Трение качения в чем измеряется
Трение качения
Тре́ние каче́ния — сопротивление движению, возникающее при перекатывании тел друг по другу. Проявляется, например, между элементами подшипников качения, между шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике.
Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.
Содержание
Сила трения качения
Пусть на тело вращения, располагающееся на опоре, действуют
Если векторная сумма этих сил равна нулю
Эта зависимость подтверждается экспериментально. Для малой скорости качения сила трения качения не зависит от величины этой скорости. Когда скорость качения достигает значений, сопоставимых со значениями скорости деформации в материале опоры, трение качения резко возрастает и даже может превысить трение скольжения при аналогичных условиях.
Момент сил трения качения
Определим для подвижного цилиндра момент, тормозящий вращательное движение тела. Рассматривая данный момент относительно оси вращающегося колеса (например, колеса автомобиля), находим, что он равен произведению тормозного усилия на оси на радиус колеса. Относительно точки контакта движущегося тела с землей момент будет равен произведению внешней силы, уравновешивающей силу трения, на радиус колеса (рис. 2) :
.
С другой стороны, момент трения равен моменту прижимающей силы на плечо, длина которого равна коэффициенту трения качения f :
Коэффициент трения качения
Из выписанного выше уравнения следует, что коэффициент трения качения может быть определен как отношение момента трения качения к прижимной силе N :
Коэффициент трения качения имеет следующие физические интерпретации:
Ориентировочные значения коэффициента трения для различных пар качения
Катящееся тело | Подстилающая поверхность | Коэффициент трения в мм |
---|---|---|
мягкое дерево | мягкое дерево | 1,5 |
мягкое дерево | сталь | 0,8 |
твердое дерево | твердое дерево | 0,8 |
эбонит | бетон | 10—20 |
эбонит | сталь | 7,7 |
резина | бетон | 15—35 |
закалённая сталь | закалённая сталь | 0,01 |
полимер | сталь | 2 |
сталь | асфальт | 6 |
сталь | тротуарная плитка | 1,5 |
сталь | сталь | 0,5 |
железо | мягкое дерево | 5,6 |
железо | гранит | 2,1 |
железо | железо | 0,51 |
чугунное литьё | чугунное литьё | 0,8 |
Источники
Полезное
Смотреть что такое «Трение качения» в других словарях:
трение качения — Трение движения, при котором скорости соприкасающихся тел одинаковы по значению и направлению, по крайней мере в одной точке зоны контакта. [ГОСТ 27674 88] Тематики трение, изнашивание и смазка EN rolling friction … Справочник технического переводчика
трение качения — riedėjimo trintis statusas T sritis fizika atitikmenys: angl. rolling friction vok. Rollreibung, f; Wälzreibung, f rus. трение качения, n pranc. frottement de roulement, m … Fizikos terminų žodynas
трение качения — rolling friction Сопротивление движению, возникающее при качении одного деформируемого тела по другому. Шифр IFToMM: 3.5.45 Раздел: ДИНАМИКА МЕХАНИЗМОВ … Теория механизмов и машин
трение качения с проскальзыванием — Трение движения двух соприкасающихся тел при одновременном трении качения и скольжения в зоне контакта. [ГОСТ 27674 88] Тематики трение, изнашивание и смазка EN combined rolling and sliding friction … Справочник технического переводчика
внешнее трение качения — [rolling friction] механическое сопротивление, возникающее в зоне контакта при качении одного тела по другому; силы трения качения очень малы по сравнению с силами трения скольжения. Внешнее трение качения обусловлено: потерями на упругий… … Энциклопедический словарь по металлургии
ТРЕНИЕ ВНЕШНЕЕ — механич. сопротивление, возникающее в плоскости касания двух прижатых друг к другу тел при их относит. перемещении. Сила сопротивления F, направленная противоположно относит. перемещению данного тела, наз. силой трения, действующей на это тело. Т … Физическая энциклопедия
ТРЕНИЕ ВНЕШНЕЕ — механическое сопротивление, возникающее в плоскости касаний двух соприкасающихся, прижатых друг к другу тел при их относительном перемещении. Сила сопротивления, направленная противоположно относительному перемещению тела, называется силой трения … Большой Энциклопедический словарь
Трение — – процесс, возникающий на поверхности соприкосновения тел, как находящихся в состоянии покоя, так и взаимного перемещения. … … Энциклопедия терминов, определений и пояснений строительных материалов
Трение внешнее — механическое сопротивление, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Сила сопротивления F, направленная противоположно относительно перемещению данного тела, называется силой трения,… … Большая советская энциклопедия
трение внешнее — механическое сопротивление, возникающее в плоскости касаний двух соприкасающихся, прижатых друг к другу тел при их относительном перемещении. Сила сопротивления, направленная противоположно относительному перемещению тела, называется силой трения … Энциклопедический словарь
Общие сведения
Во время перекатывания тел возникает их взаимодействие. Описывается оно силой трения качения. Её существование возможно только при контакте поверхностей. При этом наряду с качением возникают силы покоя и скольжения. Объект, катящийся по другому телу, испытывает только трение, вызванное качением. По сравнению с другими силами оно небольшое, но при этом помогает осуществлять перемещение.
С физической точки зрения, трение представляет собой вектор, направление которого совпадает с линией, проходящей вдоль касательной трущихся поверхностей. Сила, измеряемая относительно перемещения соприкасающихся тел, называется внешней, а возникающая в области одного объекта, например, газа — внутренней.
Трение зависит от поверхности тел. Оно может быть сухим или вязким. В единицах СИ сила измеряется в ньютонах: [P]=H. Существует такое понятие, как адгезия, то есть способность тел «прилипать» друг к другу. Зависит она от шероховатости. Чем этот параметр больше, тем больше нужно затратить энергии для смещения поверхностей, но в то же время её затраты будут меньше для полного торможения.
Таким образом, трение может приносить как пользу, так и вред. С одной стороны, при работе за счёт силы происходит износ поверхностей, а с другой — выполняется торможение. Для уменьшения эффекта существуют несколько способов изменить трение: сгладить поверхности, сменить смазку, заменить скольжение качением.
Вычисление силы выполняют по формуле: F = k * N. Здесь:
Приложенное сопротивление направлено в противоположную сторону движения, при этом реакция силы опоры происходит перпендикулярно площади соприкосновения. Коэффициент является безразмерной величиной и не зависит от размера контакта. Если энергия движения совпадает по величине с трением, тело движется равномерно по прямой. Если же движущая сила будет меньше, объект остановится.
Основная формула силы трения учитывает различные моменты, оказывающие влияние на перемещение. Но при этом, если при соприкосновении с вращением не будет проскальзывания, формула изменится. В ней главную роль будет играть прижимающее давление.
Качение тела
Из названия силы можно сделать вывод, что сила качения возникает, когда одно тело перекатывается по поверхности другого. Например, езда с использованием колеса, работа подшипника. По сути, это явление, происходящее из-за деформации катка и опорной поверхности. При этом полагается, что тяговых и тормозных процессов нет.
Из-за того, что трение качения в несколько раз меньше скольжения, оно является довольно распространённым видом перемещения. Например, груз катить легче, чем тянуть. Это происходит из-за меньшего количества контактов с поверхностью. При этом отталкиваться от твёрдого тела проще, чем от мягкого.
Для определения процесса физики используют следующее объяснение: пусть имеется тело, которое располагается на опоре. Относительно неё происходит вращение. В любой выбранный момент времени на вращающийся объект будет действовать момент сил. При этом векторная сумма их будет равняться нулю: N + P +Ro = 0. Действующий момент состоит из внешней силы (P), прижимной (N) и реакции опоры (Ro).
Если сумма векторов равняется нулю, ось симметрии находится в равномерном и прямолинейном движении или остаётся в одном положении (неподвижная). Другими словами, вектор силы трения качения противодействует перемещению. Следовательно, прижимной момент уравновешивается реакцией опоры, а, точнее, её вертикальной составляющей. Внешняя же сила находится в равновесии с горизонтальной составляющей.
Равномерность обозначает, что воздействующие моменты компенсируют друг друга. А значит, формула для описания процесса будет выглядеть как Ft * R = N * f, где Ft — сила трения качения. Из этой формулы можно найти силу: Ft = f * N /R. Рассматриваемое воздействие прямо пропорционально произведению коэффициента трения и прижимной силы, обратно пропорционально радиусу катящегося тела. Фактически это и есть определение трения качения.
Правильность формулы подтверждают различные экспериментальные измерения. Действительно, при малой скорости качения процесс не зависит от неё. Когда же скорость возрастает до величин сопоставимых с деформацией в опоре, сопротивление движению становится пропорциональным её росту и влияние оказывает уже скольжение.
Момент и коэффициент
Пусть имеется цилиндр, расположенный на идеальной гладкой жёсткой поверхности. Какую бы силу Q ни приложили, уравновесить её можно только противодействующей энергией. Если же такой энергии нет, под действием Q цилиндр должен катиться. Но опыты показывают совершенно другое. Например, если подойти к многотонному грузовику и попробовать его толкнуть, он не покатится. Хотя теория утверждает обратное.
Но здесь дело в том, что поверхность считается идеальной. В момент времени на тело, кроме Q, действует равное ей сцепление. Эти силы будут уравновешенными. В вертикальной же плоскости на тело действует нормаль (N) и противодействующая ей сила равновесия (P).
На самом деле при прикосновении тело деформируется. Образуется впадина, при этом колесо всей своей тяжестью будет опираться на крайнюю правую точку деформированной поверхности. Момент сил здесь будет следующим:
Перемещению препятствует равновесие пары PN. При этом плечо пары будет половиной размера, то есть возникает момент сил трения. Определяют его как эн делённое на дельту и называют моментом трения: Mтр = N * d. Эта формула совпадает по форме записи с законом Амонтона — Кулона. И там, и тут фигурирует величина опоры.
Становится очевидным, что R * Q = Mтр = P * d. Используя эту запись, можно обнаружить предельный импульс, который необходимо приложить к колесу, чтобы заставить его двигаться: Q = p d /R. При этом если колесо будет скользить, а не катиться, Q будет уже зависеть от трения: Q = P * f.
При сравнении двух формул видно, что d / r будет намного меньше f, поэтому качение произойдёт раньше. Это свойство как раз и используется в подшипниках. Нахождение коэффициента трения можно выполнить через момент трения качения и давление прижима: f = Mтр / N.
Он определяется следующими физическими интерпретациями:
Для мягкого дерева, катящегося по стали, коэффициент составляет 0,8 мм, стали по асфальту — 6 мм, железа по граниту — 2,1 мм. Это справочная величина, установленная экспериментально, которую не нужно вычислять самостоятельно.
Решение задач
При решении задач нужно помнить, что трение кручения зависит не только от свойств материалов, участвующих в движении, но и от радиуса. При этом часто областью деформации пренебрегают, так как величина смятия ничтожно мала, поэтому нахождение по формуле силы трения через массу при качении не выполняют.
Алгоритм решения примеров:
Например, имеются 2 цилиндра с одинаковыми радиусами: R = 50 см. Их вес составляет соответственно 20 и 30 ньютон. Они соединены стержнем массой 40 ньютон. Первый цилиндр катится без сопротивления, а второй испытывает трение d = 2 мм. К первому кольцу приложена пара моментов, а к оси второго — нагрузка в 10 ньютон. Определить пределы изменения момента в условиях равновесия.
Для решения задачи нужно воспользоваться формулой: Мтр = N2 * d. Систему можно разбить на 3 тела. Связи заменить реакциями Fc1, N1, Fc2, N2. Внутренние связи обозначить x1, y1, x2, y2. При составлении системы нужно избегать уравнений с реакциями F. Равновесие для первого цилиндра можно определить из системы:
Для второго колеса:
Для стержня:
Из решения системы можно определить, что М = (√3R FR √2 — d (G3 + 2G2 + FV2)) / (R (√3+d)). Все вычисления нужно делать в метрах. Подставив значения, заданные условием, можно вычислить, что М = 3,414. Нормальные реакции будут равны: N = 36,058 Н, N2 = 61,013 Н. Аналогичные вычисления выполняют и при изменении направления возможного перемещения. В ответе должно получиться, что M = 3, 66 Нм, N1 = 35.8 Н, Т2 = 61,3 Н. Таким образом, предел будет лежать в области от 3,414 Нм до 3, 66 Нм.
Как сказал.
Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса.
А.Эйнштейн
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Я учу детей тому, как надо учиться
Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.
Сила трения качения
Сила трения качения — сила сопротивления движению, возникающая при перекатывании тел друг по другу
Если векторная сумма этих сил равна нулю, то ось симметрии тела движется равномерно и прямолинейно или остаётся неподвижной. Вектор Ft=-P определяет силу трения качения, противодействующую движению. Это означает, что прижимающая сила уравновешивается вертикальной составляющей реакции опоры, а внешняя сила уравновешивается горизонтальной составляющей реакции опоры.
Отсюда сила трения качения равна:
Происхождение трения качения можно наглядно представить себе так. Когда шар или цилиндр катится по поверхности другого тела, он немного вдавливается в поверхность этого тела, а сам немного сжимается. Таким образом, катящееся тело все время как бы вкатывается на горку. Вместе с тем происходит отрыв участков одной поверхности от другой, а силы сцепления, действующие между этими поверхностями, препятствуют этому. Оба эти явления и вызывают силы трения качения. Чем тверже поверхности, тем меньше вдавливание и тем меньше трение качения.
Ft — сила трения качения
N — прижимающая сила
Сила трения качения: описание, формула
Какие виды сил трения существуют в природе?
В первую очередь рассмотрим, какое место трение качения занимает среди других сил трения. Эти силы возникают в результате контакта двух разных тел. Это могут быть тела твердые, жидкие или газообразные. Например, полет самолета в тропосфере сопровождается наличием трения между его корпусом и молекулами воздуха.
Рассматривая исключительно твердые тела, выделяют силы трения покоя, скольжения и качения. Каждый из нас замечал: чтобы сдвинуть с места коробок, находящийся на полу, необходимо вдоль поверхности пола приложить некоторую силу. Значение силы, которое выведет коробок из состояния покоя, будет по модулю равно силе трения покоя. Последняя действует между дном коробка и поверхностью пола.
Вам будет интересно: Порабощение — это действие против свободы личности
Как только коробок начал свое движение, необходимо прилагать постоянную силу, чтобы сохранять это движение равномерным. Связан этот факт с тем, что между контактом пола и коробком на последний действует сила трения скольжения. Как правило, она на несколько десятков процентов меньше, чем трение покоя.
Если под коробок положить круглые цилиндры из твердого материала, то перемещать его станет гораздо легче. На вращающиеся в процессе движения цилиндры под коробком будет действовать сила трения качения. Она обычно намного меньше предыдущих двух сил. Именно поэтому изобретение человечеством колеса стало огромным скачком в сторону прогресса, ведь люди получили возможность перемещать гораздо большие грузы с помощью небольшой приложенной силы.
Физическая природа трения качения
Вам будет интересно: Виды территориального маркетинга. Субъекты и объекты территориального маркетинга
Любые тела, из какого бы твердого материала они ни состояли, деформируются. Чем больше вес тела, тем большее давление оно оказывает на поверхность, а значит, деформируется само в точке контакта и деформирует поверхность. Эта деформация в ряде случаев настолько мала, что не превышает предела упругости.
В процессе качения колеса деформированные участки после прекращения контакта с поверхностью восстанавливают исходную форму. Тем не менее эти деформации циклически повторяются с новым оборотом колеса. Любая циклическая деформация, даже если она лежит в пределе упругости, сопровождается гистерезисом. Иными словами, на микроскопическом уровне форма тела до и после деформации отличается. Гистерезис циклов деформации в процессе качения колеса приводит к «распылению» энергии, что проявляется на практике в виде появления силы трения качения.
Качение идеального тела
Под идеальным телом в данном случае имеется в виду то, что оно является недеформируемым. В случае идеального колеса площадь его контакта с поверхностью равна нулю (оно касается поверхности вдоль линии).
Охарактеризуем силы, которые действуют на недеформируемое колесо. Во-первых, это две вертикальные силы: вес тела P и сила реакции опоры N. Обе силы проходят через центр масс (ось колеса), поэтому в создании крутящего момента не принимают участия. Для них можно записать:
Во-вторых, это две горизонтальные силы: внешняя сила F, которая толкает колесо вперед (она проходит через центр масс), и сила трения качения fr. Последняя создает крутящий момент M. Для них можно записать такие равенства:
Все существующие тела являются реальными, то есть испытывают деформацию.
Качение реального тела
Теперь рассмотрим описанную выше ситуацию только для случая реальных (деформируемых) тел. Площадь касания колеса и поверхности уже не будет равна нулю, она будет иметь некоторое конечное значение.
Проведем анализ сил. Начнем с действия вертикальных сил, то есть веса и реакции опоры. Они по-прежнему равны друг другу, то есть:
Однако сила N теперь действует вертикально вверх не через ось колеса, а несколько смещена от нее на расстояние d. Если представить площадь соприкосновения колеса с поверхностью в виде площади прямоугольника, то длиной этого прямоугольника будет толщина колеса, а ширина будет равна 2*d.
Теперь перейдем к рассмотрению горизонтальных сил. Внешняя сила F по-прежнему не создает момента вращения и равна силе трения fr по абсолютной величине, то есть:
Момент сил, приводящий к вращению, будет создавать трение fr и реакцию опоры N. Причем эти моменты будут направлены в разные стороны. Соответствующее выражение имеет вид:
В случае равномерного движения момент M будет равен нулю, поэтому получаем:
Последнее равенство с учетом записанных выше формул можно переписать так:
По сути, мы получили главную для понимания силы трения качения формулу. Далее в статье проведем ее анализ.
Коэффициент сопротивления качению
Этот коэффициент уже был введен выше. Также было дано геометрическое его объяснение. Речь идет о величине d. Очевидно, что чем больше эта величина, тем больший момент создает сила реакции опоры, который препятствует движению колеса.
Коэффициент трения качения
Не нужно его путать с предыдущим коэффициентом d. Коэффициент трения качения обозначают символом Cr и вычисляют по следующей формуле:
Это равенство означает, что величина Cr является безразмерной. Именно она приводится в ряде таблиц, содержащих информацию о рассматриваемом виде трения. Этот коэффициент удобно использовать для практических расчетов, поскольку он не предполагает знания радиуса колеса.
Анализ полученной формулы для силы fr
Запишем еще раз полученную выше формулу силы трения качения:
Из равенства следует, что чем больше диаметр колеса, тем меньшую силу F следует приложить, чтобы оно начало движение. Теперь запишем это равенство через коэффициент Cr, имеем:
Как видно, сила трения прямо пропорциональна весу тела. Кроме того, при значительном увеличении веса P изменяется сам коэффициент Cr (он возрастает в виду увеличения d). В большинстве практических случаев Cr лежит в пределах нескольких сотых. В свою очередь, значение коэффициента трения скольжения лежит в пределах нескольких десятых. Поскольку для сил трения качения и скольжения формулы одинаковые, то качение оказывается выгодным с энергетической точки зрения (сила fr меньше на порядок силы скольжения в большинстве практических ситуаций).
Условие качения
Многие из нас встречались с проблемой проскальзывания колес автомобиля при движении по льду или по грязи. Почему это происходит? Ключ к ответу на этот вопрос лежит в соотношении абсолютных значений сил трения качения и покоя. Еще раз выпишем формулу для качения:
Когда сила F будет больше или равна трению качения, тогда колесо начнет катиться. Однако если эта сила раньше превзойдет величину трения покоя, то раньше наступит проскальзывание колеса, чем его качение.
Таким образом, эффект проскальзывания определяется соотношением коэффициентов трения покоя и трения качения.
Способы противодействия проскальзыванию колеса автомобиля
Трение качения колеса автомобиля, находящегося на скользкой поверхности (например, на льду) характеризуется коэффициентом Cr = 0,01-0,06. Однако значения такого же порядка характерны для коэффициента трения покоя.
Чтобы избежать риска проскальзывания колеса, используют специальную «зимнюю» резину, в которую вкручены металлические шипы. Последние, врезаясь в ледяную поверхность, увеличивают коэффициент трения покоя.
Другой способ увеличение трения покоя заключается в модификации поверхности, по которой движется колесо. Например, с помощью посыпания ее песком или солью.