Трехмерный массив это значит что

Многомерные массивы в PHP

Перепишем в более понятном виде:

Приведенный выше массив является двухмерным, так как внутри одного массива расположены другие подмассивы и уже в этих подмассивах нет других массивов. Чтобы вывести какой-либо элемент из двухмерного массива следует писать уже не одну пару квадратных скобок, а две:

Дан следующий массив:

Дан следующий массив:

Найдите сумму всех его элементов.

Трехмерный массив

Вот пример трехмерного массива:

Для вывода элементов из такого массива уже необходимо написать три квадратные скобки:

Дан следующий массив:

Найдите сумму всех элементов приведенного массива.

Ассоциативные массивы

Многомерные массивы также могут быть ассоциативными, например, вот так:

Давайте с помощью этого массива выведем на экран, к примеру, имя второго юзера:

Дан следующий массив:

Выведите с помощью этого массива имя первого мальчика и имя второй девочки.

Дан следующий массив:

Выведите с помощью этого массива английское название среды.

Дан следующий массив:

Выведите с помощью этого массива сумму зарплат первого и третьего юзера.

Произвольные массивы

Многомерные массивы не обязательно должны быть такими, как мы рассмотрели выше. Посмотрите, например, на следующий массив:

Если переписать его в более понятном виде, то мы увидим, что этот массив «неправильный». В нем рядом с обычными элементами располагаются массивы:

Дан следующий массив:

Найдите сумму всех элементов приведенного массива, обратившись к каждому элементу по его ключу.

Источник

BestProg

Массивы. Часть 2. Многомерные массивы. Ступенчатые массивы

Содержание

Поиск на других ресурсах:

1. Какой массив называется многомерным?

Многомерный массив – это массив, который имеет два и более измерений. Для доступа к элементу многомерного массива используется комбинация из двух и более индексов.

2. Какая общая форма объявления многомерного массива?

Общая форма объявления многомерного массива следующая:

3. Пример объявления и использования двумерного массива вещественных чисел размером 3×4

В примере объявляется двумерный массив вещественных чисел, которые имеют тип float

4. Пример объявления и использования трехмерного массива целых чисел размером 3×4×5

5. Как выглядит общая форма инициализации многомерного массива?

Инициализация массива позволяет записать значения в ячейки массива в момент его объявления в программе.

Общая форма инициализации многомерного массива имеет следующий вид:

6. Пример инициализации двумерного массива размером 5×3. Элементы массива имеют тип char

7. Пример инициализации трехмерного массива целых чисел размером 2×3×4

8. Что такое ступенчатый массив? Какая общая форма объявления ступенчатого массива?

Двумерные массивы могут быть двух видов:

Общая форма объявления ступенчатого массива:

9. Пример объявления и использования ступенчатого массива

Как видно из примера, доступ к элементам ступенчатого массива происходит иначе чем в прямоугольном массиве.

10. В каких случаях целесообразно использовать ступенчатые массивы?

Ступенчатые массивы являются эффективными в случаях, если у двумерных прямоугольных массивов есть много элементов, которые вообще не используются. Это позволяет сэкономить память за счет выделения только необходимого объема памяти (количества элементов) для каждой строки ступенчатого массива.

На рисунке 1 отображено преимущество применения ступенчатых массивов в сравнении с прямоугольными. Продемонстрирована возможная экономия памяти в случае, когда данные представляются прямоугольным массивом в котором все элементы некоторых строк (0, 2, 3, 4) не используются.

Способ 2. Объявление ступенчатого массива.

Трехмерный массив это значит что. Смотреть фото Трехмерный массив это значит что. Смотреть картинку Трехмерный массив это значит что. Картинка про Трехмерный массив это значит что. Фото Трехмерный массив это значит что

Рис. 1. Пример экономии памяти с помощью ступенчатого массива из 5 строк в сравнении с прямоугольным массивом размером 5×100

11. Каким образом реализовать массив двумерных массивов? Пример

Источник

Многомерные массивы в C++ — практическое пособие

В первой статье были описаны приёмы работы с простейшим видом массивов — одномерным (линейным) массивом. В этой, второй статье будут рассмотрены многомерные массивы. В основном, речь пойдёт о двумерных массивах. Но приведённые примеры легко экстраполируются на массивы любой размерности. Также как и в первой статье, будут рассматриваться только массивы в стиле C/C++, без использования возможностей STL.

Эта статья предполагает у читателя базовые знания об одномерных и многомерных массивах, указателях и адресной арифметике. Почерпнуть эти знания можно в любом учебнике по C/C++.

Классика жанра

Если мы откроем классический труд «Язык программирования C» Брайана Кернигана и Денниса Ритчи, то прочитаем, что «В языке C есть возможность работать с многомерными прямоугольными массивами, хотя на практике они используются гораздо реже, чем массивы указателей». C++ практически полностью унаследовал работу с многомерными массивами своего предтечи.

Определение автоматических многомерных массивов

В этом разделе я буду иногда употреблять термин «матрица» как синоним термина «двумерный массив». В C/C++ прямоугольный двумерный массив чисел действительно реализует математическое понятие «матрица». Однако, в общем случае, двумерный массив — понятие гораздо более широкое, чем матрица, поскольку он может быть и не прямоугольным, и не числовым.

Определение автоматических многомерных массивов почти полностью совпадает с определением одномерных массивов (о чём было рассказано в первой статье), за исключением того, что вместо одного размера может быть указано несколько:

Во втором примере определяется трёхмерный массив, содержащий 3 матрицы, каждая из которых состоит из 5 строк по 2 значения типа int в каждой строке.

Понятно, что тип данных, содержащихся в многомерном массиве, может быть любым.

При дальнейшем изложении для таких многомерных массивов будет употребляться термин «C-массив», что бы отличать их от массивов других видов.

Инициализация

При статической (определяемой на этапе компиляции) инициализации значения C-массива перечисляются в порядке указания размеров (индексов) в определении массива. Каждый уровень (индекс), кроме самого младшего, многомерного массива заключается в свою пару фигурных скобок. Значения самого младшего индекса указываются через запятую:

В примере показана статическая инициализация прямоугольного массива. Весь список инициализирующих значений заключён в фигурные скобки. Значения для каждой из 3 строк заключены в свою пару из фигурных скобок, значения для каждого из 5 столбцов для каждой строки перечислены через запятую.

При наличии инициализатора, самый левый размер массива может быть опущен. В этом случае компилятор сам определит этот размер, исходя из списка инициализации.

Заполнение массива значениями

Многомерный массив заполняется значениями с помощью вложенных циклов. Причём, как правило, количество циклов совпадает с размерностью массива:

В этом примере каждому элементу массива присваивается значение, первая цифра которого указывает номер строки, а вторая цифра — номер столбца для этого значения (нумерация с 1).

Вывод значений массива на консоль

В продолжение предыдущего примера можно написать:

В результате получим следующий вывод на консоль:

Для трёхмерного массива можно написать код, использующий те же приёмы:

Здесь присваивание значения элементу массива и вывод на консоль происходят в одной группе циклов.

Расположение в памяти

Значения располагаются последовательно. Самый левый индекс изменяется медленнее всего. Т.е. для трёхмерного массива сначала располагаются значения для первой (индекс 0) матрицы, затем для второй и т.д. Значения для матриц располагаются построчно (ср. со статической инициализацией массива выше).

Имя (идентификатор) многомерного C-массива является указателем на первый элемент массива (так же как и для одномерных массивов)

Если код из последнего примера немного изменить:

Поскольку все значения многомерного C-массива располагаются последовательно, то, пользуясь адресной арифметикой, можно сделать следующий хак:

Из двух примеров, приведённых выше, следует, что работу с двумерным или многомерным массивом (в понимании на более высоком уровне абстракции) технически можно организовать посредством одномерного массива соответствующего размера:

Этот приём достаточно распространён. Его выгода в том, что массив ary[DIM1 * DIM2] не обязательно должен быть выделен автоматически. Его можно выделять и динамически. Но при этом логически рассматривать как C-массив.

Вышеприведённый код написан в духе чистого C. В C++ обычно такие вещи прячут в класс, оставляя снаружи лаконичный интерфейс без всяких следов адресной арифметики.

Неродные близнецы

Теперь рассмотрим работу с «динамическими» многомерными массивами, т.е. с массивами, память для которых выделяется динамически.

Создание и уничтожение динамических многомерных массивов

Как правило, работа с такими массивами осуществляется следующим образом:

(1) Для доступа к двумерному массиву объявляется переменная ary типа указатель на указатель на тип (в данном случае это указатель на указатель на int ).

Работа с динамическим многомерным массивом синтаксически полностью совпадает с работой с многомерным C-массивом.

Пример кода для трёхмерного массива:

Где собака порылась

Работа с динамическим многомерным массивом синтаксически полностью совпадает с работой с многомерным C-массивом. (Цитирую предыдущий раздел.) Синтаксически — да, но между этими массивами есть глубокое различие, о котором начинающие программисты часто забывают.

Во-первых, для динамического массива выделяется другой объём памяти.

Во-вторых, память, выделенная для динамического массива, не непрерывна. Следовательно, хак №1 (обращение с двумерным массивом как с одномерным) работать не будет.

В-третьих, передача многомерных массивов в функции и работа с ними будет отличаться для динамических массивов и C-массивов.

Динамический многомерный массив реализуется как массив указателей на массивы, значения в которых, в свою очередь, тоже могут быть указателями на массивы. Последним звеном в этой цепочке всегда будут массивы со значениями целевого типа.

Динамический многомерный массив НЕ является C-массивом.

Парадоксально, но факт, что наиболее близким родственничком для этих неродных близнецов, является хак №2, реализующий работу с многомерным массивом посредством одномерного массива (см. раздел Хаки). Все три вышеперечисленных различия для него неактуальны.

Стоит отметить, что массив указателей на массивы — структура более гибкая, чем двумерный C-массив. Например, для массива указателей на массивы размеры массивов могут быть разными, или какой-то массив может вообще отсутствовать. Наиболее распространённым примером является «массив строк», т.е. массив указателей на массивы типа char (пример — см. в следующем разделе).

Ещё раз о предосторожности

Из вышеизложенного следует, что нужно чётко отличать многомерные C-массивы вида

от массивов указателей на массивы.

Это — пример определения и инициализации двумерного C-массива

Каждая С-строка занимает ровно 10 байт, включая завершающий ноль (считаем, тип char имеет размер 1 байт). Неиспользуемые байты у коротких строк, вроде «May», содержат «мусор» (или нули, если об этом позаботился компилятор). Весь массив занимает один непрерывный блок памяти размером 120 байт (12 строк по 10 символов).

И, в заключение, ещё одно предостережение.

Многомерные массивы при работе с функциями

Поскольку многомерные C-массивы и многомерные динамические массивы — совершенно разные типы данных, то и при работе с функциями подходы будут разные.

Передача в функцию многомерного C-массива

Функция, получающая C-массив в качестве параметра, может выглядеть следующим образом:

Форма (1) — наиболее распространённая.

Форма (2). При передаче многомерного C-массива в функцию можно не указывать длину самого левого измерения. Компилятору для расчёта доступа к элементам массива эта информация не нужна.

Как всегда в C/C++, параметр передаётся в функцию по значению. Т.е. в функции доступна копия фактического параметра. Поскольку имя C-массива является указателем на его первый элемент (т.е. адресом первого элемента), то в функцию передаётся копия адреса начала массива. Следовательно, внутри функции можно изменять значения элементов массива, т.к. доступ к ним осуществляется через переданный адрес, но нельзя изменить адрес начала массива, переданный в качестве параметра, т.к. это — копия фактического параметра.

Возвратить многомерный C-массив из функции в качестве результата стандартными средствами невозможно.

Передача в функцию многомерного динамического массива

Поскольку многомерный динамический массив реализуется как одномерный массив указателей, то, соответственно, и при работе с функциями применяются те же подходы, что и для одномерного массива, описанные в первой статье, с точностью до типов данных.

Для примера — полный код программы, демонстрирующей работу с двумерным динамическим массивом с использованием функций.

В первой статье я уже писал, что «Выделять память в одной функции, а освобождать в другой — плохая идея, чреватая ошибками». Поэтому рассматривайте этот пример только как демонстрацию работы с функциями и массивами указателей.

Хотя с другой стороны. С другой стороны, очень похожий подход повсеместно используется в классах, когда некий ресурс (в данном случае память) захватывается в одной функции (конструкторе), а освобождается в другой (деструкторе). Но в случае классов, безопасность обеспечивается инкапсуляцией критических данных и поддержанием непротиворечивого состояния экземпляра класса методами класса.

Массив указателей используется в каждой программе, которая может получать входную информацию из командной строки (или при её вызове от операционной системы). Одна из классических форм функции main() имеет вид:

Пожалуй это всё, что я хотел рассказать в этой статье. Надеюсь, что кто-то сочтёт её полезной для себя.

Да пребудет с вами святой Бьярн и апостолы его! 😉

Источник

Многомерные статические массивы

Многомерные статические массивы

В си, наряду с одномерными, существуют и многомерные массивы. Например, двумерный массив: его можно представлять как массив массивов, или как матрицу. Размерность массива может быть и больше: трёхмерные, четырёхмерные и т.д.
Синтаксис остаётся прежним, добавляется только новая размерность

Например, двумерный массив

Доступ до элементов массива осуществляется также, как и в одномерном массиве

Компилятор будет знать в таком случае сдвиг, необходимый для доступа к элементу.
С этим связаны и особенности начальной инициализации. Так как многомерный массив по сути одномерный, то его начальную инициализацию можно провести так

Можно опустить первую размерность

Можно с помощью фигурных скобок сделать данные более удобными для чтения

Также, как и в одномерных массивах, если заявлено данных больше, чем указано при инициализации, то оставшиеся заполняются нулями. Например, единичная матрица 3 на 3

Из того, что многомерный массив является одномерным по структуре, вытекают некоторые интересные свойства. Например, доступ до элемента может быть осуществлён через его порядковый номер
a[i][j] === a[0][i*число столбцов + j] и т.д.

Примеры

Замечание: по стандарту явно такое поведение не определено, но косвенно должно поддерживаться.

2. Даны координаты x и y точки, полученные в ходе фотосъёмки. Известно, сколько кадров в секунду делала камера. Вычислить скорость в каждый момент времени и среднюю скорость за всё время.

Источник

Урок №78. Многомерные массивы

Обновл. 13 Сен 2021 |

Элементы массива могут быть любого типа данных, даже массива!

Многомерные массивы

Массив массивов называется многомерным массивом:

Поскольку у нас есть 2 индекса, то это двумерный массив.

В двумерном массиве первый (левый) индекс принято читать как количество строк, а второй (правый) как количество столбцов. Массив выше можно представить следующим образом:

[0][0] [0][1] [0][2] [0][3] // строка №0
[1][0] [1][1] [1][2] [1][3] // строка №1

Чтобы получить доступ к элементам двумерного массива, просто используйте два индекса:

Инициализация двумерных массивов

Для инициализации двумерного массива проще всего использовать вложенные фигурные скобки, где каждый набор значений соответствует определенной строке:

Хотя некоторые компиляторы могут позволить вам упустить внутренние фигурные скобки, все же рекомендуется указывать их в любом случае: улучшается читабельность и уменьшается вероятность получения незапланированных нулевых элементов массива из-за того, что C++ заменяет отсутствующие инициализаторы значением 0 :

В двумерном массиве со списком инициализаторов можно не указывать только левый индекс (длину массива):

Компилятор может сам вычислить количество строк в массиве. Однако не указывать два индекса — это уже ошибка:

Подобно обычным массивам, многомерные массивы можно инициализировать значением 0 следующим образом:

Обратите внимание, это работает только в том случае, если вы явно объявляете длину массива (указываете левый индекс)! В противном случае, вы получите двумерный массив с 1 строкой.

Доступ к элементам в двумерном массиве

Для доступа ко всем элементам двумерного массива требуется два цикла: один для строк и один для столбцов. Поскольку доступ к двумерным массивам обычно выполняется по строкам, то левый индекс используется в качестве внешнего цикла:

Многомерные массивы более двух измерений

Многомерные массивы могут быть более двух измерений. Например, объявление трехмерного массива:

Трехмерные массивы трудно инициализировать любым интуитивным способом с использованием списка инициализаторов, поэтому лучше инициализировать весь массив значением 0 и явно присваивать элементам значения с помощью вложенных циклов.

Доступ к элементам трехмерного массива осуществляется так же, как и к элементам двумерного массива:

Пример двумерного массива

Рассмотрим пример использования двумерного массива:

Эта программа вычисляет и выводит таблицу умножения от 1 до 9 (включительно). Обратите внимание, при выводе таблицы в цикле for мы начинаем с 1 вместо 0. Это делается с целью предотвращения вывода нулевой строки и нулевого столбца, содержащих одни нули!

Результат выполнения программы:

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Двумерные массивы обычно используются в играх типа tile-based, где каждый элемент массива представляет собой один фрагмент/плитку. Они также используются в компьютерной 3D-графике (в виде матриц) для вращения, масштабирования и отражения фигур.

Поделиться в социальных сетях:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *