Трансформаторное масло для чего
Трансформаторное масло – особенности применения и состава
Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.
Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.
Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.
Область применения трансформаторного масла
Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.
Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).
Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.
О свойствах поговорим отдельно, они вытекают из двух областей применения:
Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.
Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.
При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.
Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео
Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.
Технические характеристики трансформаторного масла
Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.
Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.
При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:
Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.
Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.
Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.
При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.
Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.
Не только плотность меняется в зависимости от температуры
Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.
Показатели | ТКп | Масло селективной очистки | Т-1500У | гк | вг | АГК | МВТ |
Кинематическая вязкость, им2/с* при температуре | |||||||
50°С | 9 | 9 | — | 9 | 9 | 5 | — |
40°С | — | — | 11 | — | — | — | 3,5 |
20°С | — | 28 | — | — | — | — | — |
-30°С | 1500 | 1300 | 1300 | 1200 | 1200 | — | — |
-40°С | — | — | — | — | — | 800 | 150 |
Кислотное число, мг КОН/г, не более | 0,02 | 0,02 | 0,01 | 0,01 | 0,01 | 0,01 | 0,02 |
Температура, °С | |||||||
Вспышки в закрытом тигле, не ниже | 135 | 150 | 135 | 135 | 135 | 125 | 95 |
Застывания, не выше | -45 | -45 | -45 | -45 | -45 | -60 | -65 |
Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.
Принцип работы масляного трансформатора — видео
Вспышка и воспламенение
Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.
Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.
Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.
Электрическая дуга или как горят трансформаторы — видео
Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.
Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.
Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.
После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.
В таблице показаны основные показатели трансформаторного масла:
Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.
Испытание трансформаторного масла на пробой — видео
Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.
В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.
Второстепенные характеристики трансформаторного масла
Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:
Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.
Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.
Трансформаторное масло представляет собой очищенную фракцию нефти, то есть является минеральным маслом. Его получают посредством перегонки нефти, где данная фракция кипит при 300 — 400°С. В зависимости от сорта исходного сырья свойства трансформаторных масел получаются различными. Масло отличается сложным углеводородным составом, где средний вес молекул варьируется от 220 до 340 а.е.м. В таблице приведены основные компоненты и их процент в составе трансформаторного масла.
Свойства трансформаторного масла, как электрического изолятора, определяются главным образом значением тангенса угла диэлектрических потерь. Поэтому наличие воды и волокон в масле полностью исключается, поскольку любые механические примеси ухудшают данный показатель.
Крайне важным свойством трансформаторных масел является их стабильность в условиях окисления, трансформаторное масло должно сохранять требуемые параметры на длительный период работы.
Что касается конкретно РФ, то здесь все сорта трансформаторных масел, применяемых на промышленном оборудовании, обязательно ингибированы антиокислительной присадкой — ионолом (2,6-дитретичный бутилпаракрезол, известный еще как агидол-1). Присадка взаимодействует с активными пероксидными радикалами, возникающими в цепи окислительной реакции углеводородов. Так, ингибированные трансформаторные масла имеют при окислении ярко выраженный индукционный период.
Сначала восприимчивые к присадкам масла окисляются медленно, поскольку возникающие цепи окисления прерываются ингибитором. Когда присадка истощена, масло окисляется с обычной скоростью, как без присадки. Чем больше индукционный период окисления масла, тем выше и эффективность присадки.
Немало эффективность присадки связана и с углеводородным составом масла, и с наличием примесей неуглеводородного рода, способствующих окислению, коими могут выступать азотистые основания, нефтеновые кислоты и кислородосодержащие продукты окисления масла.
Когда нефтяной дистиллят очищают, содержание ароматических углеводородов снижается, устраняются неуглеводородные включения, и в итоге стабильность ингибированного ионолом трансформаторного масла повышается. Между тем, существует международный стандарт «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей».
Трансформаторное масло обладает горючестью, оно биоразлагаемо, почти не обладает токсичностью и не вредит озоновому слою. Плотность трансформаторного масла лежит в пределах от 840 до 890 килограмм на кубометр. Одно из важнейших свойств — вязкость. Чем выше вязкость, тем выше электрическая прочность. Вместе с тем, для нормальной работы в силовых трансформаторах и в выключателях, масло не должно быть очень вязким, иначе охлаждение трансформаторов не будет эффективным, а выключатель не сможет быстро разорвать дугу.
Здесь нужен компромисс относительно вязкости. Обычно кинематическая вязкость при температуре 20°С, у большинства трансформаторных масел лежит в диапазоне от 28 до 30 мм 2 /с.
Прежде чем заполнить маслом аппарат, масло очищают при помощи глубокой термовакуумной обработки. Согласно действующему руководящему документу «Объем и нормы испытаний электрооборудования» (РД 34.45-51.300-97), концентрация воздуха в трансформаторном масле, заливаемом в трансформаторы с азотной или пленочной защитой, в герметичные измерительные трансформаторы и в герметичные вводы, не должна быть выше 0,5 (определяется методом газовой хроматографии), а максимальное содержание воды — 0,001% массы.
Для силовых трансформаторов без пленочной защиты и для негерметичных вводов допустимо содержание воды не более 0,0025% массы. Что касается содержания механических примесей, определяющего класс чистоты масла, то оно не должно быть для оборудования напряжением до 220кВ хуже 11-го, а для оборудования напряжением выше 220 кВ — не хуже 9-го. Пробивное напряжение, в зависимости от рабочего напряжения, приведено в таблице.
Когда масло залито, то пробивное напряжение на 5 кВ ниже, чем у масла до заливки в оборудование. Допустимо снижение класса чистоты на 1 и увеличение процента воздуха на 0,5%.
Условия окисления (метод определения стабильности — по ГОСТу 981-75)
Вообще, температура вспышки не должна быть ниже 135°С. Также важны такие характеристики, как температура воспламенения (масло воспламеняется и горит при ней в течение 5 и более секунд) и температура самовоспламенения (при температуре 350-400°С масло воспламеняется даже в закрытом тигле при наличии воздуха).
Трансформаторное масло обладает теплопроводностью от 0,09 до 0,14 Вт/(м х К), и она снижается с ростом температуры. Теплоемкость же с ростом температуры возрастает, и может быть от 1.5 кДж/(кГ х К) до 2.5 кДж/(кГ х К).
С коэффициентом теплового расширения связаны нормативы по размерам расширительного бака, и данный коэффициент находится в районе 0,00065 1/К. Удельное сопротивление трансформаторного масла при 90°С и в условиях напряженности электрического поля 0.5 МВ/м в любом случае не должно быть выше 50 Гом*м.
Равно как и вязкость, удельное сопротивление масла с ростом температуры снижается. Диэлектрическая проницаемость — в пределах от 2,1 до 2,4. Тангенс угла диэлектрических потерь, как было сказано выше, связан с наличием примесей, так для чистого масла он не превышает 0,02 при 90°С в условиях частоты поля 50 Гц, а в окисленном масле может превышать 0.2.
Электрическую прочность масла измеряют во время испытаний на пробой 2,5 мм разрядника с диаметром электродов 25,4 мм. Результат не должен быть ниже 70 кВ, и тогда электрическая прочность составит не менее 280 кВ/см.
Несмотря на принятые меры, трансформаторное масло может поглощать газы, и растворять в себе значительное их количество. В обычных условиях в одном кубическом сантиметре масла легко растворится 0,16 миллилитров кислорода, 0,086 миллилитров азота и 1,2 миллилитра углекислоты. Очевидно, кислород начнет окислять мало. Если газы наоборот выделяются, это признак появления дефекта обмотки. Так, по наличию растворенных в трансформаторном масле газов, посредством хроматографического анализа выявляют дефекты трансформаторов.
Сроки службы трансформаторов и масла не связаны напрямую. Если трансформатор способен работать безотказно лет 15, то масло каждый год желательно очищать, а через 5 лет — регенерировать. Однако, для предотвращения быстрого истощения ресурса масла предусмотрены вполне определенные меры, принятие которых значительно продлит срок службы трансформаторного масла:
Установка расширителей с фильтрами для поглощения воды и кислорода, а также выделяемых из масла газов;
Избегание рабочего перегрева масла;
Непрерывная фильтрация масла;
Что же может послужить поводом для изъятия из эксплуатации трансформаторного масла? Это могут быть загрязнения масла постоянными веществами, наличие которых не привело к глубоким изменениям в масле, и тогда достаточно провести механическую очистку. Вообще, существует несколько методов очистки: механический, теплофизический (перегонка) и физико-химический (адсорбция, коагуляция).
Если произошла авария, резко снизилось пробивное напряжение, появился нагар, или хроматографический анализ выявил неполадки, трансформаторное масло очищают прямо в трансформаторе или в выключателе, просто отключив аппарат от сети.
Срок службы масла в трансформаторах может быть удлинен за счет применения антиокислительных присадок, термосифонных фильтров и др. Все это, однако, не исключает необходимости в регенерации отработанных масел.
Следовательно, задача регенерации отработанных масел — получить хорошо очищенный регенерат, соответствующий всем нормам на свежее масло. Стабилизация нестабильных регенератов добавкой свежего масла или антиокислительных присадок дает возможность применения простейших и доступных методов регенерации отработанных трансформаторных масел.
При регенерации трансформаторного масла важно получить хорошо очищенные регенераты, независимо от метода регенерации и степени старения масла, а стабилизацию, если масло имеет низкую стабильность, следует производить искусственным путем — добавкой свежего масла или присадки, обладающей высоким стабилизирующим действием, эффективной для регенерированных масел.
При регенерации отработанного трансформаторного масла получают до 3 фракций базовых масел для приготовления других товарных масел, таких как моторные, гидравлические, трансмиссионные масла, смазочно-охлаждающие жидкости и пластичные смазки.
В среднем после регенерации получается 70-85% масла, в зависимости от применяемого технологического способа. Химическая регенерация является при этом более дорогостоящей. При регенерации трансформаторного масла возможно получить до 90% базового масла идентичного по качеству свежему.
Можно ли сушить масло в работающем трансформаторе, подняв его крышку в сухую погоду? Будет ли при этом испаряться вода из масла или, наоборот, масло будет увлажняться?
В сухом масле с пробивным напряжением 40 — 50 кВ содержатся тысячные доли процента влаги. Для увлажнения масла, характеризуемого снижением пробивной прочности масла до 15 — 20 кВ, требуются сотые доли процента влаги.
У трансформаторов, имеющих свободное сообщение с атмосферным воздухом через расширитель (или под крышкой), происходит непрерывный влагообмен с воздухом. Если температура масла понижается, а содержание влаги в нем меньше, чем ее содержится в воздухе, масло поглощает влагу из воздуха по закону парциальных давлений паров влаги. Пробивное напряжение масла при этом уменьшается.
Влагообмен происходит также между маслом и изоляцией трансформатора (хлопчатобумажная, бакелитовая), помещенной в масло. Влага перемещается в изоляции от нагретых частей к холодным. Если трансформатор нагревается, то влага переходит из изоляции в масло, а если охлаждается, то наоборот.
Поскольку в летние месяцы влажность воздуха бывает высокой, то при свободном влагообмене пробивное напряжение масла снижается по сравнению с зимними месяцами.
Зимой, когда влажность воздуха наименьшая и разность температур между воздухом и маслом наибольшая, масло несколько подсушивается. Летом, когда на изоляцию трансформаторов чаще воздействуют грозовые перенапряжения, пробивная прочность масла трансформаторов оказывается наименьшей, в то время как ее следует иметь наибольшей.
Для ликвидации свободного влагообмена между воздухом и маслом применяют воздухоосушители с масляным затвором.
Таким образом, при открытой крышке трансформатора может происходить сушка или увлажнение масла.
Сушка масла будет происходить лучше в морозную погоду, когда в воздухе содержится наименьшее количество влаги и имеет место наибольшая разность температуры между маслом и воздухом. Но такая сушка малопроизводительна и малоэффективна, поэтому она на практике не применяется.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Качественное трансформаторное масло=надёжный трансформатор
Статья посвящена трансформаторным маслам — неотъемлемому компоненту масляного трансформатора. Подробно описаны компоненты и свойства трансформаторных масел. Даны ссылки на нормативные документы, регламентирующие свойства, испытания и эксплуатацию трансформаторных масел. Изложена парадигма выбора трансформаторного масла, обеспечивающая, в конечно счете, надёжное электроснабжение.
Основные компоненты трансформаторного масла и связанные с ними эксплуатационные свойства
В технической литературе, рассматривающей применение трансформаторных масел в трансформаторах, подробно изложены как требования к ним, так и различные аспекты физико-химических свойств этого важного компоненты силового трансформатора 3.
Рис. 1. Декларируемые характеристики трансформаторного масла ВГ
Рис. 2. Декларируемые характеристики трансформаторного масла Nytro 10XN
Нормативными документами, регулирующими использование трансформаторного масла, являются документы 5.
Трансформаторное масло в процессе эксплуатации силового или распределительного трансформатора выполняет комплексную функцию, включающую четыре основных:
Требования к трансформаторным маслам приведены в ГОСТ Р 54331-2011, который является модифицированным по отношению к международному стандарту МЭК 60 296:2003 «Жидкости для применения в электротехнике. Неиспользованные нефтяные изоляционные масла для трансформаторов и выключателей» (IEC 60296:2003 «Fluids for electrotechnical applications — Unused mineral insulating oils for transformers and switchgear»). В ГОСТ Р 54331-2011 включены требования только к ингибированным маслам, учитывающие потребности российской экономики и устанавливающие более жесткие требования к качеству продукции.
Более ранними стандартами, регламентирующими характеристики трансформаторных масел, являются ГОСТ 982-80 «Масла трансформаторные. Технические условия» и ГОСТ 10121-76 «Масло трансформаторное селективной очистки. Технические условия». ГОСТ 982-80 распространяется на трансформаторные масла сернокислотной и селективной очисток, вырабатываемые из малосернистых нефтей. ГОСТ 10121-76 распространяется на трансформаторное масло селективной очистки, содержащее не менее 0,2 % антиокислительной присадки (ионол, топанол-0 и др.).
Трансформаторные масла в соответствии с ГОСТ Р 54331-2011 характеризуются функциональными свойствами, характеристиками очистки и стойкости, рабочими характеристиками и характеристиками безопасности применения и защитой окружающей среды.
Функциональные свойства трансформаторных масел — это свойства, которые влияют на его функцию как изоляционной и охлаждающей жидкости. Они включают: вязкость, плотность, температуру текучести, содержание воды, тангенс угла диэлектрических потерь и напряжение пробоя.
Характеристиками очистки и стойкости к окислению являются характеристики масла, на которые влияют качество и тип очистки и добавленные присадки. К данным характеристикам относятся: внешний вид. поверхностное натяжение. Общее содержание серы, кислотность, коррозионная сера, содержание 2-фурфурола.
Рабочие характеристики — это свойства, влияющие на длительность работы масла в условиях эксплуатации и/или его реакцию на электрическое напряжение и температуру. Примерами таких характеристик являются: стойкость к окислению, газостойкость.
Характеристиками масла, связанными с безопасностью применения и защитой окружающей среды являются температура вспышки, плотность, содержание полициклических ароматических углеводородов, содержание полихлорированных бифенилов/терфенилов.
Чтобы проанализировать и оценить эксплуатационные свойства конкретной марки трансформаторного масла, необходимо, во-первых: знать состав этого масла; во-вторых, четко представлять за что «отвечает» каждый компонент, входящий в состав трансформаторного масла, в процессе эксплуатации трансформаторного масла в силовом или распределительном трансформаторе.
Состав трансформаторных масел приведен в таблице 1. Влияние компонентов трансформаторного масла на его свойства представлены в таблице 2.
Таблица 1. Состав трансформаторных масел
Так как трансформаторное масло является продуктом переработки нефти, то его свойства сильно коррелированы с природными свойствами той нефти, из которой его получают. Технология получения трансформаторного масла из нефти в данной статье подробно не рассматривается. Ниже отмечены лишь основные технологические способы и особенности изготовления трансформаторных масел, которые необходимы для определения парадигмы выбора трансформаторного масла применительно к конкретным условиям эксплуатации силового или распределительного трансформатора.
Трансформаторное масло получается путем перегонки и очистки солярового дистиллята — остаточной фракции после выделения более легких смесей углеводородов (лигроина, бензина и керосина). В зависимости от качества добываемой нефти, используются разные способы очистки солярового дистиллята — рафинирования.
При селективной очистке дистилляты нефти, выкипающие при атмосферном давлении в пределах около 300-400 °С очищаются фенолом. Фенол связывает смолы и соединения серы. Далее при низких температурах удаляются парафины. Последний этап очистки выполняется отбеливающей глиной. Но полученное такой селективной очисткой трансформаторное масло использовать нельзя, так как оно может быстро окислиться. Для повышения стойкости к окислению в него добавляется специальная присадка. Чаще всего применяют ионол.
Кроме фенольной очистки, применяется очистка фурфуролом. После очистки фурфуролом специальные присадки не требуются, так как фенол растворяет большую часть сернистых соединений (являющихся антиокислителями), оставляя лишь чуть больше 0,2 %. При фурфурольной очистке сохраняется до 0,6 % антиокислителей (более 60 % общей концентрации серы).
Гидроочистка трансформаторного масла применяется в различных сочетаниях с основными процессами получения масла. Обычно масла подвергают гидроочистке после очистки отбеливающими глинами. Целью гидроочистки трансформаторного масла является улучшение цвета и стабильности, улучшение характеристики вязкости, существенное уменьшение содержания сернистых соединений. Как правило, гидроочистке подвергаются депарафинизированные масла из дистиллятных рафинатов после очистки фенолом или фурфуролом, а также депарафинизированные масла из остаточных фракций после деасфальтизации пропаном и фенольной очистки.
В РФ наиболее широкое применение получили трансформаторные масла ГК, ВГ и Nytro (производство шведской компании Nynas). Масло ГК производится с 1984 г. на Ангарском нефтеперерабатывающем заводе (АНЗ) методом глубокого гидрирования (гидрокрекинга) при высоком давлении и последующей каталитической депарафинизации из сернистых парафинистых нефтей.
Масло ВГ (ТУ 38.401-58-177-96) выпускает ООО «ЛЛК Интернешнл» (компоненты поставляют заводы ПАО «ЛУКОЙЛ» «Лукойл-Нижегороднефтеоргсинтез» г. Кстово, «Лукойл-Волгограднефтепереработка» г. Волгоград, «Лукойл-Пермнефтеоргсинтез» г. Пермь). Исходными являются парафинистые нефти; технологические процессы с применением гидрокрекинга. Масло содержит присадку ионол.
Характеристики масел ВГ и Nytro 10XN, декларируемые их производителями, представлены на рис. 1 и 2 (сканы реальных документов). Реальные протоколы испытаний этих масел, полученные по результатам испытаний, даны на рис. 3 и 4 (сканы реальных документов).
Сканы реальных документов приведены не случайно. Характеристики трансформаторного масла нельзя взять из сети Интернет и считать, что в приобретенных трансформаторах оно будет именно такого качества, как указано в рекламных буклетах. Как следует из вышеизложенного, качество конечного продукта — трансформаторного масла, — постоянно меняется в зависимости от:
Поэтому при закупках силовых и распределительных трансформаторов необходимо иметь на руках документы, подтверждающие соответствие всех характеристик трансформаторного масла требованиям нормативных документов. Только в этом случае будет обеспечена надежность электроснабжения (при условии качества и надежности всех остальных частей трансформатора).
Парадигма выбора трансформаторного масла
Базовым положением парадигмы выбора трансформаторного масла является пункт 1.2 ГОСТ 15150-69 «Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды», который формулируется следующим образом:
«Изделия должны сохранять свои параметры в пределах норм, установленных техническими заданиями, стандартами или техническими условиями в течение сроков службы и сроков сохраняемости, указанных в технических заданиях, стандартах или технических условиях, после и (или) в процессе воздействия климатических факторов, значения которых установлены настоящим стандартом.
Изделия предназначаются для эксплуатации, хранения и транспортирования в диапазоне от верхнего до нижнего значения этих климатических факторов. ».
Смысл данного положения заключается в том, что если для изделия в целом установлены конкретное климатическое исполнение и категория размещения, указанные на табличке трансформатора, то завод-изготовитель гарантирует, что все составные части трансформаторы будут гарантированно надежно функционировать в соответствующем диапазоне температур окружающей среды при соответствующих условиях размещения.
Ни один трансформаторный завод на сегодня не выпускает универсальные трансформаторы, которые могут эксплуатироваться в любых районах мира. Поэтому предприятия выпускают сегодня помимо линейки стандартных трансформаторов модификации для различных климатических условий эксплуатации. Все типы климатических условий и категории размещения оборудования стандартизированы в упомянутом выше ГОСТ 15150-69. Климатическое исполнение и категория размещения в соответствии с ГОСТ Р 52719 обязательно должны быть указаны на табличке трансформатора либо в соответствующей части полного обозначения трансформатора, либо в отдельном поле, и имеет буквенно-цифровой вид, как это показано на рис. 5. В этом обозначении в соответствии с ГОСТ 15150-69:
В России основными климатическими исполнениями для силовых и распределительных трансформаторов являются «У» и «УХЛ», иногда встречается исполнение «М». Наиболее распространенные категории размещения 1 и 3. Подробные пояснения даны в таблицах 5 и 6.
Таблица 5. Пояснения к климатическим исполнениям
У | Для макроклиматического района с умеренным климатом (эксплуатация на суше, реках, озерах) |
---|---|
УХЛ | Для макроклиматических районов с умеренным и холодным климатом (эксплуатация на суше, реках, озерах) |
М | Для макроклиматического района с умеренно-холодным морским климатом (эксплуатация в районах с морским климатом) |
Таблица 6. Пояснения к категориям размещения
1 | Эксплуатация на открытом воздухе |
---|---|
3 | Эксплуатация в закрытых помещениях (объемах) с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха и воздействие песка и пыли существенно меньше, чем на открытом воздухе, например, в металлических с теплоизоляцией, каменных, бетонных, деревянных помещениях (отсутствие воздействия атмосферных осадков, прямого солнечного излучения; существенное уменьшение ветра; существенное уменьшение или отсутствие воздействия рассеянного солнечного излучения и конденсации влаги) |
В зависимости от климатического исполнения и категории размещения определяются верхние и нижние температурные границы эксплуатации трансформаторов и параметры влажности. Соответствующие значения приведены в таблице 7.
Таблица 7. Температурные диапазоны эксплуатации и параметры влажности
У1 | Температура от +40 до −45 °С, влажность до 100 % (25 °С) |
---|---|
УХЛ1 | Температура от +40 до −60 °С, влажность до 100 % (25 °С) |
М1 | Температура от +40 до −40 °С, влажность до 100 % (25 °С) |
У3 | Температура от +40 до −45 °С, влажность до 98 % (25 °С) |
УХЛ3 | Температура от +40 до −60 °С, влажность до 98 % (25 °С) |
М3 | Температура от +40 до −40 °С, влажность до 98 % (25 °С) |
Например, буквенно-цифровой код «У1», указанный на табличке трансформатора на рис. 5, означает, что трансформатор предназначен для эксплуатации на улице в районах с умеренным климатом. Температура эксплуатации от +40 до −45 °С, влажность до 100 % (25 °С).
Наибольшую сложность при составлении технического задания на закупку силового или распределительного масляного трансформатора очень часто представляет именно установка требования по трансформаторному маслу.
Для оптимального выбора трансформаторного масла необходимо представлять годовой температурный профиль региона, в котором предполагается эксплуатировать силовой или распределительный трансформатор. На рисунках 6-9 представлены четыре карты температурных профилей. Из ГОСТ 15150-69 представлены карты макроклиматического района холодного климата России (рис. 6) и макроклиматические районы земного шара (рис. 7). Более детально для России на рис. 8 приведены минимумы января, а на рис. 9 — абсолютные минимумы года. Такие температурные профили помогут не ошибиться с выбором конкретного трансформаторного масла.
Рис. 6. Границы макроклиматического района с холодным климатом на территории РФ
Рис. 7. Макроклиматические районы земного шара
Рис. 8. Распределение температуры воздуха в январе на территории РФ
Рис. 9. Абсолютные минимумы года на территории РФ
В результате обобщения вышеприведенной информации и многолетнего опыта в сфере продаж силовых и распределительных трансформаторов, представляется возможным сформулировать общее правило выбора трансформаторного масла, которое должно быть залито заводом-изготовителем в закупаемый трансформатор:
При эксплуатации трансформатора за пределами макроклиматического района с холодным климатом на территории РФ (или в любой точке земного шара) целесообразно в большинстве случаев использовать трансформаторное масло с диапазоном рабочих температур климатического исполнения У. В пределах макроклиматического района с холодным климатом необходимо использовать трансформаторное масло с диапазоном рабочих температур УХЛ1. В соответствии с указанным правилом, трансформатор в пределах большей части федеральных округов (СЗФО, ЦФО, ПФО, СКФО, ЮФО, КФО) должен иметь климатическое исполнение соответственно У1. Необходимость климатического исполнения УХЛ1 следует рассматривать при эксплуатации на территории УрФО, СФО и ДВФО.
Заключение
Трансформаторное масло, наряду с активной частью, является важнейшим компонентом, обеспечивающим надежную работу трансформатора в самых сложных климатических условиях. Выбор трансформаторного масла — важный и ответственный момент при закупке трансформатора. Однако, необходимо точно представлять себе, на основе температурных профилей региона эксплуатации, в каком диапазоне температур будет работать трансформатор.
Автор выражает искреннюю благодарность руководству и ведущим специалистам завода «Трансформер» за предоставленные материалы и принципиальное, конструктивное обсуждение положений и выводов данной статьи.
Список литературы
Автор: кандидат технических наук, независимый эксперт Савинцев Юрий Михайлович.