sklearn python что это

Он также предоставляет несколько наборов данных, которые вы можете использовать для тестирования ваших моделей.

Scikit-learn не реализует все, что связано с машинным обучением. Например, он не имеет комплексной поддержки для:

Scikit-learn основан на NumPy и SciPy, поэтому необходимо понять хотя бы азы этих двух библиотек, чтобы эффективно применять Scikit-learn.

В этой статье кратко представим некоторые возможности scikit-learn.

Предварительная обработка данных

Вы можете использовать scikit-learn для подготовки ваших данных к алгоритмам машинного обучения: стандартизации или нормализации данных, кодирования категориальных переменных и многое другое.

Давайте сначала определим массив NumPy, с которым будем работать:

Уменьшение размерности

Уменьшение размерности включает в себя выбор или извлечение наиболее важных компонентов (признаков) многомерного набора данных. Scikit-learn предлагает несколько подходов к уменьшению размерности. Одним из них является анализ основных компонентов (PCA).

Выбор модели

Для обучения и тестирования моделей машинного обучения, вам необходимо случайным образом разбивать данные на подмножества. Это включает как входы, так и их соответствующие выходы. Функция sklearn.model_selection.train_test_split () полезна в таких случаях:

В дополнение к обычному разделению наборов данных, scikit-learn предоставляет средства для осуществления перекрестной проверки, настройки гиперпараметров ваших моделей с помощью поиска по сетке, вычисления многих величин, которые показывают производительность модели (например, коэффициент детерминации, среднеквадратичная ошибка, показатель отклонения с пояснением, матрица ошибок, отчет о классификации, f-показатели и многое другое).

Набор данных

Scikit-learn предоставляет несколько наборов данных, подходящих для изучения и тестирования ваших моделей. В основном, это известные наборы данных. Они представляют собой достаточный объем данных для тестирования моделей и в то же время не очень большой, что обеспечивает приемлемую продолжительность обучения.

Например, функция sklearn.datasets.load_boston () отображает данные о ценах на дома в районе Бостона (цены не обновляются!). Есть 506 наблюдений, а входная матрица имеет 13 столбцов (признаков):

Этот набор данных подходит для многовариантной регрессии.

Этот набор данных подходит для классификации. Он содержит 13 функций, связанных с тремя различными винодельческими компаниями из Италии, и 178 наблюдений.

Регрессия

Scikit-learn поддерживает различные методы регрессии начиная с линейной регрессии, метода k-ближайших соседей посредством полиномиальной регрессии, регрессии опорных векторов, деревьев принятия решений и т.д., до ансамбля методов, таких как random forest и градиентный бустинг. Он также поддерживает нейронные сети, но не в такой степени, как специализированные библиотеки, например, как TensorFlow.

Ниже покажем регрессию random forest.

Обычно мы начинаем наше регрессионное путешествие с импорта необходимых нам пакетов, классов и функций:

Следующим шагом является получение данных для работы и разделение этих данных на обучающее и тестовое подмножества. Мы будем использовать набор данных Бостона:

Некоторые методы требуют масштабирования (стандартизации) данных, в то время как для других методов это необязательно. На этот раз мы продолжим без масштабирования.

Теперь нам нужно создать наш регрессор и обучить его с помощью подмножества данных, выбранного для обучения:

После того, как модель обучена, мы проверяем коэффициент детерминации на обучающем подмножестве данных и, что более важно, на тестовом подмножестве данных, который не использовался при обучении моделей.

Классификация

Scikit-learn выполняет классификацию почти так же, как регрессию. Он поддерживает различные методы классификации, такие как логистическая регрессия и k-ближайшие соседи, метод опорных векторов, наивный байесовский классификатор, дерево принятия решений, а также ансамбль методов, такие как random forest, AdaBoost и градиентный бустинг.

В этой статье показано, как использовать метод random forest для классификации. Этот подход весьма аналогичен подходу, применяемому в случае регрессии. Но теперь мы будем использовать набор данных, связанных с вином, определять классификатор и оценивать его с точностью классификации вместо коэффициента детерминации.

Кластерный анализ

В этой статье мы покажем метод k-средних. При его реализации, будьте внимательны, имеет ли смысл стандартизировать или нормализовать ваши данные и особенно, какая мера расстояния подходит (в большинстве случаев, это евклидово расстояние).

Опять же, мы начинаем с импорта и получения данных. На этот раз мы возьмем NumPy и sklearn.cluster.KMeans:

Следующим шагом является масштабирование данных, но это не всегда обязательно. Однако во многих случаях это действительно хорошая идея. Как только предварительная обработка данных завершена, мы создаем копию KMeans и подгоняем ее под наши данные:

Итак, мы готовы получить результаты, такие как координаты центров кластеров и метки кластеров, которым принадлежит каждое наблюдение:

Заключение

В этой статье представлены только основы Scikit-Learn, очень популярного пакета Python по data science и machine learning. Это одна из основных библиотек Python для этих целей.

Источник

Введение в Scikit-learn

Библиотека Scikit-learn — самый распространенный выбор для решения задач классического машинного обучения. Она предоставляет широкий выбор алгоритмов обучения с учителем и без учителя. Обучение с учителем предполагает наличие размеченного датасета, в котором известно значение целевого признака. В то время как обучение без учителя не предполагает наличия разметки в датасете — требуется научиться извлекать полезную информацию из произвольных данных. Одно из основных преимуществ библиотеки состоит в том, что она работает на основе нескольких распространенных математических библиотек, и легко интегрирует их друг с другом. Еще одним преимуществом является широкое сообщество и подробная документация. Scikit-learn широко используется для промышленных систем, в которых применяются алгоритмы классического машинного обучения, для исследований, а так же для новичков, которые только делает первые шаги в области машинного обучения.

Для своей работы, scikit-learn использует следующие популярные библиотеки:

Что содержит Scikit-learn

В задачи библиотеки не входит загрузка, обработка, манипуляция данными и их визуализация. С этими задачами отлично справляются библиотеки Pandas и NumPy. Scikit-learn специализируется на алгоритмах машинного обучения для решения задач обучения с учителем: классификации (предсказание признака, множество допустимых значений которого ограничено) и регрессии (предсказание признака с вещественными значениями), а также для задач обучения без учителя: кластеризации (разбиение данных по классам, которые модель определит сама), понижения размерности (представление данных в пространстве меньшей размерности с минимальными потерями полезной информации) и детектирования аномалий.

Библиотека реализует следующие основные методы:

Это — лишь базовый список. Помимо этого, Scikit-learn содержит функции для расчета значений метрик, выбора моделей, препроцессинга данных и другие.

Пример применения

Чтобы дать вам представление о том, как легко обучать и тестировать модель ML с помощью Scikit-Learn, вот пример того, как это сделать для классификатора дерева решений!

Деревья решений для классификации и регрессии очень просты в использовании в Scikit-Learn. Сначала мы загрузим наш датасет, который фактически встроен в библиотеку. Затем мы инициализируем наше дерево решений для классификации. Обучение модели — это просто одна строчка .fit(X, Y), где X — обучающая выборка в формате массива NumPy, а Y — массив целевых значений, также в формате массива NumPy.

Scikit-Learn также позволяет нам визуализировать наше дерево. Для этого есть несколько настриваемых опций, которые помогут визуализировать узлы принятия решений и разбить изученную модель, что очень полезно для понимания того, как она работает. Ниже мы раскрасим узлы на основе имен признаков и отобразим информацию о классе и объектах каждого узла.

sklearn python что это. Смотреть фото sklearn python что это. Смотреть картинку sklearn python что это. Картинка про sklearn python что это. Фото sklearn python что это

Каждый из параметров алгоритма интуитивно назван и доступно объяснен. Кроме того, разработчики также предлагают туториалы с примером кода о том, как обучать и применять модель, ее плюсы и минусы и практические советы по применению.

Источник

Введение в машинное обучение с помощью scikit-learn (перевод документации)

Данная статья представляет собой перевод введения в машинное обучение, представленное на официальном сайте scikit-learn.

В этой части мы поговорим о терминах машинного обучения, которые мы используем для работы с scikit-learn, и приведем простой пример обучения.

Машинное обучение: постановка вопроса

В общем, задача машинного обучения сводится к получению набора выборок данных и, в последствии, к попыткам предсказать свойства неизвестных данных. Если каждый набор данных — это не одиночное число, а например, многомерная сущность (multi-dimensional entry или multivariate data), то он должен иметь несколько признаков или фич.

Обучающая выборка и контрольная выборка

Машинное обучение представляет собой обучение выделению некоторых свойств выборки данных и применение их к новым данным. Вот почему общепринятая практика оценки алгоритма в Машинном обучении — это разбиение данных вручную на два набора данных. Первый из них — это обучающая выборка, на ней изучаются свойства данных. Второй — контрольная выборка, на ней тестируются эти свойства.

Загрузка типовой выборки

Scikit-learn устанавливается вместе с несколькими стандартными выборками данных, например, iris и digits для классификации, и boston house prices dataset для регрессионного анализа.

Например, набор данных digits.data дает доступ к фичам, которые можно использовать для классификации числовых выборок:

а digits.target дает возможность определить в числовой выборке, какой цифре соответствует каждое числовое представление, чему мы и будем обучаться:

Форма массива данных

Обычно, данные представлены в виде двухмерного массива, такую форму имеют n_samples, n_features, хотя исходные данные могут иметь другую форму. В случае с числами, каждая исходная выборка — это представление формой (8, 8), к которому можно получить доступ, используя:

Следующий простой пример с этим набором данных иллюстрирует, как, исходя из поставленной задачи, можно сформировать данные для использования в scikit-learn.

Обучение и прогнозирование

В случае с числовым набором данных цель обучения — это предсказать, принимая во внимание представление данных, какая цифра изображена. У нас есть образцы каждого из десяти возможных классов (числа от 0 до 9), на которым мы обучаем алгоритм оценки (estimator), чтобы он мог предсказать класс, к которому принадлежит неразмеченный образец.

В scikit-learn алгоритм оценки для классификатора — это Python объект, который исполняет методы fit(X, y) и predict(T). Пример алгоритма оценки — это класс sklearn.svm.SVC выполняет классификацию методом опорных векторов. Конструктор алгоритма оценки принимает в качестве аргументов параметры модели, но для сокращения времени, мы будем рассматривать этот алгоритм как черный ящик:

Выбор параметров для модели

В этом примере мы установили значение gamma вручную. Также можно автоматически определить подходящие значения для параметров, используя такие инструменты как grid search и cross validation.

Мы назвали экземпляр нашего алгоритма оценки clf, так как он является классификатором. Теперь он должен быть применен к модели, т.е. он должен обучится на модели. Это осуществляется путем прогона нашей обучающей выборки через метод fit. В качестве обучающей выборки мы можем использовать все представления наших данных, кроме последнего. Мы сделали эту выборку с помощью синтаксиса Python [:-1], что создало новый массив, содержащий все, кроме последней, сущности из digits.data:

Теперь можно предсказать новые значения, в частности, мы можем спросить классификатор, какое число содержится в последнем представлении в наборе данных digits, которое мы не использовали в обучении классификатора:

Соответствующее изображение представлено ниже:

sklearn python что это. Смотреть фото sklearn python что это. Смотреть картинку sklearn python что это. Картинка про sklearn python что это. Фото sklearn python что это

Как вы можете видеть, это сложная задача: представление в плохом разрешении. Вы согласны с классификатором?

Полное решение этой задачи классификации доступно в качестве примера, который вы можете запустить и изучить: Recognizing hand-written digits.

Сохранение модели

В scikit модель можно сохранить, используя встроенный модуль, названный pickle:

В частном случае применения scikit, может быть полезнее заметить pickle на библиотеку joblib (joblib.dump & joblib.load), которая более эффективна для работы с большим объемом данных, но она позволяет сохранять модель только на диске, а не в строке:

Потом можно загрузить сохраненную модель(возможно в другой Python процесс) с помощью:

Обратите внимание, что joblib.dump возвращает список имен файлов. Каждый отдельный массив numpy, содержащийся в clf объекте, сеарилизован как отдельный файл в файловой системе. Все файлы должны находиться в одной папке, когда вы снова загружаете модель с помощью joblib.load.

Обратите внимание, что у pickle есть некоторые проблемы с безопасностью и сопровождением. Для получения более детальной информации о хранении моделей в scikit-learn обратитесь к секции Model persistence.

Источник

Обзор методов классификации в машинном обучении с помощью Scikit-Learn

sklearn python что это. Смотреть фото sklearn python что это. Смотреть картинку sklearn python что это. Картинка про sklearn python что это. Фото sklearn python что это

Для машинного обучения на Python написано очень много библиотек. Сегодня мы рассмотрим одну из самых популярных — Scikit-Learn.

Scikit-Learn упрощает процесс создания классификатора и помогает более чётко выделить концепции машинного обучения, реализуя их с помощью понятной, хорошо документированной и надёжной библиотекой.

Что такое Scikit-Learn?

Scikit-Learn — это Python-библиотека, впервые разработанная David Cournapeau в 2007 году. В этой библиотеке находится большое количество алгоритмов для задач, связанных с классификацией и машинным обучением в целом.

Scikit-Learn базируется на библиотеке SciPy, которую нужно установить перед началом работы.

Основные термины

В системах машинного обучения или же системах нейросетей существуют входы и выходы. То, что подаётся на входы, принято называть признаками (англ. features).

Признаки по существу являются тем же, что и переменные в научном эксперименте — они характеризуют какой-либо наблюдаемый феномен и их можно как-то количественно измерить.

Когда признаки подаются на входы системы машинного обучения, эта система пытается найти совпадения, заметить закономерность между признаками. На выходе генерируется результат этой работы.

Этот результат принято называть меткой (англ. label), поскольку у выходов есть некая пометка, выданная им системой, т. е. предположение (прогноз) о том, в какую категорию попадает выход после классификации.

sklearn python что это. Смотреть фото sklearn python что это. Смотреть картинку sklearn python что это. Картинка про sklearn python что это. Фото sklearn python что это

В контексте машинного обучения классификация относится к обучению с учителем. Такой тип обучения подразумевает, что данные, подаваемые на входы системы, уже помечены, а важная часть признаков уже разделена на отдельные категории или классы. Поэтому сеть уже знает, какая часть входов важна, а какую часть можно самостоятельно проверить. Пример классификации — сортировка различных растений на группы, например «папоротники» и «покрытосеменные». Подобная задача может быть выполнена с помощью Дерева Решений — одного из типов классификатора в Scikit-Learn.

При обучении без учителя в систему подаются непомеченные данные, и она должна попытаться сама разделить эти данные на категории. Так как классификация относится к типу обучения с учителем, способ обучения без учителя в этой статье рассматриваться не будет.

Процесс обучения модели — это подача данных для нейросети, которая в результате должна вывести определённые шаблоны для данных. В процессе обучения модели с учителем на вход подаются признаки и метки, а при прогнозировании на вход классификатора подаются только признаки.

Принимаемые сетью данные делятся на две группы: набор данных для обучения и набор для тестирования. Не стоит проверять сеть на том же наборе данных, на которых она обучалась, т. к. модель уже будет «заточена» под этот набор.

Типы классификаторов

Scikit-Learn даёт доступ ко множеству различных алгоритмов классификации. Вот основные из них:

На сайте Scikit-Learn есть много литературы на тему этих алгоритмов с кратким пояснением работы каждого из них.

Метод k-ближайших соседей (K-Nearest Neighbors)

sklearn python что это. Смотреть фото sklearn python что это. Смотреть картинку sklearn python что это. Картинка про sklearn python что это. Фото sklearn python что это

Этот метод работает с помощью поиска кратчайшей дистанции между тестируемым объектом и ближайшими к нему классифицированным объектами из обучающего набора. Классифицируемый объект будет относится к тому классу, к которому принадлежит ближайший объект набора.

Классификатор дерева решений (Decision Tree Classifier)

Этот классификатор разбивает данные на всё меньшие и меньшие подмножества на основе разных критериев, т. е. у каждого подмножества своя сортирующая категория. С каждым разделением количество объектов определённого критерия уменьшается.

Классификация подойдёт к концу, когда сеть дойдёт до подмножества только с одним объектом. Если объединить несколько подобных деревьев решений, то получится так называемый Случайный Лес (англ. Random Forest).

Наивный байесовский классификатор (Naive Bayes)

Такой классификатор вычисляет вероятность принадлежности объекта к какому-то классу. Эта вероятность вычисляется из шанса, что какое-то событие произойдёт, с опорой на уже на произошедшие события.

Каждый параметр классифицируемого объекта считается независимым от других параметров.

Линейный дискриминантный анализ (Linear Discriminant Analysis)

Этот метод работает путём уменьшения размерности набора данных, проецируя все точки данных на линию. Потом он комбинирует эти точки в классы, базируясь на их расстоянии от центральной точки.

Этот метод, как можно уже догадаться, относится к линейным алгоритмам классификации, т. е. он хорошо подходит для данных с линейной зависимостью.

Метод опорных векторов (Support Vector Machines)

sklearn python что это. Смотреть фото sklearn python что это. Смотреть картинку sklearn python что это. Картинка про sklearn python что это. Фото sklearn python что это

Работа метода опорных векторов заключается в рисовании линии между разными кластерами точек, которые нужно сгруппировать в классы. С одной стороны линии будут точки, принадлежащие одному классу, с другой стороны — к другому классу.

Классификатор будет пытаться увеличить расстояние между рисуемыми линиями и точками на разных сторонах, чтобы увеличить свою «уверенность» определения класса. Когда все точки построены, сторона, на которую они падают — это класс, которому эти точки принадлежат.

Логистическая регрессия (Logistic Regression)

У каждого признака есть своя метка, равная только 0 или только 1. Логистическая регрессия является линейным классификатором и поэтому используется, когда в данных прослеживается какая-то линейная зависимость.

Примеры задач классификации

Задача классификации — эта любая задача, где нужно определить тип объекта из двух и более существующих классов. Такие задачи могут быть разными: определение, кошка на изображении или собака, или определение качества вина на основе его кислотности и содержания алкоголя.

В зависимости от задачи классификации вы будете использовать разные типы классификаторов. Например, если классификация содержит какую-то бинарную логику, то к ней лучше всего подойдёт логистическая регрессия.

По мере накопления опыта вам будет проще выбирать подходящий тип классификатора. Однако хорошей практикой является реализация нескольких подходящих классификаторов и выбор наиболее оптимального и производительного.

Реализация классификатора

Первый шаг в реализации классификатора — его импорт в Python. Вот как это выглядит для логистической регрессии:

Вот импорты остальных классификаторов, рассмотренных выше:

Однако, это не все классификаторы, которые есть в Scikit-Learn. Про остальные можно прочитать на соответствующей странице в документации.

После этого нужно создать экземпляр классификатора. Сделать это можно создав переменную и вызвав функцию, связанную с классификатором.

Теперь классификатор нужно обучить. Перед этим нужно «подогнать» его под тренировочные данные.

Обучающие признаки и метки помещаются в классификатор через функцию fit :

Эти этапы (создание экземпляра, обучение и классификация) являются основными при работе с классификаторами в Scikit-Learn. Но эта библиотека может управлять не только классификаторами, но и самими данными. Чтобы разобраться в том, как данные и классификатор работают вместе над задачей классификации, нужно разобраться в процессах машинного обучения в целом.

Процесс машинного обучения

Процесс содержит в себе следующие этапы: подготовка данных, создание обучающих наборов, создание классификатора, обучение классификатора, составление прогнозов, оценка производительности классификатора и настройка параметров.

Во-первых, нужно подготовить набор данных для классификатора — преобразовать данные в корректную для классификации форму и обработать любые аномалии в этих данных. Отсутствие значений в данных либо любые другие отклонения — все их нужно обработать, иначе они могут негативно влиять на производительность классификатора. Этот этап называется предварительной обработкой данных (англ. data preprocessing).

Следующим шагом будет разделение данных на обучающие и тестовые наборы. Для этого в Scikit-Learn существует отличная функция traintestsplit.

Как уже было сказано выше, классификатор должен быть создан и обучен на тренировочном наборе данных. После этих шагов модель уже может делать прогнозы. Сравнивая показания классификатора с фактически известными данными, можно делать вывод о точности классификатора.

Вероятнее всего, вам нужно будет «корректировать» параметры классификатора, пока вы не достигните желаемой точности (т. к. маловероятно, что классификатор будет соответствовать всем вашим требованиям с первого же запуска).

Ниже будет представлен пример работы машинного обучения от обработки данных и до оценки.

Реализация образца классификации

Поскольку набор данных iris достаточно распространён, в Scikit-Learn он уже присутствует, достаточно лишь заложить эту команду:

Тем не менее, тут ещё нужно подгрузить CSV-файл, который можно скачать здесь.

Благодаря тому, что данные уже были подготовлены, долгой предварительной обработки они не требуют. Единственное, что может понадобиться — убрать ненужные столбцы (например ID ) таким образом:

Теперь нужно определить признаки и метки. С библиотекой Pandas можно легко «нарезать» таблицу и выбрать определённые строки/столбцы с помощью функции iloc() :

Код выше выбирает каждую строку и столбец, обрезав при этом последний столбец.

Выбрать признаки интересующего вас набора данных можно также передав в скобках заголовки столбцов:

После того, как вы выбрали нужные признаки и метки, их можно разделить на тренировочные и тестовые наборы, используя функцию train_test_split() :

Чтобы убедиться в правильности обработки данных, используйте:

Теперь можно создавать экземпляр классификатора, например метод опорных векторов и метод k-ближайших соседей:

Теперь нужно обучить эти два классификатора:

Эти команды обучили модели и теперь классификаторы могут делать прогнозы и сохранять результат в какую-либо переменную.

Теперь пришло время оценить точности классификатора. Существует несколько способов это сделать.

Нужно передать показания прогноза относительно фактически верных меток, значения которых были сохранены ранее.

Вот, к примеру, результат полученных метрик:

Поначалу кажется, что KNN работает точнее. Вот матрица неточностей для SVC:

Количество правильных прогнозов идёт с верхнего левого угла в нижний правый. Вот для сравнения метрики классификации для KNN:

Оценка классификатора

Когда дело доходит до оценки точности классификатора, есть несколько вариантов.

Точность классификации

Точность классификации измерять проще всего, и поэтому этот параметр чаще всего используется. Значение точности — это число правильных прогнозов, делённое на число всех прогнозов или, проще говоря, отношение правильных прогнозов ко всем.

Хоть этот показатель и может быстро дать вам явное представление о производительности классификатора, его лучше использовать, когда каждый класс имеет хотя бы примерно одинаковое количество примеров. Так как такое будет случаться редко, рекомендуется использовать другие показатели классификации.

Логарифмические потери

Значение Логарифмических Потерь (англ. Logarithmic Loss) — или просто логлосс — показывает, насколько классификатор «уверен» в своём прогнозе. Логлосс возвращает вероятность принадлежности объекта к тому или иному классу, суммируя их, чтобы дать общее представление об «уверенности» классификатора.

Этот показатель лежит в промежутке от 0 до 1 — «совсем не уверен» и «полностью уверен» соответственно. Логлосс сильно падает, когда классификатор сильно «уверен» в неправильном ответе.

Площадь ROC-кривой (AUC)

Такой показатель используется только при бинарной классификации. Площадь под ROC-кривой представляет способность классификатора различать подходящие и не подходящие какому-либо классу объекты.

Значение 1.0 : вся область, попадающая под кривую, представляет собой идеальный классификатор. Следовательно, 0.5 означает, что точность классификатора соответствует случайности. Кривая рассчитывается с учётом точности и специфичности модели. Подробнее о расчётах можно прочитать здесь.

Матрица неточностей

Матрица неточностей (англ. Confusion Matrix) — это таблица или диаграмма, показывающая точность прогнозирования классификатора в отношении двух и более классов. Прогнозы классификатора находятся на оси X, а результат (точность) — на оси Y.

Ячейки таблицы заполняются количеством прогнозов классификатора. Правильные прогнозы идут по диагонали от верхнего левого угла в нижний правый. Про это можно почитать в данной статье.

Отчёт о классификации

В библиотеке Scikit-Learn уже встроена возможность создавать отчёты о производительности классификатора. Эти отчёты дают интуитивно понятное представление о работе модели.

Заключение

Чтобы лучше вникнуть в работу с Scikit-Learn, неплохо было бы узнать больше о работе различных методов классификации. После этого стоит лучше узнать о замере производительности классификаторов. Однако понимание многих нюансов в классификации приходит только со временем.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *