при каких условиях окружающей среды могла возникнуть жизнь согласно абиогенезу
При каких условиях окружающей среды могла возникнуть жизнь согласно абиогенезу
Подробное решение параграф § 46 по биологии для учащихся 10 класса, авторов Сухорукова Л.Н., Кучменко В.С., Иванова Т.В. Базовый уровень 2018
Каковы особенности строения белков и нуклеиновых кислот?
Нуклеиновые кислоты — это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды, связанные фосфодиэфирными связями.
Нуклеотиды — это органические вещества, молекулы которых состоят из остатка пентозы (рибозы или дезоксирибозы), к которому ковалентно присоединены остаток фосфорной кислоты и азотистое основание.
Азотистые основания в составе нуклеотидов делятся на две группы: пуриновые (аденин и гуанин) и пиримидиновые (цитозин, тимин и урацил).
Дезоксирибонуклеотиды включают в свой состав дезоксирибозу и одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т), цитозин (Ц).
Рибонуклеотиды включают в свой состав рибозу и одно из азотистых оснований: аденин (А), гуанин (Г), урацил (У), цитозин (Ц).
Белки — это биополимеры сложного строения, макромолекулы (протеины) которых, состоят из остатков аминокислот, соединенных между собой амидной (пептидной) связью. В структуре белка выделяют первичную, вторичную, третичную и четвертичную структуры
Положения клеточной теории о происхождении любой клетки.
Положения клеточной теории можно кратко сформулировать следующим образом:
Клетка — это сложная, целостная, способная к самовоспроизведению, открытая саморегулирующаяся система, связанная с внешней средой посредством обмена веществ и превращения энергии.
Клетка — единица развития: каждый многоклеточный организм возникает из одной исходной клетки — зиготы.
Клетка состоит из ядра и цитоплазмы с органоидами.
В чем сущность гипотезы Опарина?
Суть гипотезы Опарина заключается в следующем:
зарождение жизни на Земле — длительный эволюционный процесс становления живой материи в недрах неживой. Произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических процессов.
Первый этап — химическая эволюция. Когда Земля была еще безжизненной (около 4 млрд лет назад), на ней происходили абиотический синтез углеродистых соединений и их последующая предбиологическая эволюция.
Второй этап — появление белковых веществ. Под воздействием на химические смеси первичного океана электрических разрядов, тепловой энергии и ультрафиолетовых лучей стало возможным образование сложных органических соединений — биополимеров и нуклеотидов, которые, постепенно объединяясь и усложняясь, превращались в протобионтов (доклеточных предков живых организмов). Итогом эволюции сложных органических веществ стало появление коацерватов, или коацерватных капель.
Коацерваты — комплексы коллоидных частиц, раствор которых разделяется на два слоя: слой, богатый коллоидными частицами, и жидкость, почти свободную от них. Коацерваты обладали способностью поглощать различные вещества, растворенные в водах первичного океана. В результате внутреннее строение коацерватов менялось в сторону повышения их устойчивости в постоянно меняющихся условиях.
Третий этап — формирование способности к самовоспроизводству, появление живой клетки.
В этот период начал действовать естественный отбор, т.е. в массе коацерватных капель происходил отбор коацерватов, наиболее устойчивых к данным условиям среды. Процесс отбора шел в течение многих миллионов лет. Сохранившиеся коацерватные капли уже обладали способностью к первичному метаболизму — главному свойству жизни. Вместе с тем, достигнув определенных размеров, материнская капля распадалась на дочерние, сохраняющие особенности материнской структуры. Таким образом, можно говорить о приобретении коацерватами свойства самовоспроизводства — одного из важнейших признаков жизни. По сути дела, на этой стадии коацерваты превратились в простейшие живые организмы.
Дальнейшая эволюция этих предбиологических структур была возможна только при усложнении обменных процессов внутри коацервата.
При каких условиях окружающей среды могла возникнуть жизнь согласно абиогенезу?
1. Возникновение жизни — результат химической эволюции соединений углерода.
2. Древняя атмосфера Земли имела восстановительный характер
3. Жизнь зародилась в особой среде (в воде, вулканических областях, на стыке моря и суши) в форме клеток (микроорганизмов) около 4 млрд. лет назад.
Существуют ли факты, доказывающие гипотезу абиогенеза? Ответ обоснуйте.
Американский ученый С. Фокс к середине ХХ века экспериментально доказал возможность абиогенного синтеза мономеров, синтезировав почти все аминокислоты и получив белковоподобные вещества, которые расщеплялись ферментами и обладали каталитической активностью, позднее была получена синтетические нуклеотиды и кислоты.
В последние десятилетия исследование проблемы происхождения жизни с позиции абиогенеза зашло в тупик. Разрыв между тем максимумом, который может дать химия
(абиогенные синтезы биополимеров), и тем минимумом, который требует биология (минимальная клетка) слишком велик, и непонятно, чем его можно заполнить.
Основные теории абиогенеза
абиогенез Это относится к серии процессов и этапов, на которых возникли первые формы жизни на Земле, начиная с инертных мономерных блоков, которым со временем удалось увеличить их сложность. В свете этой теории жизнь возникла из неживых молекул при соответствующих условиях.
Вполне вероятно, что после того, как абиогенез произвел простые системы жизни, биологическая эволюция будет действовать, чтобы породить все сложные формы жизни, которые существуют сегодня..
Некоторые исследователи полагают, что процессы абиогенеза должны были произойти хотя бы один раз в истории Земли, чтобы дать начало гипотетическому организму LUCA или последнему универсальному общему предку (сокращений на английском языке)., последний универсальный общий предок), около 4 миллиардов лет назад.
Предполагается, что LUCA должен иметь генетический код, основанный на молекуле ДНК, которая с четырьмя основаниями, сгруппированными в триплеты, кодифицирована для 20 типов аминокислот, образующих белки. Исследователи, пытающиеся понять происхождение жизни, изучают процессы абиогенеза, которые породили LUCA.
Ответ на этот вопрос широко задавался и часто скрывался в тумане и неуверенности. По этой причине сотни биологов предложили серию теорий, которые включают от появления первичного супа до объяснений, связанных с ксенобиологией и астробиологией..
Из чего он состоит??
Теория абиогенеза основана на химическом процессе, благодаря которому из безжизненных предшественников возникли более простые формы жизни..
Предполагается, что процесс абиогенеза происходил непрерывно, в отличие от внезапного взгляда на случай удачи. Таким образом, эта теория предполагает существование континуума между неживой материей и первыми живыми системами..
Кроме того, предлагается ряд различных сценариев, где начало жизни может начаться с неорганических молекул. Как правило, эти условия являются экстремальными и отличаются от текущих условий Земли.
Эти предполагаемые пребиотические условия часто воспроизводятся в лаборатории, чтобы попытаться генерировать органические молекулы, такие как знаменитый эксперимент Миллера и Юри..
Происхождение жизни: теории
Происхождение жизни было одной из самых спорных тем учеными и философами со времен Аристотеля. Согласно этому важному мыслителю, разлагающаяся материя может быть превращена в животных с жизнью благодаря стихийному действию природы.
Абиогенез в свете аристотелевской мысли можно резюмировать в его знаменитой фразе OMN VIVUM EX VIVO, что означает «вся жизнь исходит от жизни».
Затем довольно большое количество моделей, теорий и предположений пытались выяснить условия и процессы, которые привели к возникновению жизни..
Ниже мы опишем наиболее выдающиеся теории, как с исторической, так и с научной точки зрения, которые пытались объяснить происхождение первых живых систем:
Теория самозарождения
В начале 17-го века было постулировано, что формы жизни могут возникать из безжизненных элементов. Теория самозарождения была широко принята мыслителями того времени, поскольку имела поддержку католической церкви. Таким образом, живые существа могут прорасти как своих родителей, так и неживой материи..
На самом деле были рецепты, которые обещали создание живых животных. Например, чтобы иметь возможность создавать мышей из неживого материала, мы должны были комбинировать зерна пшеницы с грязной одеждой в темной среде и с течением дней появляются живые грызуны..
Сторонники этой смеси утверждали, что человеческий пот в одежде и брожение пшеницы были агентами, которые направляли формирование жизни..
Опровержение самопроизвольной генерации
В семнадцатом веке стали замечать недостатки и пробелы в положениях теории самозарождения. Лишь в 1668 году итальянский физик Франческо Реди изобрел адекватный экспериментальный дизайн, чтобы отвергнуть его..
В своих контролируемых экспериментах Реди поместил мелко нарезанные кусочки мяса, завернутые в муслин, в стерильные контейнеры. Эти банки были надлежащим образом покрыты марлей, поэтому ничто не могло соприкасаться с мясом. Кроме того, эксперимент рассказал с другой серией бутылок, которые не были покрыты.
С течением времени черви наблюдались только в обнаруженных кувшинах, поскольку мухи могли свободно проникать и откладывать яйца. В случае банок с крышкой яйца помещали прямо в марлю.
Таким же образом исследователь Лаззаро Спалланцани разработал серию экспериментов, чтобы отвергнуть предпосылки самопроизвольной генерации. Для этого он разработал серию бульонов, которые он подвергал длительному кипению, чтобы уничтожить любой микроорганизм, который там будет жить..
Однако сторонники спонтанного поколения утверждали, что количество тепла, которому подвергались бульоны, было чрезмерным и разрушало «жизненную силу».
Вклад Пастера
Позже, в 1864 году, французский биолог и химик Луи Пастер решил положить конец постулатам самопроизвольного рождения..
Для достижения этой цели Пастер сделал стеклянные контейнеры, известные как «лебединые шеи», так как они были длинными и изогнутыми на концах, предотвращая проникновение микроорганизмов..
В этих контейнерах Пастер сварил серию бульонов, которые оставались стерильными. Когда шея одного из них сломалась, она стала загрязненной, и микроорганизмы быстро размножались.
Доказательства, предоставленные Пастером, были неопровержимы, и ему удалось разрушить теорию, которая длилась более 2500 лет..
панспермия
В начале 1900-х годов шведский химик Сванте Аррениус написал книгу под названием «Создание миров«В котором он предположил, что жизнь пришла из космоса через споры, устойчивые к экстремальным условиям.
Логично, что теория панспермии была окружена множеством противоречий, кроме того, что она не давала объяснения происхождению жизни..
Хемосинтетическая теория
Изучая эксперименты Пастера, один из косвенных выводов его доказательств состоит в том, что микроорганизмы развиваются только из других, то есть жизнь может происходить только из жизни. Это явление было названо «биогенез».
Следуя этой точке зрения, возникнут теории химической эволюции во главе с русским Александром Опариным и англичанином Джоном Д. С. Холдейном..
Это видение, также называемое теорией хемосинтеза Опарин-Халдана, предполагает, что в пребиотической среде Земля обладала атмосферой, в которой не было кислорода и было много водяных паров, метана, аммиака, углекислого газа и водорода, поэтому она сильно снижала.
В этой среде были разные силы, такие как электрические разряды, солнечная радиация и радиоактивность. Эти силы действовали на неорганические соединения, порождая более крупные молекулы, создавая органические молекулы, известные как пребиотические соединения..
Миллер и Юри эксперимент
В середине 1950-х годов исследователям Стэнли Л. Миллеру и Гарольду С. Юри удалось создать гениальную систему, которая имитировала предполагаемые наследственные условия атмосферы на земле, следуя теории Опарина-Холдейна..
Стэнли и Юри доказали, что в этих «примитивных» условиях простые неорганические соединения могут образовывать сложные органические молекулы, необходимые для жизни, такие как аминокислоты, жирные кислоты, мочевина и другие..
Формирование полимера
Хотя ранее упомянутые эксперименты предлагают правдоподобный путь, по которому возникли биомолекулы, являющиеся частью живых систем, они не предлагают какого-либо объяснения процесса полимеризации и увеличения сложности.
Есть несколько моделей, которые пытаются выяснить этот вопрос. Первый включает твердые минеральные поверхности, где повышенная площадь поверхности и силикаты могут действовать как катализаторы для молекул углерода..
В глубинах океана гидротермальные жерла являются подходящим источником катализаторов, таких как железо и никель. Согласно экспериментам в лабораториях, эти металлы участвуют в реакциях полимеризации.
Наконец, в глубинах океанов имеются горячие пруды, которые в результате процессов испарения могут способствовать концентрации мономеров, способствуя образованию более сложных молекул. В этом предположении основывается гипотеза «первичного супа».
Примиряя результаты Миллера и Пастера
Следуя порядку идей, обсуждаемых в предыдущих разделах, мы имеем, что эксперименты Пастера доказали, что жизнь не возникает из инертных материалов, в то время как свидетельства Миллера и Юри показывают, что если это происходит, но на молекулярном уровне.
Чтобы иметь возможность согласовать оба результата, необходимо иметь в виду, что состав земной атмосферы сегодня полностью отличается от пребиотической атмосферы..
Кислород, присутствующий в современной атмосфере, будет действовать как «разрушитель» молекул в образовании. Также необходимо учитывать, что источники энергии, которые предположительно способствовали образованию органических молекул, больше не присутствуют с частотой и интенсивностью пребиотической среды..
Все формы жизни, присутствующие на Земле, состоят из множества крупных структурных блоков и биомолекул, называемых белками, нуклеиновыми кислотами и липидами. С их помощью вы можете «построить» основу текущей жизни: клетки.
В клетке жизнь увековечена, и на этом принципе Пастер основывается на том, чтобы утверждать, что каждое живое существо должно происходить из другого существовавшего ранее..
Мир РНК
Это предположение основано на свойстве РНК синтезировать короткие фрагменты с использованием темперирования, которое направляет процесс, в дополнение к стимулированию образования пептидов, сложных эфиров и гликозидных связей..
Согласно этой теории, наследственная РНК была связана с некоторыми кофакторами, такими как металлы, пиримидины и аминокислоты. По мере развития и усложнения обмена веществ возникает способность синтезировать полипептиды..
В ходе эволюции РНК была заменена более химически стабильной молекулой: ДНК.
Современные представления о происхождении жизни
В настоящее время подозревается, что жизнь зародилась по экстремальному сценарию: океанические области вблизи вулканических дымоходов, где температура может достигать 250 ° C, а атмосферное давление превышает 300 атмосфер..
Это подозрение возникает из-за разнообразия форм жизни, обнаруженных в этих враждебных регионах, и этот принцип известен как «теория горячего мира»..
Эти среды были заселены архебактериями, организмами, способными расти, развиваться и размножаться в экстремальных условиях, вероятно, очень похожих на пребиотические условия (включая низкие концентрации кислорода и высокие уровни СО).2).
Термины биогенез и абиогенез
В 1974 году известный исследователь Карл Саган опубликовал статью, разъясняющую использование терминов биогенез и абиогенез. По словам Сагана, оба термина были неправильно использованы в статьях, связанных с объяснениями происхождения первых живых форм.
Происхождение жизни
Происхождении жизни на Земле является ключевой и нерешенной проблемой естествознания, нередко служащей почвой для столкновения науки и религии. Если наличие в природе эволюции живой материи можно считать доказанным, так как были вскрыты ее механизмы, археологами обнаружены древние более просто устроенные организмы, то ни одна гипотеза возникновения жизни не имеет такой обширной доказательной базы. Эволюцию мы можем наблюдать воочию хотя бы в селекции. Создать же живое из неживого никому не удавалось.
Несмотря на большое количество гипотез о происхождении жизни, лишь одна из них имеет приемлемое научное объяснение. Это гипотеза абиогенеза — длительной химической эволюции, которая протекала в особых условиях древней Земли и предшествовала биологической эволюции. При этом из неорганических веществ сначала были синтезированы простые органические, из них более сложные, далее появились биополимеры, следующие этапы более умозрительны и малодоказуемы. Гипотеза абиогенеза имеет много нерешенных проблем, различных взглядов на определенные этапы химической эволюции. Однако некоторые ее моменты были подтверждены опытным путем.
Другие гипотезы происхождения жизни — панспермия (занесение жизни из космоса), креационизм (сотворение творцом), самопроизвольное зарождение (в неживой материи вдруг появляются живые организмы), стационарное состояние (жизнь существовала всегда). Невозможность самозарождения жизни в неживом была доказано Луи Пастером (XIX в.) и рядом ученых до него, но не так безапелляционно (Ф. Реди — XVII в.). Гипотеза панспермии не решает проблему возникновения жизни, а переносит ее с Земли в космическое пространство или на другие планеты. Однако и опровергнуть эту гипотезу сложно, особенно тех ее представителей, которые утверждают, что жизнь была занесена на Землю не метеоритами (в этом случае живое могло сгореть в слоях атмосферы, подвергнуться разрушительному действию космической радиации и т. д.), а разумными существами. Только вот как они долетели до Земли? С точки зрения физики (огромных размеров Вселенной и невозможности преодолеть скорость света) это вряд ли возможно.
Впервые возможный абиогенез был обоснован А.И. Опариным (1923-1924 г.), позже данную гипотезу разрабатывал Дж. Холдейн (1928 г). Однако мысль, что жизни на Земле могло предшествовать абиогенное образование органических соединений, высказывал еще Дарвин. Теория абиогенеза была доработана и дорабатывается другими учеными и по сей день. Главная ее нерешенная проблема — это подробности перехода от сложных неживых систем к простым живым организмам.
В 1947 г. Дж. Бернал, на основе разработок Опарина и Холдейна, сформулировал теорию биопоэза, выделив в абиогенезе три стадии: 1) абиогенное возникновение биологических мономеров; 2) образование биополимеров; 3) образование мембран и формирование первичных организмов (протобионтов).
Абиогенез
Ниже в общих чертах описан предположительный сценарий происхождения жизни согласно теории абиогенеза.
Возраст Земли составляет около 4,5 млрд. лет. Жидкая вода на планете, так необходимая для жизни, по оценкам ученых появилась не ранее 4 млрд. лет назад. При этом 3,5 млрд. лет назад жизнь на Земле уже существовала, что доказано обнаружением пород таких возрастов со следами жизнедеятельности микроорганизмов. Таким образом, первые простейшие организмы возникли относительно быстро — менее чем за 500 млн. лет.
Когда Земля только образовалась, ее температура могла достигать 8000 °C. При остывании планеты металлы и углерод как наиболее тяжелые элементы конденсировались и образовывали земную кору. В то же время происходила вулканическая активность, кора двигалась и сжималась, на ней образовывались складки и разрывы. Гравитационные силы приводили к уплотнению коры, при этом выделялась энергия в виде тепла.
Легкие газы (водород, гелий, азот, кислород и др.) не удерживались планетой и уходили в космос. Но в составе других веществ эти элементы оставались. До тех пор, пока температура на Земле не упала ниже 100 °C, вся вода находилась в парообразном состоянии. После снижения температуры испарение и конденсация повторялись множество раз, шли сильные ливни с грозами. Горячая лава и вулканический пепел, оказавшись в воде, создавали разные условия среды. В каких-то могли протекать определенные реакции.
Таким образом, физические и химические условия на ранней Земле были благоприятны для образования органических веществ их неорганических. Атмосфера была восстановительного типа, свободного кислорода и озонового слоя в ней не было. Поэтому на Землю проникали ультрафиолетовое и космическое излучение. Другими источниками энергии были теплота земной коры, которая еще не остыла, извергающиеся вулканы, грозы, радиоактивный распад.
Химическими опытами (впервые в 1953 г. С. Миллер и Г. Юри), моделирующих условия древней Земли, была доказана возможность абиогенного синтеза органических веществ из неорганических. При пропускании электрических разрядов через газовую смесь, имитировавшую первобытную атмосферу, в присутсвии паров воды были получены аминокислоты, органические кислоты, азотистые основания, АТФ и др.
Следует отметить, что в древней атмосфере Земли простейшие органические вещества могли образовываться не только абиогенно. Они также заносились из космоса, содержались в вулканической пыли. Причем это могли быть достаточно большие количества органики.
Низкомолекулярные органические соединения накапливались в океане, создавая так называемый первичный бульон. Вещества адсорбировались на поверхности глинистых отложений, что повышало их концентрацию.
В определенных условиях древней Земли (например на глине, склонах остывающих вулканов) могла происходить полимеризация мономеров. Так образовались белки и нуклеиновые кислоты — биополимеры, ставшие в последствии химической основой жизни. В водной среде полимеризация маловероятна, так как в воде обычно происходит деполимеризация. Опытом была доказана возможность синтеза полипептида из аминокислот, соприкасающихся с кусками горячей лавы.
Далее биополимеры могли смываться дождями в первичный бульон. Это предохраняло их от разрушения под действием ультрафиолетового излучения (озонового слоя еще не было).
Следующий важный шаг на пути происхождения жизни – образование в воде коацерватных капель (коацерватов) из полипептидов, полинуклеотидов, других органических соединений. Подобные комплексы снаружи могли иметь слой, имитировавший мембрану и сохраняющий их стабильность. Опытным путем в коллоидных растворах были получены коацерваты.
Белковые молекулы амфотерны. Они притягивают к себе молекулы воды так, что вокруг них образуется оболочка. Получаются коллоидные гидрофильные комплексы, обособленные от водной массы. В результате в воде образуется эмульсия. Далее коллоиды сливаются между собой и образуются коацерваты (процесс называется коацервацией). Коллоидный состав коацервата зависел от состава среды, в которой он образовывался. В разных водоемах древней Земли образовывались разные по химическому составу коацерваты. Какие-то из них были более устойчивыми и могли в определенной степени осуществлять избирательный обмен веществ с окружающей средой. Происходил своего рода биохимический естественный отбор.
Коацерваты способны избирательно поглощать из окружающей среды некоторые вещества и выделять в нее некоторые продукты протекающих в них химических реакций. Это напоминает обмен веществ. По мере накопления веществ коацерваты росли, а при достижении критических размеров распадались на части, каждая из которых сохраняла черты исходной организации.
В самих коацерватах могли происходить химические реакции. При поглощении коацерватами ионов металлов могли образовываться ферменты.
В процессе эволюции остались лишь такие системы, которые были способны к саморегуляции и самовоспроизведению. Это знаменовало наступление следующего этапа происхождения жизни – возникновение протобионтов (по некоторым источникам это то же самое, что коацерваты) — тел, имеющие сложный химический состав и ряд свойств живых существ. Протобионты можно рассматривать как наиболее устойчивые и удачно получившиеся коацерваты.
Мембрана могла образоваться следующим образом. Жирные кислоты соединялись со спиртами и образовывали липиды. Липиды формировали пленки на поверхности водоемов. Их заряженные головки обращены в воду, а неполярные концы — наружу. Плавающие в воде белковые молекулы притягивались к головкам липидов, в результате чего образовывались двойные липопротеиновые пленки. От ветра такая пленка могла изгибаться, и образовывались пузырьки. В эти пузырьки могли быть случайно захвачены коацерваты. Когда такие комплексы снова оказывались на поверхности воды, то покрывались уже вторым липопротеиновым слоем (за счет гидрофобных взаимодействий, обращенных друг к другу неполярных концов липидов). Общая схема мембраны сегодняшних живых организмов представляет собой два слоя липидов внутри и два слоя белков, расположенных по краям. Но за миллионы лет эволюции произошло усложнение мембраны за счет включения белков, погруженных в липидный слой и пронизывающих его, выпячивание и впячивание отдельных участков мембраны и др.
В коацерваты (или протобионты) могли попадать уже существующие молекулы нуклеиновых кислот, способные к самовоспроизведению. Далее в некоторых протобионтах могла произойти такая перестройка, что нуклеиновая кислота стала кодировать белок.
Эволюция протобионтов — это уже не химическая, а предбиологическая эволюция. Она привела к усовершенствованию каталитической функции белков (они стали выполнять роль ферментов), мембран и их избирательной проницаемости (что делает протобионт устойчивым набором полимеров), возникновению матричного синтеза (переноса информации с нуклеиновой кислоты на нуклеиновую кислоту и с нуклеиновой кислоты на белок).
Одной из самых больших загадок происхождения жизни остается вопрос: как РНК стала кодировать аминокислотную последовательность белков. В вопросе фигурирует РНК, а не ДНК, так как считается, что сначала рибонуклеиновая кислота играла не только роль в реализации наследственной информации, но и отвечала за ее хранение. ДНК ее заменила позже, возникнув из РНК путем обратной транскрипции. ДНК лучше подходит для хранения информации и более устойчива (менее склонна к реакциям). Поэтому в процессе эволюции именно она была оставлена в качестве хранителя информации.
В 1982 г. Т. Чеком была открыта каталитическая активность РНК. Кроме того РНК могут синтезироваться в определенных условиях даже при отсутствии ферментов, а также образовывать свои копии. Поэтому можно предположить, что РНК были первыми биополимерами (гипотеза РНК-мира). Какие-то участки РНК случайно могли кодировать полезные для протобионта пептиды, остальные участки РНК в процессе эволюции стали вырезаемыми интронами.
В протобионтах возникла обратная связь — РНК кодирует белки-фермены, белки-ферменты увеличивают количество нуклеиновых кислот.
Начало биологической эволюции
Химическая эволюция и эволюция протобионтов длилась более 1 млрд. лет. Жизнь возникла, и началась ее биологическая эволюция.
От некоторых протобионтов произошли примитивные клетки, включающие всю совокупность наблюдаемых нами сегодня свойств живого. В них было реализовано хранение и передача наследственной информации, ее использование для создания структур и обмена веществ. Энергия для процессов жизнедеятельности обеспечивалась молекулами АТФ, появились типичные для клеток мембраны.
Первые организмы были анаэробные гетеротрофы. Энергию, запасаемую в АТФ, они получали с помощью брожения. Пример — гликолиз — бескислородное расщепление сахаров. Питались эти организмы за счет органических веществ первичного бульона.
Но запасы органических молекул постепенно истощались, так как условия на Земле менялись, и новая органика уже почти не синтезировалась абиогенным путем. В условиях конкуренции за пищевые ресурсы эволюция гетеротрофов ускорилась.
Преимущество получили бактерии, оказавшиеся способными фиксировать углекислый газ с образованием органических веществ. Автотрофный синтез питательных веществ более сложный, чем гетеротрофное питание, поэтому у ранних форм жизни он возникнуть не мог. Из некоторых веществ под действием энергии солнечного излучения образовывались соединения, необходимых клетке.
Первые фотосинтезирующие организмы не выделяли кислорода. Фотосинтез с его выделением скорее всего появился позже у организмов, сходных с нынешними сине-зелеными водорослями.
Накопление в атмосфере кислорода, появление озонового экрана, уменьшение количества ультрафиолетового излучения привело к почти невозможности абиогенного синтеза сложных органических веществ. С другой стороны, возникшие формы жизни стали более устойчивыми в таких условиях.
На Земле распространилось кислородное дыхание. Анаэробные организмы сохранились лишь в отдельных местах (например, есть анаэробные бактерии, живущие в горячих подземных источниках).