почему в атмосфере земли достаточно кислорода для жизни всех живых организмов
LiveInternetLiveInternet
—Метки
—Рубрики
—Подписка по e-mail
—Постоянные читатели
—Статистика
Кислород в составе атмосферы – содержание 21%.
Кислород в атмосфере
Кислород играет очень большую роль в жизни нашей планеты* Он используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы)* Озоновый слой атмосферы (О3) задерживает опасную для существования жизни солнечную радиацию*
Содержание кислорода в составе атмосферы примерно равно 21%* Это второй по распространению газ в атмосфере после азота* В атмосфере он содержится в виде молекул О2. Однако в верхних слоях атмосферы происходит разложение кислорода на атомы (процесс диссоциации) и на высоте примерно 200 км отношение атомарного кислорода к молекулярному становится примерно 1:10.
В верхних слоях атмосферы под воздействием солнечного излучения образуется озон (О3). Озоновый слой атмосферы защищает живые организмы от действия губительного ультрафиолетового излучения.
Содержание свободного кислорода в атмосфере Земли указывает на установившийся баланс между производящими кислород организмами и процессами поглощения (окисление органики, деструкция вещества мертвых организмов). Обновление кислорода в атмосфере происходит за 3-4 тысячи лет.
Эволюция содержания кислорода в атмосфере.
В самом начале развития Земли свободного кислорода в атмосфере было очень мало. Он возникал в верхних слоях атмосферы в процессе фотодиссоциации углекислого газа и воды. Но практически весь образовавшийся кислород расходовался на окисление других газов и поглощался земной корой.
На определенном этапе развития Земли ее углекислая атмосфера перешла в азотно-кислородную. Содержание кислорода в атмосфере стало стремительно расти с появлением в океане автотрофных фотосинтезирующих организмов. Увеличение кислорода в атмосфере привело к окислению многих компонентов биосферы. Сначала кислород в докембрийских морях поглощался закисным железом, но после того, как содержание растворенного железа в океанах значительно уменьшилось, кислород стал накапливаться в гидросфере, а затем и в атмосфере Земли.
Роль биохимических процессов живого вещества биосферы в образовании кислорода все возрастала. С появлением растительного покрова на материках наступил современный этап в развитии атмосферы Земли. В атмосфере Земли установилось постоянное содержание свободного кислорода.
В настоящее время количество кислорода в атмосфере сбалансировано таким образом, что количество производимого кислорода равно количеству поглощаемого. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.
Круговорот кислорода в природе.
Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой.
Его основные моменты:
Рис. 1. Схема круговорота кислорода в несвязанном виде.
Статьи по теме «Атмосфера»:
Все, что Вы хотели знать об атмосфере Земли: высота, границы, свойства, воздействие на организм человека, образование, состав, части атмосферы, слои и многое-многое другое.
Кислород точно исчезнет: что будет с Землей без главного источника жизни
Моделирование климата Земли показывает, что более чем через миллиард лет количество кислорода в атмосфере нашей планеты уменьшится почти в 100 раз. Что ждет планету после?
Читайте «Хайтек» в
Атмосфера Земли
Атмосфера — газовая оболочка небесного тела, удерживаемая около него гравитацией. Поскольку не существует резкой границы между атмосферой и межпланетным пространством, то обычно атмосферой принято считать область вокруг небесного тела, в которой газовая среда вращается вместе с ним как единое целое. Толщина атмосферы некоторых планет, состоящих в основном из газов (газовые планеты), может быть очень большой.
Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая ее обитателей от солнечного ультрафиолетового излучения и метеоритов.
Атмосфера есть у всех массивных тел — газовых гигантов и большинства планет земного типа в Солнечной системе, кроме Меркурия.
Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое. Она переходит в межпланетное пространство постепенно, в экзосфере, начинающейся на высоте 500–1000 км от поверхности Земли.
По определению, предложенному Международной авиационной федерацией, граница атмосферы и космоса проводится по линии Кармана, расположенной на высоте 100 км, выше которой авиационные полеты становятся полностью невозможными.
NASA использует в качестве границы атмосферы отметку в 122 км (400 000 футов), где «шаттлы» переключались с маневрирования с помощью двигателей на аэродинамическое маневрирование.
Атмосфера Земли возникла в результате двух процессов: испарения вещества космических тел при их падении на Землю и выделения газов при вулканических извержениях (дегазация земной мантии). С выделением океанов и появлением биосферы атмосфера изменялась за счет газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.
В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).
История образования атмосферы
Согласно наиболее распространенной теории, атмосфера Земли на протяжении истории последней перебыла в трех различных составах. Первоначально она состояла из легких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера.
На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера. Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:
Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).
Кислород в атмосфере
Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа.
Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и другом.
По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.
Почему кислород исчезает из атмосферы?
Оказалось, что в течение этого времени с Земли происходит довольно стабильная утечка кислорода со скоростью примерно 8,4 промилле за миллион лет. В частности за последние 800 тыс. лет в атмосфере стало примерно на 0,7% меньше кислорода.
Уменьшение количества кислорода в атмосфере происходит довольно медленно. Вероятно, в ближайшие миллионы лет оно не угрожает человеческой жизни. Но информация о природе таких циклов очень важна для науки.
Нужно знать, под влиянием каких факторов происходят изменения. Эту информацию можно использовать в том числе при терраформировании Марса, когда люди начнут заселение Красной планеты. Вероятно, нам придется повышать количество кислорода в марсианской атмосфере.
Почему кислород исчезает?
Ученые еще не пришли к единому мнению, почему атмосфера Земли медленно теряет кислород. Есть две гипотезы.
Кислород исчезнет полностью?
Да, по крайне мере к такому выводу пришли японский ученый из Университета Тохо Казуми Озаки и его американский коллега Кристофер Рейнхард из Технологического института Джорджии.
Специалисты смоделировали эволюцию атмосферы нашей планеты с учетом геологических, биологических и климатических факторов. В результате они выяснили, что земная атмосфера останется относительно стабильной еще около миллиарда лет, а после этого за несколько тысяч лет она превратится в практически бескислородную.
По мнению ученых, причина катастрофы будет заключаться в возросшей активности Солнца, из-за которой в атмосфере снизится содержание углекислого газа. Когда этот показатель дойдет до критической точки, на планете нарушится процесс фотосинтеза, и кислород перестанет поступать в атмосферу.
Биосфера не успеет адаптироваться к таким значительным изменениям среды. Мир примитивных анаэробных микробов, который сегодня скрывается в тени, снова возьмет верх.
Вывод авторов работы
Как Земля будет без кислорода?
Такое состояние уже было с нашей планетой до кислородной катастрофы.
Поскольку подавляющая часть организмов того времени была анаэробной, неспособной существовать при значимых концентрациях кислорода, произошла глобальная смена сообществ: анаэробные сообщества сменились аэробными, ограниченными ранее лишь «кислородными карманами». Анаэробные же сообщества, наоборот, оказались оттеснены в «анаэробные карманы» (образно говоря, «биосфера вывернулась наизнанку»).
В дальнейшем наличие молекулярного кислорода в атмосфере привело к формированию озонового экрана, существенно расширившего границы биосферы, и к распространению более энергетически выгодного (по сравнению с анаэробным) кислородного дыхания.
Кислород и происхождение сложной жизни
О палеонтологии, о появлении первых многоклеточных животных, о великих вымираниях, об атмосфере в кембрийском периоде, о роли кислорода в происхождении многоклеточных животных, об эволюции атмосферы Земли.
Кислород — неметалл, обозначаемый в таблице Менделеева буквой «О» от Oxygenium (рождающий кислоты). Открытие кислорода стало большим событием в истории химии как науки. Знаменитый ученый А. Лавуазье сумел правильно интерпретировать открытия химиков Пристли и Шееле, доказав, что горение поддерживает новый простой элемент «кислород», содержащийся в воздухе, а не мифический флогистон («сверхтонкая материя», наполняющая горючие вещества и освобождающаяся при горении). Для этого ученый взвесил золу сожженных веществ и выяснил, что ее вес превышает вес исходного материала. Эти данные противоречили теории флогистона, который, теоретически, должен был улетучиться, сделав конечный продукт легче.
Кислорода на Земле очень много — больше, чем какого-либо другого элемента. В основном он содержится в связанном виде в земной коре в виде силикатов, карбонатов, сульфатов, оксидов железа, кварца и т.п. Всего примерно в полутора тысячах соединений. Почти половина массы твердой земной коры — это кислород. Еще больше его в воде — более 80%, связанного и растворенного. В воздухе — 23% по массе. Он содержится в каждой клетке живых организмов, в белках, углеводах, жирах; может составлять до 85% массы.
Содержание кислорода в атмосфере пополняется за счет фотосинтеза фитопланктона мирового океана и, в определенной степени, за счет лесов.
Это интересно
3,5 млрд. лет назад на Земли свободного кислорода было очень мало. Его постепенное накапливание в атмосфере и океане связывают с фотосинтезирующими археями (одноклеточными организмами). По мере увеличения содержания свободного кислорода доминирующее положение заняли организмы с клеточным дыханием, анаэробы, оказавшиеся более энергетически эффективными, чем аэробы, не потребляющие кислород.
Больше всего О2 в атмосфере было в конце каменноугольного периода, 300 млн. лет назад — до 35% по объему. С этим фактом многие ученые связывают бурное развитие крупных форм жизни — гигантских насекомых и земноводных.
Большинство живых организмов на нашей планете, кроме некоторых видов микроорганизмов-анаэробов, получают энергию за счет окисления, под влиянием кислорода, питательных веществ в клетках.
Свойства
Озон еще более активно вступает в химические реакции. Озоновый слой в верхних слоях атмосферы поглощает основную часть ультрафиолетового спектра излучения Солнца, губительного для живых организмов на Земле.
Происхождение жизни — несчастный случай или результат инопланетного вмешательства?
Очень жаль, что на многие значимые вопросы, сегодня мы не имеем однозначных ответов. Однако у людей от рождения запрограммировано потребность изучать. Иногда нас приводят в бешенство разные теории, на которые нет однозначных ответов, но мы надеемся, что одна из теорий могла бы быть ответом на вопрос который нас интересует.
Никто не может сказать наверняка, когда, почему, или как жизнь появилась на нашей планете. Одни исследователи предполагают, что это было случайно, а другие считают, что это был результат некого вмешательства из вне. Давайте же посмотрим на разные теории, как мифические так и научные, о которых нам известно.
1. Случайное происхождение.
Одна из самых правдоподобных теорий, заключается в химических процессах аминокислот, которые под воздействием водорода, кислорода, азота и углерода, зародили жизнь на нашей планете. Возможно, жизнь зародилась на Земле по полному совпадению, где эти элементы объединились, чтобы сформировать прекрасный комплекс, который стал стандартной цепью жизни.
Первыми организмами, которые появились на Земле, являются одноклеточными формами жизни. Они чем то напоминали бактериям, но испытывали недостаток в ядрах. Эти организмы, как считают, развивались приблизительно 4 миллиарда лет назад. Со временем они эволюционировали и стали более сложными одноклеточными организмами, которые были в состоянии перемещаться и размножаться.
Сегодня, многие задаться вопросом. Как могут неживые элементы такие как углерод и кислород, объединится и сформировать какую либо форму жизни? Я имею в виду, что как соединить водород, углерод, азот наука знает, но что делать дальше? Как зародить жизнь, наука не знает.
У нас имеется теории на формирования жизни, но как точно это произошло, все еще тайна. Главный вопрос, что оживило эти неживые частицы, помогло им эволюционировать со временем, стать более сложными и интеллектуальными?
2. Из космоса.
Многие ученые предполагают, что жизнь вообще могла произойти не на Земле. Она, возможно прибыла из космоса. На Землю всегда падали астероиды, и многие полагают, что один из них, возможно принес источник жизни.
После этого жизнь эволюционировала, стала более сложной, и сформировала огромное количество форм жизни. Если это верно, все существа на планете в некотором смысле являются пришельцами!
Если эта теория верна, она может ответить на вопрос, как жизнь прибыла на Землю, но она не отвечает на вопрос о происхождении самой жизни. Откуда взялась жизнь на астероиде? Как, она там выжила? Это вопросы, на которые никто не может дать ответы.
3. Божественное вмешательство.
Точно так же, как писатель создает весь мир в своей книге, Бог создал все что существует вокруг нас. Интересно, если когда нибудь человечество обнаружит существование другой жизни во вселенной, будет ли религия утверждать, что это тоже творение Божье?
4. Создания инопланетной цивилизацией.
Сегодня, это теория из области фантастики, но многие люди включая ученых и исследователей, думают что жизнь на Земле была спроектирована инопланетной расой. Точно так же, как мы делаем новый дизайн в производстве машин, инопланетная цивилизация возможно проектировала жизнь на Земле.
О целях зарождения жизни на Земле для инопланетной расы можно только фантазировать. Но вероятней всего, Земля могла бы быть местом тестирования, чтобы наблюдать за своими «экспериментами».
Естественно для проведения подобных экспериментов с нами, это должна быть сверх интеллектуальная раса, которая опережала бы нас на миллионы лет в своем развитии. Вполне вероятно, что это действительно были инопланетяне, которых мы знаем под именем «Бог». Мы можем думать, что кто то создал жизнь, но как это было сделано мы не знаем.
Сложная жизнь без кислорода невозможна
Сложные формы жизни могли возникнуть только на тех планетах, в атмосфере и океанах которых присутствует сравнительно большое количество кислорода — источника дешевой энергии для метаболических систем многоклеточных организмов. В этом убежден профессор Бристольского университета Дэвид Кэтлинг (David Catling) и его коллеги из Вашингтонского университета и NASA.
Говорить о высокой вероятности возникновения сложных форм жизни на бедных кислородом планетах не приходится, считает профессор. Ведь основной источник энергии в живой клетке — это процесс окисления так называемых «субстратов» (то есть, белков, жиров, углеводов, витаминов и минеральных веществ) с помощью кислорода, играющего роль восстанавливающегося соединения.
К сожалению, время, необходимое планете земного типа для насыщения атмосферы минимально необходимым объемом кислорода, очень велико. Земле, например, потребовалось для этого 4 миллиарда лет — почти половина ожидаемого срока жизни нашего Солнца. Очевидно, что у планет, обращающихся вокруг более короткоживущих звезд, шансов на развитие собственной биосферы, в которой бы господствовали высшие животные, практически нет, говорится в пресс-релизеБристольского университета. Это ограничение значительно сокращает список планет-кандидатов, на которых будущим поколениям придется искать признаки существования жизни.
На заре жизни
В геологии с докембрием связывают крупнейшие месторождения меди, золота, железа, алюминия, свинца, урана и многих других металлов. В докембрийских отложениях отсутствует скелетная фауна, которая служит основой для построения шкалы времени в фанерозое; тем не менее, органических остатков здесь достаточно много. Первые организмы появились уже в архее и были, по-видимому, гетеротрофами, так как химические реакции, необходимые для синтеза органических веществ, слишком сложны, чтобы возникнуть у самых ранних форм жизни.
Возрастание численности гетеротрофов должно было привести к уменьшению количества пищевых ресурсов. Возникшая конкуренция ускорила появление автотрофов, способных использовать энергию света для синтеза сложные органические вещества. Первые фотосинтезирующие организмы не выделяли кислород; лишь потом появились организмы, подобные синезелёным водорослям, наполнившие атмосферу молекулярным кислородом. Полагают, что за всё время жизнедеятельности фотосинтезирующих организмов в атмосферу выделились десятки квадриллионов тонн кислорода – в несколько десятков раз больше, чем существует сейчас. Увеличение концентрации O2 привело к образованию озонового слоя в атмосфере, что в свою очередь вызвало уменьшение количества жёсткого излучения, достигающего поверхности Земли. Это, с одной стороны, уменьшило скорость эволюции, но с другой стороны, позволило образоваться устойчивым формам с полезными признаками.
Учёные объяснили, как Земля стала пригодной для жизни
Ранее считалось, что атмосфера планеты наполнилась кислородом из-за сдвигов в земной коре. Теперь появилась другая версия.
Фото © MARK GARLICK / SCIENCE PHOTO LIBRARY
Земля стала богатой кислородом без помощи каких-либо тектонических процессов, заявили исследователи из Университета Лидса (Великобритания). Об этом пишет Daily Mail. Сообщается, что учёные смоделировали ход событий, произошедших на планете около 2,4 миллиарда лет назад. Именно в этот период, по данным науки, произошло «великое событие оксигенации» — насыщения воздуха кислородом.
Сразу надо отметить, что первый кислород на Земле начал выделяться с появлением фотосинтеза. Накопление этого газа и стало «революцией». Моделирование показало, что для такого события было вполне достаточно естественного охлаждения мантии Земли (изначально она была очень горячей). По мере остывания, говорят учёные, в атмосферу стало выделяться всё меньше диоксида серы и других вулканических газов, поглощающих свободный кислород.
За первым «скачком», как известно, последовали ещё два резких повышения уровня кислорода — 800 и 450 миллионов лет назад. И по итогам моделирования оказалось, что второе изменение было закономерным: из-за избытка кислорода в отложениях начал накапливаться фосфор, это не давало развиваться формам жизни, для которых этот фосфор был жизненно важен. А поскольку многие живые организмы дышали кислородом, то благодаря их гибели кислород оставался нетронутым. Примерно то же самое, по версии британских учёных, повторилось и в третий раз.
Таким образом, они пришли к выводу, что для Земли стать пригодной для известной нам жизни планетой было лишь вопросом времени, то есть для этого не нужно было каких-либо счастливых случайностей вроде тектонических сдвигов. Эти данные очень обнадёжили авторов исследования — они уверены, что это увеличивает вероятность возникновения жизни на других планетах.
Кислород — важнейший для жизни на Земле газ
Продолжая тему важнейших для жизни элементов и веществ, сегодня говорим о кислороде. Без кислорода не было бы жизни на Земле — по крайней мере в том виде, в котором мы ее знаем!
Кислород — неметалл, обозначаемый в таблице Менделеева буквой «О» от Oxygenium (рождающий кислоты). Открытие кислорода стало большим событием в истории химии как науки. Знаменитый ученый А. Лавуазье сумел правильно интерпретировать открытия химиков Пристли и Шееле, доказав, что горение поддерживает новый простой элемент «кислород», содержащийся в воздухе, а не мифический флогистон («сверхтонкая материя», наполняющая горючие вещества и освобождающаяся при горении). Для этого ученый взвесил золу сожженных веществ и выяснил, что ее вес превышает вес исходного материала. Эти данные противоречили теории флогистона, который, теоретически, должен был улетучиться, сделав конечный продукт легче.
Кислорода на Земле очень много — больше, чем какого-либо другого элемента. В основном он содержится в связанном виде в земной коре в виде силикатов, карбонатов, сульфатов, оксидов железа, кварца и т.п. Всего примерно в полутора тысячах соединений. Почти половина массы твердой земной коры — это кислород. Еще больше его в воде — более 80%, связанного и растворенного. В воздухе — 23% по массе. Он содержится в каждой клетке живых организмов, в белках, углеводах, жирах; может составлять до 85% массы.
Содержание кислорода в атмосфере пополняется за счет фотосинтеза фитопланктона мирового океана и, в определенной степени, за счет лесов.
Это интересно
3,5 млрд. лет назад на Земли свободного кислорода было очень мало. Его постепенное накапливание в атмосфере и океане связывают с фотосинтезирующими археями (одноклеточными организмами). По мере увеличения содержания свободного кислорода доминирующее положение заняли организмы с клеточным дыханием, анаэробы, оказавшиеся более энергетически эффективными, чем аэробы, не потребляющие кислород.
Больше всего О2 в атмосфере было в конце каменноугольного периода, 300 млн. лет назад — до 35% по объему. С этим фактом многие ученые связывают бурное развитие крупных форм жизни — гигантских насекомых и земноводных.
Большинство живых организмов на нашей планете, кроме некоторых видов микроорганизмов-анаэробов, получают энергию за счет окисления, под влиянием кислорода, питательных веществ в клетках.
Свойства
С точки зрения химии, кислород — очень активный элемент, уступающий в этом плане только фтору. Вступает в реакции практически со всеми элементами и большинством сложных соединений — иногда в обычных условиях, но чаще в присутствии катализатора, при высоких температурах, под действием электрического разряда или уф-излучения. Инертны к кислороду только золото, платина, тяжелые инертные газы. Во всех реакциях (кроме взаимодействия со фтором) кислород выступает окислителем. Большинство реакций экзотермические, происходят с выделением большого количества тепла и света, физически выражающегося в процессе, который мы называем горение. Впрочем, окисление может быть и медленным — так окисляются многие органические соединения растительного происхождения. Эндотермической реакцией является, например, окисление азота.
Озон еще более активно вступает в химические реакции. Озоновый слой в верхних слоях атмосферы поглощает основную часть ультрафиолетового спектра излучения Солнца, губительного для живых организмов на Земле.
В следующей статье мы расскажем о способах получения и применения кислорода, а также о том, чем иногда он может быть опасен.