rca сертификат что это
Что такое RSA-ключ ЕГАИС?
Регулятор закона в целях контроля передвижения каждой бутылки алкоголя от производства до покупателя внедрил всероссийскую базу данных. Это обеспечивает прозрачность движения каждой единицы товара, а также помогает бороться с недоимками по фискальным платежам. Для работы в системе ЕГАИС требуется иметь крипто-ключ и сформированный ключ RSA, а также транспортный модуль. Все это необходимо для защищенной работы в системе, чтобы третьи лица не смогли воспользоваться информацией в своих интересах.
Ключ RSA ЕГАИС – что это?
Представляет собой сертификат для защищенного соединения с единой платформой. Система необходима для передачи данных в безопасном режиме. Криптосистема позволяет пользоваться ключом шифрования только соответствующим зарегистрированным субъектам. Все данные зашифрованы от посторонних третьих лиц. РСА-ключ для ЕГАИС записывается на крипто-ключ на веб-ресурсе официального портала. Операция по записи зашифрованных данных предоставляется бесплатно.
В процессе осуществления профессиональной деятельности для каждого юридического подразделения необходимо получить собственный RSA-ключ для работы с использованием Рутокен в ЕГАИС. Перед тем как зарегистрировать соответствующие данные требуется удостовериться, что запущен аппаратный крипто-ключ той компании, для которой формируется сертификат РСА.
Что нужно для формирования ключа RSA ЕГАИС Рутокен
На начальной стадии пользователю потребуется зарегистрироваться на официальном ресурсе. После этого понадобится зайти в Личный кабинет с помощью уже имеющейся электронной подписи. В панели управления необходимо будет выбрать графу «Показать сертификат». После чего вы сможете увидеть все сертификационные материалы со сведениями о ваших точках с указанием всех идентификационных данных. Представленная информация необходима для записи специального RSA-ключа.
На следующем этапе нужно будет перейти в раздел «Получить ключ». На табло вы сможете увидеть перечень пунктов сбыта АП, которые были указаны вами при прохождении процедуры регистрации. Затем вы можете выбрать соответствующий пункт, для которого предназначен специализированный крипто-ключ и выбрать поле «Сформировать ключ». Электронная платформа запросит ввести пароль. В случае какого-либо затруднения вы можете обратиться в службу поддержки на официальном веб-ресурсе.
После того как вы установили или перезаписали РСА сертификат ЕГАИС на Рутокен можно приступать к установке УТМ. Запустив универсальный транспортный модуль, вы сможете приступить к производству и продаже алкоголя в рамках новых положений законодателя. Дополнительно нужно будет позаботиться о приобретении сканеров с целью считывания данных и стабильного осуществления всех процессов на электронной платформе.
Как обновить сертификат РСА ЕГАИС Рутокен
В связи с обновлением сертификата все субъекты алкорынка обязаны произвести обновление ключа RSA. В самом начале необходимо будет удалить старый сертификат и уже затем установить новый.
После удаления необходимо произвести обновление ключа RSA ЕГАИС Рутокен. Все манипуляции нужно будет выполнить на официальном веб-портале. При формировании ключа вам нужно будет ввести пин-код. Если все идентификационные данные будут введены правильно, сертификат будет зарегистрирован. В случае возникновения каких-либо сложностей при продлении ключа РСА ЕГАИС обратитесь в техподдержку. Специалисты могут подключиться удаленно к вашему компьютерному устройству в целях наиболее оперативного решения вопроса.
Ошибки с RSA-ключом ЕГАИС
В процессе генерации РСА сертификата могут возникать определенные сложности. В большинстве случаев существуют две причины. Первая – это неполадки на веб-ресурсе. Вторая – некорректные настройки компьютерного оборудования. Для устранения проблем с RSA-ключом ЕГАИС потребуется выполнить следующие действия:
Если же при обновлении ключа RSA ЕГАИС возникнут какие-либо сложности и не будет появляться графа «Запрос пин-кода», то необходимо в компьютерном оборудовании произвести соответствующие корректировки в настройках. В большинстве случаев неправильные настройки являются следствием невыполнения операций по формированию ключа.
При работе с использованием системы RuToken вам потребуется зайти в Панель управления, где потребуется выбрать Настройки, напротив строки Рутокен вам необходимо выбрать значение Microsoft Base Smart Card Crypto Provider. После этого нужно попробовать еще раз сформировать ключ. Если возникнут сложности, необходимо произвести обновление драйверов.
Помимо этого, проблема возникает при неправильном введении пин-кода. Если вы несколько раз неправильно ввели данные, то носитель может заблокироваться. Тогда вам придется обратиться в удостоверяющий центр. Дополнительно причиной ошибки может стать несоответствие адреса РСА ключа, указанного в лицензии. Если же будет выявление несоответствие данных, нужно будет обратиться в техподдержку Росалкогольрегулирования. С соответствующим запросом можно обратиться как лично, так и через Личный кабинет. Стоит отметить, что в некоторых случаях после внесения корректировок может потребоваться повторное формирование РСА-ключа.
Итак, для успешной работы во всероссийской системе вам помимо крипто-ключа и установки УТМ необходимо позаботиться о формировании RSA-ключа.
Как исправить ошибку при генерации RSA ключа для ЕГАИС?
При генерации RSA ключа (транспортного ключа) в личном кабинете ЕГАИС алкоголь могут возникать ошибки. Разобраться в этих ошибках непросто специалисту, не говоря уже о рядовом пользователе.
Попробуем разобрать типовые ошибки, которые возникают при генерации транспортных RSA ключей ЕГАИС.
Почему возникает ошибка при генерации ключа ЕГАИС?
В основном ошибки при генерации связаны с некорректными настройками компьютера.
Общие рекомендации для успешной генерации транспортного RSA ключа ЕГАИС
Для успешной генерации транспортных ключей на сайте ЕГАИС необходимо соблюсти некоторые требования и рекомендации:
Ошибка при генерации RSA ключа «Выберете устройство чтения смарт карт. «
Если при генерации ключа ЕГАИС вместо окна запроса пин-кода Вы увидели окно «Выберете устройство чтения смарт карт» или «Обнаружена смарт-карта, но она не может использоваться для текущей операции. » или «Смарт-карта не может выполнить запрошенную операцию либо операция требует другой смарт-карты», значит нужно скорректировать настройки компьютера.
Такая ошибка возникает из-за того, что настройки вашего компьютера не позволяют сформировать ключи, необходимые для работы УТМ ЕГАИС.
Если Вы используете носитель Рутокен ЭЦП, то вам необходимо сделать следующее:
Пробуйте сгенерировать транспортный ключ ЕГАИС еще раз.
В крайне редких случаях, если генерация ключа не проходит, помогает утилита восстановления работоспособности Рутокен (позволяет правильно определить драйвера носителя в системе).
Все должно получиться!
Ошибка в методе createCertificateRequest Error: CKR_PNI_INCORRECT
В этой ошибке прямым текстом, правда по иностранному, написано, что неверно введен пин-код.
Проверьте правильность ввода пин-кодов. Если на вашем носителе установлен пин-код по умолчанию. и Вы его не помните, то напоминаем:
Если не подходят стандартные пин-коды и пин-код, который установили Вы, то скорее всего носитель заблокировался. Для разблокировки носителя обратитесь к тому, у кого получали ключи, должны помочь.
Ошибка в методе createCertificateRequest Error: CKR_ATTRIBUTE_TYPE_INVALID
Такая ошибка была нами зафиксирована при использовании ключа JaCarta SE.
Для исправления ошибки необходимо инициализировать раздел PKI на носителе. Для этого откройте Единый клиент JaCarta желательно включить интерфейс Администратора (снизу слева кнопка «Переключиться в режим администрирования»). Перейдите вверху во вкладку PKI и нажмите «Инициализировать». При запросе пин-кода введите пин-код Администратора 00000000, пин-код Пользователя 11111111.
После успешной инициализации попробуйте снова сгенерировать транспортный ключ.
Также не забывайте о том, что для нормальной работы вашего защищенного носителя для ЕГАИС должен быть установлен свежий драйвер ключа!
Решения самых популярных проблем с ЕГАИС Вы можете найти в нашем Telegram канале «ЕГАИС простыми словами» (@egais_is_easy ).
Шифрование при помощи алгоритма RSA
RSA – один из методов шифрования, который нельзя назвать самым безопасным, так как был разработан более 40 лет назад. Повышенная безопасность новых технологий не мешает RSA использоваться и по сей день, например, для передачи зашифрованных ключей.
Что представляет собой алгоритм?
Дата создания алгоритма RSA 1977 год. Аббревиатура придумана на основе фамилий разработчиков: R – Ривест, S – Шамир, A – Адлеман. Первый буквы и стали являться наименованием для шифрования и технологии в целом.
Несмотря на дату официального создания, основа системы была разработана в 1973 году Клиффордом Коксом. Алгоритм английского математика использовался исключительно засекреченными лицами, технологию не предоставляли для обычных граждан.
Шифрование
Работа RSA-шифрования основывается на генерации ключей. Пользователь создает публичный шифр, основанный на двух больших числах и вспомогательных значениях. Если код простейший, то прочесть сообщение с его помощью будет легко, но процедура усложняется, если генерируется длинный ключ.
За время своего существования RSA-шифрование было вдоль и поперек изучено, поэтому метод не может считаться эффективным и безопасным. Алгоритм подразумевает, что для его использования потребуется затрачивать какое-то время, что является крупным минусом на сегодняшний день.
Алгоритм цифровой подписи RSA применяется для передачи общих кодов доступа в виде шифра. С его помощью симметричный ключ, используемый для скрытия и чтения большого количества данных, достигает своего адресата.
Сегодня в криптомире повсеместно используются асимметрические ключи благодаря разработкам Диффи и Хеллмана, представленными общественности в 1976 году. Но полученный общий код невозможно было использовать в полной мере, так как принципы факторинга еще не были до конца изучены.
Разработки были продолжены троицей программистов, доработавших механизм функции, направляемой по одному адресату. Его главным плюсом являлась сложность раскодирования. Разработанная система ассиметричного шифрования впоследствии стала называться RSA.
Цифровая подпись
Пришедшая эра электронных документов повлекла за собой развитие соответствущих подписей. Они необходимы для признания документов официальными. Цифровая подпись является переводом данных на криптографический язык.
Благодаря такой основе системе, подпись конфиденциальна. Вся содержащаяся информация сторонах надежно защищена.
Электронная подпись и RSA– это неделимый союз, так как первый не может существовать без второго. В киберпространстве существует два вида ключей: публичный и приватный. Если первый доступен любому пользователю, то второй является средством защиты от получения данных третьими лицами.
Благодаря RSA-шифрованию документ является зашифрованным, но доступ к нему может быть получен в любой момент. Расшифровка подписи для проверки происходит при помощи закрытого, а предоставление доступа к заверенному документу через открытый ключ.
Скорость работы
Процесс шифрования и дешифровки RSA использует метод возведения в степень (умножение определенное количество раз). Для практических приложений публичный ключ возводится в небольшую степень. Часто можно встретить ситуацию, когда группа устанавливает одну и ту же степень возведения с разными модулями. Это дает возможность ускорить дешифровку и проверку, если сравнивать с процессом шифрования и подписания.
За основу можно взять условное число k, которым является количество битов. В таком случае требуемое количество шагов будет равно в зависимости от необходимых действий:
Для ускорения проведения процедур на основе RSA постоянно применяются новые разработки. В качестве таковой мог стать способ «быстрого умножения», который позволял уменьшить число требуемых шагов для успешного и безопасного выполнения операции. БПФ (FFT) не прижилось, ведь для реализации требуется сложное ПО, а для быстрой работы понадобится сделать размер ключей идентичным.
Важно! Сегодня алгоритм RSA проигрывает в скорости большинству альтернативных способов блокового шифрования. Так DES минимум в сто раз быстрее при аппаратной реализации.
Как взламывают алгоритм RSA?
RSA – это изученный метод шифрования, который можно взломать несколькими способами. Самым эффективным является поиск закрытого ключа, который позволяет открыть информацию из открытого ключа. Позволяет получать всю информацию, которая была зашифрованной, также внедряться в код подписи, подделывая ее. Для проведения атаки необходимо найти сомножители общего модуля n – p и q. Благодаря данным p, q, e, хакер может без проблем получить частный показатель d. Основная трудность метода – поиск сомножителей. В основе безопасности лежит схема определения множителей, что позволяет создать задачу без эффективных вариантов решения.
Система взлома работает не только для поиска n на основании d, но и в обратную сторону. Если потребуется использовать современное оборудование для вычислений, то оно не будет оказывать негативного влияния на безопасность криптосистемы, для чего потребуется увеличить размер ключа. При соединении эти два пункта (улучшенное оборудование и удлиненный ключ), то можно получить более стойкую систему.
Метод используется в отношении одного ключа или нескольких, если в пределах идентичного мелкого показателя шифруется множество сообщений, каким-либо способом связанных между собой. Тогда злоумышленник получит доступ ко всей информации.
Есть типы атак, которые направлены лишь на конкретное сообщение. Главным минусом является невозможность получить доступ ко всем сообщениям, которые шифруются одним ключом. Самый простой способ для получения информации из одного сообщения – атака по открытому тексту, который был зашифрован публичным ключом получателя. Это позволяет получить информацию о двух приватных ключах, которые будут сравниваться. Защитой от такого способа взлома могут послужить пара разных битов, располагаемых в конце.
Существует альтернативный вид взлома одного сообщения. Пользователь отправляет идентичное сообщение 3-ем корреспондентам, где используется одинаковый показатель. Злоумышленник имеет возможность перехватить одно из сообщений для кражи интересующей информации. Для предотвращения атаки достаточно ввести разные случайные биты в каждом сообщении.
Еще один способ взлома одного сообщения – создание зашифрованного текста, который отправляется пользователю. Если второй откроет и расшифрует сообщение, то злоумышленник получит доступ к расшифровке отдельных писем.
Существуют атаки, которые направлены не на взлом криптосистемы, а для получения доступа через слабые места шифрования, которые по сути уже являются прямым вторжением в экосистему. Тогда слабость проявляется не у алгоритма, а у способа реализации. Если приватный ключ хранится в системе без наличия достаточной защиты, то хакер сможет его украсть. Для обеспечения максимальной безопасности необходимо не только учитывать базовые правила, но и генерировать ключ увеличенной длины.
Что собой представляют «устойчивые числа»?
Для защиты шифрования должны использоваться устойчивые числа p и q. Они необходимы для выявления свойств, затрудняющих получение множителей. Одним из таких являются главные делители: p – 1 и p + 1. Это позволяет создать защиту от определения множителей различными методами, которые можно применять только в отношении небольших делителей. Использование устойчивых чисел даже закреплено в правилах некоторых стандартов, например, ANSI X9.31.
Но разрабатывающиеся способы факторинга уже могут работать даже с устойчивыми цифрами и большими делителями. Одной из таких схем выступает алгоритм разложения на множители эллиптических кривых. Поэтому в отношении действий некоторых хакеров использование устойчивых чисел не сможет обеспечить достаточную безопасность.
Важно! Если будут разработаны дополнительные способы факторинга, то в RSA можно будет увеличить количество символов в числе для усложнения задачи.
Рекомендованный размер ключа
При определении размера ключа требуется опираться от модуля n, являющегося суммой p и q, которые для корректной работы должны иметь примерно равную длину. Если модуль равен 524 битам, то приблизительный размер 262 бита.
Так как p = M*(± ), то значения p и q можно без труда найти, если разность чисел небольшая.
Такой ключ увеличивает безопасность, но вместе с этим замедляет алгоритм. Определение длины ключа опирается на оценку данных, которые должны быть зашифрованы, а вероятные угрозы (их частота и направленность) учитываются только после этого.
Существует специальная RSA-лаборатория, рекомендующая 1024 бита. Но если потребуется защитить важную информацию, то длина ключей лучше всего увеличить в 2 раза. Если же информация совершенно не ценна, то хватит 768-битного ключа.
Персональный ключ имеет срок действия, обычно он равен одному году. Это необходимо для периодической замены ключей для безопасности. Как только срок действия ключа истекает, то необходимо создать новый код, который должен соответствовать длине прошлого.
Множество простых чисел
В природе существует бесконечное множество простых чисел. Хотя количество символов в RSA-шифровании ограничено, количество возможных простых чисел все равно очень велико.
Интересно! Ключ длиной 512 битов включает в себя 10 150 возможных значений.
Как это работает?
В реальности защищенная передача сообщений возможна при использовании двух криптосистем: RSA и DES. Алгоритм процесса:
Пример работы
Работа шифрования заключается в трех этапах:
RSA – это тот тип шифрования, который обеспечивает достаточную безопасность, но только при увеличении длины ключа, из-за чего замедляется проведение остальных операций. Алгоритм предназначен для простых операций, которые не требуют высокого уровня защиты.
RSA: от простых чисел до электронной подписи
Выясняем, как и откуда можно получить электронную подпись на примере криптосистемы RSA.
Содержание
Определения и обозначения
Описание криптосистемы RSA
Асимметричные криптографические системы
Шифрование и дешифрование
Получение подписи сообщения по RSA
Электронная подпись документов
Введение
Наверняка вы сталкивались с таким понятием, как «электронная подпись». Если обратиться к федеральному закону, то можно найти следующее её определение:
Задача ЭП ясна, теперь хотелось бы увидеть и прочувствовать, что именно скрывается за этими двумя словами. Копаясь дальше в гугле, можно найти довольно много различных алгоритмов создания цифровой подписи (DSA, ГОСТ Р 34.10-2012, RSA-PSS и т.д.), разбираться в которых неподготовленному пользователю сложно.
Спасти эту ситуацию и помочь разобраться в том, что есть ЭП, может криптосистема RSA, разработанная Ривестом, Шамиром и Адлеманом в 1978 году. Она не загромождена безумным количеством алгоритмов и основывается на относительно простой математике. В связи с этим можно шаг за шагом прийти от модульной арифметики к алгоритму создания электронной подписи, чему я и хочу посвятить данную статью.
Теорминимум
Сформируем небольшой словарик терминов, которые нам пригодятся далее:
Открытый текст – данные, подлежащие шифрованию или полученные в результате расшифрования
Шифртекст – данные, полученные в результате применения шифра к открытому тексту
Шифр – совокупность обратимых преобразований, зависящая от некоторого параметра (ключа)
Ключ – параметр шифра, определяющий выбор одного преобразования из совокупности.
Факторизация – процесс разложения числа на простые множители.
НОД – наибольший общий делитель.
Числа a и b называются взаимно простыми, если НОД этих чисел равен 1.
Функция Эйлера φ(n) – функция, равная количеству натуральных чисел, меньших n и взаимно простых с ним.
Хочу отметить, что на данном этапе подразумевается, что вы знакомы с арифметическими операциями по модулю. Если нет, то здесь можно о них почитать.
Как оно устроено
Прежде, чем окунуться в необъятный мир математики рассмотреть, как именно устроена RSA, обратимся к тому, как работают
Асимметричные криптосистемы
Рассмотрим задачу сохранности содержимого посылки при передаче от отправителя к адресату. Вот картинка с многим полюбившимся Алисой и Бобом:
Алиса хочет передать Бобу посылку. Для начала Боб на своей стороне создает уникальные замок и ключ к нему (открытый и закрытый ключ соответственно). Далее, Боб делится с окружающим миром своим замком, чтобы любой желающий отправить ему посылку смог её закрыть. Поскольку ключ от подобного замка один и находится только у Боба, никто, кроме Боба, просмотреть содержимое после защёлкивания замка не сможет. В конце концов, Алиса с помощью полученного замка закрывает посылку и передаёт Бобу, который открывает её своим ключом. Таким образом устроены асимметричные криптографические системы, которой как раз является RSA.
В схеме передачи посылки все объекты вполне материальны. Однако сообщения, которые мы хотим шифровать, являются ничем иным, как последовательностью бит, которую нельзя «закрыть» на физический замок. Таким образом возникают вопросы: что такое ключ и замок? Как Бобу создать ключи? Каким образом ключи связаны и как с их помощью зашифровать сообщение? Здесь нам поможет математика.
Теперь к математике
Асимметричные криптографические системы основаны на так называемых односторонних функциях с секретом. Под односторонней понимается такая функция я y=f(x), которая легко вычисляется при имеющемся x, но аргумент x при заданном значении функции вычислить сложно. Аналогично, односторонней функцией с секретом называется функция y=f(x, k), которая легко вычисляется при заданном x, причём при заданном секрете k аргумент x по заданному y восстановить просто, а при неизвестном k – сложно.
Подобным свойством обладает операция возведения числа в степень по модулю:
Здесь φ(n) – функция Эйлера числа n. Пока условимся, что это работает, далее это будет доказано более строго. Теперь нужно понять, что из это является ключами Боба, а что сообщением. В нашем распоряжении имеются числа c, m, n, e, d.
Давайте посмотрим на первое выражение. Здесь число c получено в результате возведения в степень по модулю числа m. Назовём это действие шифрованием. Тогда становится очевидно, что m выступает в роли открытого текста, а c – шифртекста. Результат c зависит от степени e, в которую мы возводим m, и от модуля n, по которому мы получаем результат шифрования. Эту пару чисел (e, n) мы будем называть открытым ключом. Им Алиса будет шифровать сообщение.
Смотрим на второе действие. Здесь d является параметром, с помощью которого мы получаем исходный текст m из шифртекста c. Этот параметр мы назовём закрытым ключом и выдадим его Бобу, чтобы он смог расшифровать сообщение Алисы.
Что есть что разобрались, теперь перейдём к конкретике, а именно – генерации ключей Боба. Давайте выберем число n такое, что:
где p и q – некоторые разные простые числа. Для такого n функция Эйлера имеет вид:
Такой выбор n обусловлен следующим. Как вы могли заметить ранее, закрытый ключ d можно получить, зная открытый e. Зная числа p и q, вычислить функцию Эйлера не является вычислительно сложной задачей, ровно как и нахождение обратного элемента по модулю. Однако в открытом ключе указано именно число n. Таким образом, чтобы вычислить значение функции Эйлера от n (а затем получить закрытый ключ), необходимо решить задачу факторизации, которая является вычислительно сложной задачей для больших n (в современных системах, основанных на RSA, n имеет длину 2048 бит).
Возвращаемся к генерации ключей. Выберем целое число e:
Для него вычислим число d:
Для отыскания числа, обратного по модулю, можно воспользоваться алгоритмом Евклида.
Мы завершили с этапом генерации ключей. Теперь Боб публикует свой открытый ключ (e, n), прячет закрытый d, а мы переходим к Алисе.
Шифруем, дешифруем.
Возьмём в качестве сообщения число m (m ∈ [1, n − 1]). Чтобы Алисе зашифровать его, необходимо возвести его в степень e по модулю n. Эти числа идут вместе с открытым ключом Боба:
Здесь за с обозначен шифртекст, который Алиса будет должна передать Бобу. Отметим также, что c ∈ [1, n − 1], как и m. Расшифруем шифртекст, возведя его в степень закрытого ключа Боба d:
Здесь нам понадобится теорема Эйлера:
Также полезной будет китайская теорема об остатках:
Получаем подпись сообщения
Ещё раз напишем две ключевые формулы шифрования и расшифрования соответственно:
Теперь давайте предположим, что Боб хочет отправить Алисе открытку m от своего имени. У Боба в распоряжении уже имеются два ключа (e, n) и d, которые он сгенерировал по алгоритму, описанному ранее. Поскольку d является закрытым ключом, то можно им воспользоваться как уникальным идентификатором Боба. Давайте «зашифруем» m с помощью d:
Результат данной операции и есть подпись сообщения Боба. Заметим, что подпись напрямую зависит от подписываемого сообщения, а не только от того, что его подписывает Боб. Далее, Алиса получает сообщение m, подпись s и открытый ключ (e, n). По аналогии с расшифрованием, проверка подписи осуществляется возведением подписи s в степень открытой экспоненты e:
Если Алиса получила, что m ≡ m′, то подпись считается правильной.
Дочитавших до этого места хочу поздравить с получением первой цифровой подписи «на бумаге»!
Подпись документов
Рассмотренный алгоритм получения подписи изящен и прост в осознании, однако операция возведения в степень несколько «мешается». Наша текущая задача – подписать объёмный документ. Чтобы сэкономить время, мы не будем подписывать содержимое документа, а прибегнем к помощи хэш-функций (если вы не знаете, что такое хэш-функция, рекомендую почитать википедию). Скажу лишь то, что выходная последовательность хэш-функции имеет небольшую (по сравнению с размером ключей) длину, а также по имеющемуся хэшу нельзя однозначно восстановить исходные данные.
На картинках наглядно показано, в какой момент мы используем хэширование. Создание подписи:
В качестве хэш-функции можно использовать SHA-256, как это сделано, например, в PGP. По теме практического создания электронной подписи с использованием PGP на хабре уже написана статья, поэтому на этом месте имеет смысл поставить точку и перейти к заключению.
Заключение
Вот мы и прошли все стадии создания электронной подписи, начиная с простой модульной арифметики и заканчивая, собственно, получением подписи. Обладая этими знаниями, вы можете попробовать перевести их на ваш любимый язык программирования и написать свою защищенную аську, например. В том, как именно их применить, вас ограничит только ваше воображение.
Отмечу, что другие существующие алгоритмы создания ЭП основаны на схожих принципах, поэтому надеюсь, что после прочтения этой статьи вам будет проще разобраться в них. «Следующей по сложности» я обозначу криптосистему Эль-Гамаля, но о ней уже не в этом посте.
Спасибо за внимание!
Источники
Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone
Криптографические методы защиты информации: учеб. пособие / С. М. Владимиров, Э. М. Габидулин, А. И. Колыбельников, А. С. Кшевецкий; под ред. А. В. Уривского. – М.: МФТИ, 2016
Маховенко Е. Б. Теоретико-числовые методы в криптографии — М.: Гелиос АРВ, 2006.
NIST Special Publication 800-57 Part 3 Revision 1