопасности (ВБ)
200 Слабая головная боль, слабость, тошнота, сонливость после 2-3 часов; предел для кратковременной экспозиции (США)
300 Может привести к коллапсу (ВБ)
400 Фронтальная головная боль, более 3 часов — опасно для жизни
Подробно про то, как и при каком времени воздействия эти концентрации влияют на организм, и сколько примерно держатся в палатке, см. в приложении и в статьях [1] и [2].
Возвращаясь к результатам по горелкам: получается, что некоторые горелки в определённых режимах приводят к потенциально опасным концентрациям угарного газа в замкнутом объёме. Чтобы быть конкретным: представим, что вы отсиживаетесь в непогоду в палатке, плотно её закрыв, иногда работает некая горелка, которая создаёт концентрации CO в воздухе внутри палатки на уровне 50-100 ppm (таких моделей хватает, как видно из таблицы). При воздействии в несколько часов такая концентрация опасна.
Почему некоторые горелки выделяют больше CO на повышенной мощности? Каффин по результатам экспериментов делает вывод, что у них недостаточно велики воздухозаборные отверстия: на повышенной мощности необходимо больше воздуха, чтобы пламя было достаточно коротким и не охлаждалось посудой. Ещё нужно учитывать, что тесты проводились на уровне моря, а на высоте с понижением давления для горения без выделения большого количества CO необходим ещё больший приток кислорода.
Отдельно про MSR Reactor, который на низкой мощности приводит к запредельной концентрации CO. Каффин объясняет это (проведя отдельное исследование) тем, что на низкой мощности воздух из-за особенностей конструкции этой горелки практически перестаёт подсасываться во входое отверстие, и потому топливо сжигается в режиме исключительного кислородного голодания. Недостаток кислорода приводит к тому, что вторая стадия процесса горения (окисление CO в CO2) просто не может произойти, и потому в результате остаётся большое количество CO.
Итак, ещё раз основные результаты из [3]:
· основная причина повышенного выделения CO — раннее охлаждение пламени, в результате которого не происходит полного окисления углерода;
· основной источник раннего охлаждения пламени — слишком низко расположенная ёмкость для готовки (в одном из тестов увеличение клиренса всего на 5 мм сократило выделение CO в два раза);
· недостаток притока воздуха на некоторых режимах работы горелок, связанный с размером воздухозаборников; усугубляется с высотой.
Оставляя прочие детали: любая горелка в палатке требует адекватной вентиляции! Вместо заключения
Из той же статьи 2004 года [1]:
Мы надеемся не видеть более сообщений о случаях, когда молодые, тренированные люди умирают от причины, которую можно полностью предотвратить. Источники:
Сжиженный газ пропан-бутан обладает многими положительными качествами. Наряду с этим, у сжиженных газов малы значения нижней границы предела взрываемости, они значительно тяжелее воздуха и собираются в нижней части помещения, где может образоваться взрывоопасная смесь при очень малых утечках. Если вы пользуетесь пропан-бутаном, то должны помнить: газ может стать причиной отравления и взрыва большой разрушительной силы.
Отравление газом пропан-бутан
Сжиженный газ пропан-бутан, а также продукт его неполного сгорания окись углерода, токсичны, могут вызывать удушье или сильное отравление со смертельным исходом. При легких и средних отравлениях угарным газом появляются головная боль (главным образом в висках), головокружение, тошнота, рвота, резкая слабость в руках и ногах, сердцебиение, а при тяжелых – затемненное сознание, нередко возбужденное состояние с беспорядочными движениями или потеря сознания.
При появлении у окружающих признаков отравления газом вынесите их на свежий воздух и положите так, чтобы голова находилась выше ног. До приезда аварийной службы не вносите открытого огня, не включайте и не выключайте электроприборы.
Взрыв пропан-бутана
Наличие газа в помещении (в воздухе) в количестве от 1,8 до 9,5 процента является взрывоопасной концентрацией, способной при открытом огне или искре стать причиной взрыва большой разрушительной силы
Взрыв баллона пропан бутана происходит при соприкосновении газа с огнем либо при превышении показателей пожаровзрывоопасности. Пропан: С3Н8, горючий газ, температура вспышки 96 °С, температура самовоспламенения 470 °С, концентрационные пределы распространения пламени 2,3-9,4 % (об.). Бутан: C4H10, горючий газ, плотность по воздуху 2,0665, температура вспышки 69 °С, температура самовоспламенения 405 °С, концентрационные пределы распространения пламени 1,8-9,1 % (об.).
Взрыв пропан-бутана сопровождается высокотемпературным выбросом газов (пламени), при этом летят осколки и детали разорвавшихся баллонов, выделяется тепловое излучение. При взрыве пропан-бутана помимо основных факторов пожара (открытый огонь, повышенная температура окружающей среды, токсичные продукты горения и т. д.), как правило, проявляются вторичные факторы: волна сжатия, образующаяся при взрыве баллона и влекущая за собой разрушение зданий или отдельных их частей, разрушение (или повреждение) наружного и внутреннего водопроводов, пожарной техники, стационарных средств тушения, технологического оборудования, возникновение новых очагов пожаров и взрывов. При взрыве баллона пропан-бутана в очаге пожара возможно образование «огненного шара» диаметром 10 м.
ГБО пропан-бутан при пожаре
Особую опасность представляют газовые баллоны при пожаре. При пожаре на объектах, где хранятся или используются баллоны с пропан-бутаном, часто происходят взрывы ГБО под давлением. При тушении объектов с наличием газовых баллонов следует учитывать физико-химические свойства применяемого газа.
При попадании баллона пропан-бутана в очаг пожара происходит нагревание сосуда, что приводит к кипению жидкой фазы и повышению давления в нем. Пламя нагревает стенки сосуда и ослабляет их первоначальную прочность вследствие неравномерного прогрева поверхности, что, как правило, приводит к разрушению сосуда. При этом пары от мгновенного испарения жидкости зажигаются и образуется «огненный шар».
При пожаре сжиженный газ, выходящий из баллона, может гореть в паровой, жидкой и парожидкостной фазах, каждая из которых имеет свою температуру горения. Характер истечения газа из баллона можно определить по цвету и виду пламени: в паровой фазе газ горит светло-желтым пламенем; в жидкой фазе пламя ярко-оранжевое с выделением сажи; в парожидкостной фазе горение происходит с периодически меняющейся высотой пламени. Данные признаки видимого пламени являются косвенными характеристиками разгерметизации баллона с бытовым газом и чреваты взрывом.
Газ пропан-бутан, используемый в быту для получения тепловой энергии, из-за отсутствия контроля в ходе эксплуатации могут привести к удушью, отравлению, взрыву. Поэтому необходимо знать и неукоснительно соблюдать правила пользования газовыми приборами, колонками, печами и уход за ними. Чтобы газ остался только добрым помощником, помните, что категорически запрещается: пользоваться газовыми приборами при отсутствии тяги в вентканале; оставлять без присмотра включенные газовые приборы; допускать к пользованию газовыми приборами детей в возрасте менее 13 лет, а также лиц, не прошедших инструктаж; самовольно переносить и ремонтировать газобаллонные установки.