почему белки называют молекулами жизни

Почему белки называют молекулами жизни

Подробное решение параграф § 11 по биологии для учащихся 10 класса, авторов Пасечник В.В., Каменский А.А., Рубцов A.M. Углубленный уровень 2019

Вопрос 1. Что такое катализаторы?

Катализаторы — это вещества, изменяющие скорость химической реакции или вызывающие её, но не входящие в состав продуктов реакции.

Вопрос 2. Что такое иммунитет?

Иммунитет — это способ защиты организма от действия различных веществ и организмов, вызывающих деструкцию его клеток и тканей, характеризующийся изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.

Вопрос 3. Какие белки вам известны? Каковы их функции?

Кератин, коллаген, эластин — строительная, структурная функция;

Гемоглобин — транспортная ф.;

Актин и миозин — сократительная, двигательная ф.;

Гормоны (инсулин, соматотропин и др.) — регуляторная ф.;

Иммуноглобулины, тромбин, фибриноген и др. — защитная ф.;

Пепсин, каталаза, трипсин — каталитическая ф.

Вопрос 4. Какие функции белков вам известны?

Белки выполняют самые разнообразные функции в клетках: определяют их структуру и форму, изменяют скорость протекания химических реакций, обеспечивают передачу химических сигналов, осуществляют разные виды клеточного движения, а также перенос веществ через мембраны и т. п.

Вопрос 5. Чем объясняется многообразие функций белков?

Многообразие функций белков объясняется разнообразием форм и состава самих белков.

Вопрос 6. Что представляют собой белки — ферменты? Приведите примеры таких белков.

Ферменты представляют собой молекулы белковой природы, которые взаимодействуют с различными веществами, ускоряя их химическое превращение по определенному пути. При этом они не расходуются. В каждом ферменте есть активный центр, присоединяющийся к субстрату, и каталитический участок, запускающий ту или иную химическую реакцию.

Эти вещества ускоряют протекающие в организме биохимические реакции без повышения температуры. Обычно эти молекулы имеют третичную (глобула) или четвертичную (несколько соединенных глобул) белковую структуру. Сначала они синтезируются в линейном виде. А потом сворачиваются в требуемую структуру. Для обеспечения активности биокатализатору необходимо определенное строение. Ферменты, как и другие белки, разрушаются при нагреве, экстремальных значениях pH, агрессивных химических соединений.

Основные свойства ферментов:

специфичность: способность фермента действовать только на специфический субстрат, например, липазы — на жиры;

каталитическая эффективность: способность ферментативных белков ускорять биологические реакции в сотни и тысячи раз;

способность к регуляции: в каждой клетке выработка и активность ферментов определяется своеобразной цепью превращений, влияющей на способность этих белков вновь синтезироваться.

Примеры белков — ферментов: пепсин, каталаза, трипсин, амилаза, протеазы, липазы, глутаматдегидрогеназа, аланинаминотрансфераза (АЛТ), лейцинаминопептидаза (ЛАП), фруктозо — 1,6 — дисфосфат — альдолаза (ФДФ — А) и др.

Вопрос 7. Как реализуется белками защитная функция?

Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами. Связывание их с белками возбудителей подавляет функциональную активность последних и останавливает развитие инфекции. Антитела обладают уникальным свойством: они способны отличать чужеродные белки от собственных белков организма.

Кроме того, в ответ на заражение вирусом клетка вырабатывает специальные белки — интерфероны, которые препятствуют размножению носителя инфекции.

Многие организмы используют для защиты или нападения специфические пептиды и белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. Часто эти вещества обладают ферментативной активностью (холерный токсин, коклюшный токсин) или же они могут нарушать структуру клеточных мембран (белки ядов змей и насекомых).

Вопрос 8. Что вам известно о гормонах? Есть ли среди них вещества белковой природы? Приведите примеры.

Гормоны — мельчайшие элементы, вырабатываемые нашим организмом. Это органические биологически активные вещества, которые вырабатываются собственными железами внутренней секреции организма. Поступая в кровь, связываясь с рецепторами определенных клеток, они регулируют физиологические процессы, обмен веществ.

Белкам — гормонам присуща регуляторная функция. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. Например, инсулин регулирует содержание сахара в крови.

Примеры гормонов белковой природы (белки и полипептиды) — гормоны гипоталамуса, гормоны гипофиза (соматотропин, кортикотропин, пролактин, вазопрессин и окситоцин, гонадотропный гормон, полипептидные низкомолекулярные гормоны, адренокортикотропный гормон, кортикотропин (АКТГ)); щитовидной железы (тироксин, кальцитонин); гормон паращитовидных желез; гормоны поджелудочной железы (глюкагон и инсулин); гормон почек (эритропоэтин) и др.

Вопрос 9. Используя доступные информационные источники, подготовьте сообщение о конкретных видах белков, встречающихся в организмах, и выполняемых ими функциях.

Виды белков их функции в организме.

Структурные белки. Влияют на структуру самой клетки, ее форму. Всеми своими свойствами, качествами и даже функциями каждый вид тканей обязан именно структурным белкам. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.

Транспортные белки. Транспортные белки обеспечивают транспортировку питательных и других полезных веществ по всему организму. Например, клеточные мембраны пропускают внутрь клетки не все подряд. И даже некоторые полезные вещества туда не могут проникнуть. Транспортные белки имеют способность проникать сквозь мембраны клеток и проносить с собой эти самые вещества. Гемоглобин — переносчик кислорода и других веществ.

Рецепторные белки. Рецепторные белки наряду с транспортными белками обеспечивают проникновение полезных веществ внутрь клеток. Располагаются рецепторные белки на поверхности мембран, то есть снаружи клеток. Они связываются с поступающими к ним питательными веществами и помогают им проникать внутрь. Важность этого вида белка переоценить невозможно, так как без них внутриутробное развитие может происходить совершенно неправильно или даже полностью прекратиться.

Сократительные белки. Человек двигается благодаря сокращению мышечных тканей. Эту способность им обеспечивают сократительные белки. Как отдельные клетки, так и организм в целом приходит в движение при помощи этого вида белков. Например, миозин, актин и др.

Регуляторные белки. Организм человека ведет свою жизнедеятельность благодаря множеству различных биохимических процессов внутри него. Все эти процессы обеспечивают и регулируют регуляторные белки. Одним из них является инсулин, также половые гормоны.

Защитные белки. Находясь в окружающей среде, организм постоянно контактирует с самыми разными веществами, микроорганизмами и так далее, попадает в самые разные условия. Сохранность здоровья в таких случаях обеспечивают иммунные клетки, которые и являются защитными белками. Также к последним относят прокоагулянты, которые обеспечивают нормальную свертываемость крови. Гаммаглобулин, иммуноглобулин — антитела (защита от инфекций).

Ферменты. Еще один вид белков — ферменты. Они отвечают за правильное протекание биохимических реакций внутри клеток во всем организме. За контроль метаболизма отвечают белки — протеазы.

Вопрос 10. Почему белки называют молекулами жизни?

Более 4 млрд. лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными блоками живых организмов. Своим бесконечным разнообразием всё живое обязано именно уникальным молекулам белка.

Белки — это природные органические соединения, которые обеспечивают все жизненные процессы любого организма. Из белков построены хрусталик глаза и паутина, панцирь черепахи и ядовитые вещества грибов. С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глубинах океана мерцают таинственным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Белки считаются основным материалом для «строительства» клеток. Учёные выяснили, что у большинства организмов белки составляют более половины их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia соli насчитывается около 3 тыс. различных белков.

Вопрос 11. Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы.

почему белки называют молекулами жизни. Смотреть фото почему белки называют молекулами жизни. Смотреть картинку почему белки называют молекулами жизни. Картинка про почему белки называют молекулами жизни. Фото почему белки называют молекулами жизни

почему белки называют молекулами жизни. Смотреть фото почему белки называют молекулами жизни. Смотреть картинку почему белки называют молекулами жизни. Картинка про почему белки называют молекулами жизни. Фото почему белки называют молекулами жизни

Вопрос 12. Найдите в приведённом тексте ошибки. Укажите номера предложений, в которых сделаны ошибки. Исправьте их.

1) Большое значение в строении и жизнедеятельности организмов имеют белки. 2) Это биополимеры, мономерами которых являются азотистые основания. 3) Белки входят в состав плазматической мембраны. 4) Все белки выполняют в клетке ферментативную функцию. 5) Молекулы белка несут наследственную информацию о признаках организма.6) Молекулы белка входят в состав рибосом.

Ответ. Ошибки сделаны в предложениях под номерами: 2, 4, 5.

2)Это биополимеры, мономерами которых являются аминокислоты, соединенные между собой пептидной связью.

4)Не все белки выполняют в клетке ферментативную функцию. ИЛИ…. Все белки выполняют в клетке различные функции.

5) Молекулы белка не несут наследственную информацию о признаках организма. ИЛИ…Наследственная информация о признаках организма зашифрована в нуклеиновых кислотах.

Вопрос 13. Почему в запасных тканях семян растений (эндосперме, семядолях), даже очень богатых углеводами или жирами, обязательно присутствуют белки?

Семена у растений наиболее надежно обеспечивают их размножение и распространение. В семени содержится необходимый для прорастания зародыша запас питательных веществ. Белки при необходимости используются ими для получения аминокислот и энергии. Белки являются основным строительным материалом клеток. Также белки в сухом состоянии денатурируются значительно медленнее, чем белки оводненные, инактивирование ферментов в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие семена могут выдержать нагревание до гораздо более высоких температур, чем те же споры или семена в увлажненном состоянии.

Вопрос 14. ЛАБОРАТОРНАЯ РАБОТА № 4 «Обнаружение белков с помощью качественной реакции»

Цель: показать наличие белков в биологических объектах.

Оборудование: штатив с пробирками, водяная баня, кристаллизатор со льдом, мерный стакан на 50 мл.

Реактивы: куриное яйцо, концентрированная азотная кислота, раствор аммиака, гидроксид натрия, раствор медного купороса, вода.

1. Приготовьте раствор белка.

2. Ксантопротеиновая реакция. В пробирку налейте 2—3 мл раствора белка и добавьте несколько капель азотной кислоты. Соблюдайте технику безопасности при работе с химическими реагентами! Нагрейте содержимое пробирки, при этом образуется жёлтый осадок. Охладите смесь и добавьте раствор аммиака до перехода жёлтой окраски в оранжевую.

3. Биуретовая реакция. В пробирку налейте 2—3 мл раствора белка и 2—3 мл раствора гидроксида натрия, затем 1—2 мл раствора медного купороса. Появляется фиолетовое окрашивание.

4. Запишите результаты эксперимента и сделайте вывод.

Ксантопротеиновая реакция открывает наличие в белках циклических аминокислот — триптофана, фенилаланина, тирозина, содержащих в своем составе ароматическое ядро. Ряд белков при добавлении к ним концентрированной азотной кислоты при нагревании дают желтое окрашивание, которое может переходить в оранжевое в щелочной среде.

Реакция вызвана нитрованием бензольного ядра указанных циклических аминокислот и образованием нитросоединений желтого цвета.

почему белки называют молекулами жизни. Смотреть фото почему белки называют молекулами жизни. Смотреть картинку почему белки называют молекулами жизни. Картинка про почему белки называют молекулами жизни. Фото почему белки называют молекулами жизни

Взаимодействие с концентрированной азотной кислотой — белый осадок, нагревание — появлением желтой окраски, добавление аммиака — появление оранжевой окраски.

почему белки называют молекулами жизни. Смотреть фото почему белки называют молекулами жизни. Смотреть картинку почему белки называют молекулами жизни. Картинка про почему белки называют молекулами жизни. Фото почему белки называют молекулами жизни

Ксантопротеиновую реакцию дают почти все белки. Ксантопротеиновая реакция обуславливает появление желтого окрашивания при попадании концентрированной азотной кислоты на кожу, ногти. Эту реакцию могут давать и более простые ароматические соединения (например, фенолы). Исключение составляют клупеин и сальмин (из группы протаминов) и желатина, в молекуле которых почти полностью отсутствуют ароматические аминокислоты.

Биуретовая реакция является универсальной на пептидную связь в белках. Вещества, имеющие в своем составе не менее 2 — х пептидных связей дают эту реакцию.

Реакция состоит в том, что в щелочной среде в присутствии сернокислой меди белки и полипептиды дают сине — фиолетовое или красно — фиолетовое окрашивание в зависимости от длины пептида вследствие образования комплексных соединений меди с пептидной группой. Продукты гидролиза белков (пептоны) могут давать розовое, красное окрашивание.

почему белки называют молекулами жизни. Смотреть фото почему белки называют молекулами жизни. Смотреть картинку почему белки называют молекулами жизни. Картинка про почему белки называют молекулами жизни. Фото почему белки называют молекулами жизни

Щелочная среда приводит к появлению отрицательного заряда вследствие диссоциации ОН — группы, благодаря этому кислород взаимодействует с медью с образованием солеобразной связи, а медь в свою очередь с атомами азота связана через дополнительно координационные связи за счет использования их неподеленных электронных пар. Это ведет к образованию стабильного комплекса.

почему белки называют молекулами жизни. Смотреть фото почему белки называют молекулами жизни. Смотреть картинку почему белки называют молекулами жизни. Картинка про почему белки называют молекулами жизни. Фото почему белки называют молекулами жизни

Вывод: Ксантопротеиновая и биуретовая реакции — качественные реакции на белки. С помощью этих реакций можно доказать наличие белков в биологических объектах.

Источник

О живой материи. Белки

Более 4 млрд лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными бло­ками живых организмов. Своим бес­конечным разнообразием всё живое обязано именно уникальным молеку­лам белка, и иные формы жизни во Вселенной науке пока неизвестны.

Белки, или протеины (от греч. «протос» — «первый»), — это природ­ные органические соединения, кото­рые обеспечивают все жизненные процессы любого организма. Из бел­ков построены хрусталик глаза и па­утина, панцирь черепахи и ядовитые вещества грибов. С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глу­бинах океана мерцают таинствен­ным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Учёные вы­яснили, что у большинства организ­мов белки составляют более полови­ны их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia сой’ (см. до­полнительный очерк «Объект иссле­дования — прокариоты»), насчиты­вается около 3 тыс. различных белков.

БИОЛОГИЧЕСКИЕ «БУСЫ»

Молекула белка очень длинная. Хими­ки называют такие молекулы поли­мерными (от греч. «поли» — «много» и «мерос» — «часть», «доля»). Действи­тельно, длинная молекула полимера состоит из множества маленьких мо­лекул, связанных друг с другом. Так нанизываются на нить бусинки в ожерелье. В полимерах роль нити иг­рают химические связи между бусин­ками-молекулами.

Секрет белков спрятан в особен­ностях этих самых бусинок. Боль­шинство полимеров не принимает устойчивой формы в пространстве, уподобляясь тем же бусам, у которых и не может быть пространственной структуры: повесишь их на шею — они примут форму кольца или овала, положишь в коробку — свернутся в клубок неопределённой формы. А те­перь представим себе, что некоторые бусинки могут «слипаться» друг с другом. Например, красные притяги­ваются к жёлтым. Тогда вся цепочка примет определённую форму, обязан­ную своим существованием «слипа-нию» жёлтых и красных бусинок

Нечто подобное происходит и в белках. Отдельные маленькие моле­кулы, входящие в состав белка, обла­дают способностью «слипаться», так как между ними действуют силы при­тяжения. В результате у любой белко­вой цепи есть характерная только для неё пространственная структура. Именно она определяет чудесные свойства белков. Без такой структуры они не могли бы выполнять те функ­ции, которые осуществляют в живой клетке.

При длительном кипячении бел­ков в присутствии сильных кислот или щелочей белковые цепи распада­ются на составляющие их молекулы, называемые аминокислотами. Амино­кислоты — это и есть те «бусинки», из которых состоит белок, и устроены они сравнительно просто.

КАК УСТРОЕНА АМИНОКИСЛОТА

В природе встречаются также ами­нокислоты, в которых NH^-группа связана с более отдалёнными от кар­боксильной группы атомами углеро­да. Однако для построения белков природа выбрала именно а-аминокислоты. Это обусловлено прежде всего тем, что только а-аминокислоты, соединённые в длинные цепи, способны обеспечить достаточную прочность и устойчивость структуры больших белковых молекул.

Число а-аминокислот, различа­ющихся R-группой, велико. Но чаще других в белках встречается всего 20 разных аминокислот. Их можно рас­сматривать как алфавит «языка» бел­ковой молекулы. Химики называют эти главные аминокислоты стандарт­ными, основными или нормальными. Условно основные аминокислоты де­лят на четыре класса.

Для нормальной жизнедеятельно­сти организм нуждается в полном на­боре из 20 основных a-Z-аминокислот. Но одни из них могут быть синтезиро­ваны в клетках самого организма, а другие — должны поступать в готовом виде из пищевых продуктов. В пер­вом случае аминокислоты называют заменимыми, а во втором — незамени­мыми. Набор последних для разных организмов различен. Например, для белой крысы незаменимыми являют­ся 10 аминокислот, а для молочнокислых бактерий — 16. Растения могут са­мостоятельно синтезировать самые разнообразные аминокислоты, созда­вать такие, которые не встречаются в белках.

ЧТО ТАКОЕ ПЕПТИД

Полимерная молекула белка образует­ся при соединении в длинную цепоч­ку бусинок-аминокислот. Они нани­зываются на нить химических связей благодаря имеющимся у всех амино­кислот амино- и карбоксильной груп­пам, присоединённым к а-атому угле­рода.

Образующиеся в результате такой реакции соединения называются пеп-тидами; (—СО— NH —группировка в них — это пептидная группа, а связь между атомами углерода и азота — пептидная связь (её ещё называют амидной). Соединяя аминокислоты посредством пептидных связей, мож­но получить пептиды, состоящие из остатков очень многих аминокислот. Такие соединения получили название полипептиды. Полипептидное стро­ение белковой молекулы доказал в 1902 г. немецкий химик Эмиль Гер­ман Фишер.

Общее число аминокислотных ос­татков в белковой молекуле изменя­ется в очень широких пределах. Так, человеческий инсулин состоит из 51 аминокислотного остатка, а лизо-цим молока кормящей матери — из 130. В гемоглобине человека 4 ами­нокислотные цепочки, каждая из которых построена из примерно 140 аминокислот. Существуют белки, имеющие почти 3 тыс. аминокис­лотных остатков в единой цепи.

Молекулярные массы белков лежат в диапазоне примерно от 11 тыс. для малых белков, состоящих из 100 ами­нокислотных остатков, до 1 млн и бо­лее для белков с очень длинными полипептидными цепями или для белков, состоящих из нескольких по-липептидных цепей.

Возникает вопрос: как же всё ог­ромное многообразие белков с раз­личными функциями и свойствами может быть создано всего из 20 мо­лекул? А разгадка этого секрета при­роды проста — каждый белок имеет свой неповторимый аминокислот­ный состав и уникальный порядок со­единения аминокислот, называемый первичной структурой белка.

СПИРАЛИ И СЛОИ

В начале 50-х гг. XX в. американские химики Лайнус Карл Полинг (1901— 1994), награждённый Нобелевской премией за исследования природы химической связи, и Роберт Кори (1897—1971) предположили, что не­которые участки аминокислотной це­почки в белках закручены в спираль. Благодаря совершенствованию экс­периментальных методов (структуру белков изучают с помощью рентгенов­ских лучей) через несколько лет эта гениальная догадка подтвердилась.

Действительно, полипептидные цепи очень часто образуют спираль, закрученную в правую сторону. Это первый, самый низкий уровень про­странственной организации белко­вых цепочек Здесь-то и начинают иг­рать роль слабые взаимодействия «бусинок»-аминокислот: группа С=0 и группа N — H из разных пептидных связей могут образовывать между со­бой водородную связь. Оказалось, что в открытой Полингом и Кори спирали такая связь образована меж­ду группой С=0 каждой г-й аминокис­лоты и группой N — H ( i + 4)-й амино­кислоты, т. е. между собой связаны аминокислотные остатки, отстоящие друг от друга на четыре «бусинки». Эти водородные связи и стабилизиру­ют такую спираль в целом. Она полу­чила название a.-спирали.

Позднее выснилось, что а-спираль — не единственный способ ук­ладки аминокислотных цепочек. По­мимо спиралей они образуют ещё и слои. Благодаря всё тем же водород­ным связям между группами С=0 и N — H друг с другом могут «слипаться» сразу несколько разных фрагментов одной полипептидной цепи. В резуль­тате получается целый слой — его на­звали ^-слоем.

В большинстве белков а-спирали и р-слои перемежаются всевозможными изгибами и фрагментами цепи без какой-либо определённой структуры. Когда имеют дело с пространствен­ной структурой отдельных участков белка, говорят о вторичной структу­ре белковой молекулы.

БЕЛОК В ПРОСТРАНСТВЕ

Для того чтобы получить полный «портрет» молекулы белка, знания первичной и вторичной структуры недостаточно. Эти сведения ещё не дают представления ни об объёме, ни о форме молекулы, ни тем более о расположении участков цепи по отношению друг к другу. А ведь все спирали и слои каким-то образом размещены в пространстве. Общая пространственная структура поли-пептидной цепи называется третич­ной структурой белка.

При образовании третичной струк­туры белка наконец-то проявляют активность R-группы — боковые це­пи аминокислот. Именно благодаря им «слипаются» между собой боль­шинство «бусинок»-аминокислот, придавая цепи определённую форму в пространстве.

В живом организме белки всегда находятся в водной среде. А самое большое число основных аминокис­лот — восемь — содержат неполяр­ные R-группы. Разумеется, белок стремится надёжно спрятать внутрь своей молекулы неполярные боковые цепи, чтобы ограничить их контакт с водой. Учёные называют это воз­никновением гидрофобных взаимо­действий (см. статью «Мельчайшая единица живого»).

Благодаря гидрофобным взаимо­действиям вся полипептидная цепоч­ка принимает определённую форму в пространстве, т. е. образует третич­ную структуру.

В молекуле белка действуют и дру­гие силы. Часть боковых цепей основ­ных аминокислот заряжена отрица­тельно, а часть — положительно. Так как отрицательные заряды притяги­ваются к положительным, соответст­вующие «бусинки» «слипаются». Элек­тростатические взаимодействия, или, как их называют иначе, солевые мос­тики, — ещё одна важная сила, ста­билизирующая третичную структуру.

У семи основных аминокислот есть полярные боковые цепи. Между ними могут возникать водородные связи, тоже играющие немалую роль в поддержании пространственной структуры белка.

Между двумя аминокислотными остатками цистеина иногда образу­ются ковалентные связи (— S —S—), которые очень прочно фиксируют расположение разных участков бел­ковой цепи по отношению друг к другу. Такие связи называют дисуль-фидными мостиками. Это самые не­многочисленные взаимодействия в белках (в некоторых случаях они во­обще отсутствуют), зато по прочно­сти они не имеют равных.

ВЫСШИЙ УРОВЕНЬ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ БЕЛКОВ

Молекула белка может состоять не из одной, а из нескольких полипептидных цепей. Каждая такая цепь представляет собой самостоятельную пространственную структуру — субъединицу. Например, белок гемогло­бин состоит из четырёх субъединиц, которые образуют единую молекулу, располагаясь в вершинах почти пра­вильного тетраэдра. Субъединицы «прилипают» друг к другу благодаря тем же самым силам, что стабилизи­руют третичную структуру. Это гид­рофобные взаимодействия, солевые мостики и водородные связи.

Если белок состоит из нескольких субъединиц, говорят, что он обладает четвертичной структурой. Такая структура представляет собой высший уровень организации белковой моле­кулы. В отличие от первых трёх уров­ней четвертичная структура есть дале­ко не у всех белков. Приблизительно половина из известных на сегодняш­ний день белков её не имеют.

ПОЧЕМУ БЕЛКИ БОЯТСЯ ТЕПЛА

Связи, поддерживающие пространст­венную структуру белка, довольно лег­ко разрушаются. Мы с детства знаем, что при варке яиц прозрачный яич­ный белок превращается в упругую белую массу, а молоко при скисании загустевает. Происходит это из-за раз­рушения пространственной структуры белков альбумина в яичном белке и ка­зеина (огглат. caseus — «сыр») в моло­ке. Такой процесс называется денату­рацией. В первом случае её вызывает нагревание, а во втором — значи­тельное увеличение кислотности (в результате жизнедеятельности обита­ющих в молоке бактерий). При дена­турации белок теряет способность выполнять присущие ему в организме функции (отсюда и название процес­са: от лат. denaturare — «лишать при­родных свойств»). Денатурированные белки легче усваиваются организмом, поэтому одной из целей термической обработки пищевых продуктов яв­ляется денатурация белков.

ЗАЧЕМ НУЖНА ПРОСТРАНСТВЕННАЯ СТРУКТУРА

В природе почти ничего не происхо­дит случайно. Если белок принял определённую форму в пространстве, это должно служить достижению ка­кой-то цели. Действительно, только бе­лок с «правильной» пространственной структурой может обладать опреде­лёнными свойствами, т. е. выполнять те функции в организме, которые ему предписаны. А делает он это с помо­щью всё тех же R-групп аминокислот. Оказывается, боковые цепи не толь­ко поддерживают «правильную» фор­му молекулы белка в пространстве. R-группы могут связывать другие орга­нические и неорганические молекулы, принимать участие в химических ре­акциях, выступая, например, в роли ка­тализатора.

Часто сама пространственная ор­ганизация полипептидной цепи как раз’ и нужна для того, чтобы сосредо­точить в определённых точках про­странства необходимый для выполне­ния той или иной функции набор боковых цепей. Пожалуй, ни один процесс в живом организме не прохо­дит без участия белков.

В ЧЁМ СЕКРЕТ ФЕРМЕНТОВ

Все химические реакции, протекаю­щие в клетке, происходят благодаря особому классу белков — фермен­там. Это белки-катализаторы. У них есть свой секрет, который позволяет им работать гораздо эффективнее других катализаторов, ускоряя реак­ции в миллиарды раз.

Предположим, что несколько при­ятелей никак не могут встретиться. Но стоило одному из них пригласить друзей на день рождения, как резуль­тат не заставил себя ждать: все оказа­лись в одном месте в назначенное время.

Чтобы встреча состоялась, понадо­билось подтолкнуть друзей к контак­ту. То же самое делает и фермент. В его молекуле есть так называемые центры связывания. В них расположе­ны привлекательные для определён­ного типа химических соединений (и только для них!) «уютные кресла» — R-группы, связывающие какие-то уча­стки молекул реагирующих веществ. Например, если одна из молекул име­ет неполярную группу, в центре свя­зывания находятся гидрофобные бо­ковые цепи. Если же в молекуле есть отрицательный заряд, его будет под­жидать в молекуле фермента R-груп па с положительным зарядом.

В результате обе молекулы реаген­тов связываются с ферментом и ока­зываются в непосредственной близо­сти друг от друга. Мало того, те их группы, которые должны вступить в химическую реакцию, сориентирова­ны в пространстве нужным для реак­ции образом. Теперь за дело прини­маются боковые цепи фермента, играющие роль катализаторов. В фер­менте все «продумано» таким обра­зом, что R-группы-катализаторы тоже расположены вблизи от места собы­тий, которое называют активным центром. А после завершения реак­ции фермент «отпускает на волю» мо­лекулы-продукты (см. статью «Фер­менты — на все руки мастера»).

ОТКУДА БЕРЁТСЯ ИММУНИТЕТ

Белки выполняют в организме мно­жество функций; они, например, за­щищают клетки от нежелательных вторжений, предохраняют их от по­вреждений. Специальные белки — антитела обладают способностью распознавать проникшие в клетки бактерии, вирусы, чужеродные поли­мерные молекулы и нейтрализовывать их.

У высших позвоночных от чуже­родных частиц организм защищает иммунная система. Она устроена так, что организм, в который вторг­лись такие «агрессоры» — антигены, начинает вырабатывать антитела. Молекула антитела прочно связыва­ется с антигеном: у антител, как и у ферментов, тоже есть центры связы­вания. Боковые цепи аминокислот расположены в центрах таким обра­зом, что антиген, попавший в эту ло­вушку, уже не сможет вырваться из «железных лап» антитела. После свя­зывания с антителом враг выдворяет­ся за пределы организма.

Можно ввести в организм неболь­шое количество некоторых полимер­ных молекул, входящих в состав бак­терий или вирусов-возбудителей какой-либо инфекционной болезни.

В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу «насто­ящий» болезнетворный микроб тот­час же подвергнется атаке этих анти­тел, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекци­онным болезням.

ДЛЯ ЧЕГО В ГЕМОГЛОБИНЕ ЖЕЛЕЗО

В природе существуют белки, в ко­торых помимо аминокислот содер­жатся другие химические компонен­ты, такие, как липиды, сахара, ионы металлов. Обычно эти компоненты играют важную роль при выполне­нии белком его биологической функ­ции. Так, перенос молекул и ионов из одного органа в другой осуществля­ют транспортные белки плазмы крови. Белок гемоглобин (от греч. «гема» — «кровь» и лат. globus — «шар», «шарик»), содержащийся в кровяных клетках — эритроцитах (от греч. «эритрос» — «красный» и «китос» — «клетка»), доставляет кис­лород от лёгких к тканям. В молеку­ле гемоглобина есть комплекс иона железа Fe 24 » со сложной органической молекулой, называемый гемам. Гемо­глобин состоит из четырёх белковых субъединиц, и каждая из них содер­жит по одному гему.

В связывании кислорода в лёгких принимает участие непосредственно ион железа. Как только к нему хотя бы в одной из субъединиц присоединя­ется кислород, сам ион тут же чуть-чуть меняет своё расположение в мо­лекуле белка. Движение железа «про­воцирует» движение всей аминокис­лотной цепочки данной субъединицы, которая слегка трансформирует свою третичную структуру.

Другая субъеди­ница, ещё не присоединившая кислород, «чувствует», что произошло с со­седкой. Её структура тоже начинает меняться. В итоге вторая субъедини­ца связывает кислород легче, чем пер­вая. Присоединение кислорода к третьей и четвёртой субъединицам происходит с ещё меньшими трудно­стями. Как видно, субъединицы помо­гают друг другу в работе. Для этого-то гемоглобину и нужна четвертичная структура. Оксид углерода СО (в про­сторечии угарный газ) связывается с железом в геме в сотни раз прочнее кислорода. Угарный газ смертельно опасен для человека, поскольку ли­шает гемоглобин возможности при­соединять кислород.

А ЕЩЁ БЕЛКИ.

. Служат питательными веществами. В семенах многих растений (пшени­цы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся так­же альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных свя­зей. Белки «разбираются» на отдель­ные аминокислоты, из которых орга­низм в дальнейшем «строит» новые пептиды или использует для полу­чения энергии. Отсюда и название:

греческое слово «пептос» означает «переваренный». Интересно, что гид­ролизом пептидной связи управляют тоже белки — ферменты.

. Участвуют в регуляции клеточ­ной и физиологической активности. К подобным белкам относятся мно­гие гормоны (от греч. «гормао» — «по­буждаю»), такие, как инсулин, регули­рующий обмен глюкозы, и гормон роста.

. Наделяют организм способно­стью изменять форму и передвигать­ся. За это отвечают белки актин и ми­озин, из которых построены мышцы.

. Выполняют опорную и защитную функции, скрепляя биологические структуры и придавая им прочность. Кожа представляет собой почти чис­тый белок коллаген, а волосы, ногти и перья состоят из прочного нерас­творимого белка кератина.

ЧТО ЗАПИСАНО В ГЕНАХ

Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной инфор­мации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположе­ния аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание на­следственной информации. Следо­вательно, и выполняемые белками функции запрограммированы гене­тически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, кото­рое передаётся в природе от поколе­ния к поколению.

Интерес человека к этим органи­ческим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пыта­ются определить взаимосвязь функ­ций со структурой. Установление сходства и различий у белков, выпол­няющих аналогичные функции у раз­ных живых организмов, позволяет глубже проникать в тайны эволюции.

АМИНОКИСЛОТЫ — ПОКАЗАТЕЛИ ВОЗРАСТА

ЗА ЧТО СЕНГЕР ПОЛУЧИЛ НОБЕЛЕВСКИЕ ПРЕМИИ

При гидролизе белков до аминокислот (разрушении пептидной связи во­дой) теряется информация о последовательности их соединения. Поэто­му долгое время считали, что определение первичной структуры белка представляет собой совершенно безнадежную задачу. Но в 50-х гг. XX в. английский биохимик Фредерик Сенгер (родился в 1918 г.) смог расшиф­ровать последовательность аминокислот в полипептидных цепях гормо­на инсулина. За эту работу, на выполнение которой ушло несколько лет, в 1958 г. Сенгер был удостоен Нобелевской премии по химии (двадца­тью годами позже он совместно с У. Гилбертом получил вторую премию за вклад в установление первичной структуры ДНК).

Принципы определения аминокислотной последовательности, впервые сформулированные Сенгером, используются и ныне, правда, со всевоз­можными вариациями и усовершенствованиями. Процедура установле­ния первичной структуры белка сложна и многоступенчата: в ней около десятка различных стадий. Сначала белок расщепляют до отдельных ами­нокислот и устанавливают их тип и количество в данном веществе. На сле­дующей стадии длинную белковую молекулу расщепляют уже не полно­стью, а на фрагменты. Затем в этих фрагментах определяют порядок соединения аминокислот, последовательно отделяя их одну за другой. Расшепление белка на фрагменты проводят несколькими способами, что­бы в разных фрагментах были перекрывающиеся участки. Выяснив поря­док расположения аминокислот во всех фрагментах, получают полную ин­формацию о том, как аминокислоты расположены в белке. К концу XX в. созданы специальные приборы, определяющие последовательность амино­кислот в молекуле белка в автоматическом режиме — секвенаторы (от англ. sequence — «последовательность»).

МОЛОКО И КИСЛОМОЛОЧНЫЕ ПРОДУКТЫ

Молоко представляет собой коллоидный раствор жира в воде. Под микроскопом хорошо видно, что оно неоднородно: в бесцветном растворе (сыворотке) плавают жировые шарики.

Входящий в состав молока сахар лактоза С^НддО,, изомерен сахарозе. В организме человека под действием фермента лактазы этот сахар расщепляется на моносахариды глюкозу и галактозу, которые легко усваиваются. За счёт этого, например, грудные дети пополняют запасы углеводов. Интересно, что у многих людей (в основном у представителей монголоидной расы) организм в зрелом возрасте утрачивает способность расщеплять лактозу.

Проходя через пищеварительный тракт, лактоза не усваивается, а становится питательной средой для развития различных болезнетворных микроорганизмов, что приводит к общему недомоганию. Именно поэтому народы Дальнего Востока (японцы, китайцы) практически не употребляют в пишу молочные продукты.

с„н„о„ + н,о =лактоза == 4СНзСН(ОН)СООН. молочная (2-гидроксипропановая) кислота

Именно молочная кислота определяет специфический вкус кефира. По мере того как она накапливается в растворе, происходит коагуляция (свёртывание)казеина, который выделяется в свободном виде. Поэтому кефир имеет более густую консистенцию, чем молоко. Молочнокислое сбраживание лактозы сопровождается спиртовым брожением, из-за чего в кисломолочных продуктах, в частности в кефире, есть небольшое количество алкоголя (до 0,03 %). В кисломолочных продуктах содержатся также микроорганизмы, которые подавляют развитие болезнетворных бактерий и тем самым улучшают пишеварение.

Творог тоже получают сквашиванием молока молочнокислыми бактериями. Его главной составной частью является белок казеин.

МЕДНАЯ КРОВЬ

Кроме кальмаров, кислород переносится “голубой кровью” также у десятиногих ракообразных (омары, крабы, креветки). Гемоиианин найден у всех головоногих моллюсков (осьминоги, кальмары, каракатицы), разнообразных улиток, пауков и др. А вот у морских гребешков, устриц и других двустворчатых моллюсков его нет.

Из гемоиианина нетрудно полностью извлечь медь. Аля этого достаточно обработать белок в отсутствие кислорода реактивом, который прочно связывается с ионами одновалентной меди. Таким же способом можно определить содержание меди в гемоиианине. Лишённый этого металла, он теряет способность переносить кислород. Но если потом ввести в раствор белка ионы Си»1′, гемоиианин восстанавливает свою физиологическую активность.

Так было доказано, что в отсутствие кислорода медь гемоиианина находится в степени окисления +1. При избытке же этого газа происходит частичное окисление металла. При этом всегда на одну связанную гемоиианином молекулу кислорода приходится два атома меди. Таким образом, кислород окисляет ровно половину атомов меди. Это ещё одно отличие гемоиианина от значительно более распространённого в животном мире гемоглобина, в котором все атомы железа равноценны и имеют заряд +2 как в свободном состоянии, так и в комплексе с кислородом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *