pgm fi honda что это
Pgm fi Honda ошибка
Методика «ручной» диагностики ранее описывалась в оригинальных руководствах по ремонту, но в «мануалах» новых машин о ней ни слова, хотя возможность такой диагностики производитель сохранил. По этой причине информация, собранная здесь, добывалась мной практическим путём. т.е. на собственном опыте.
Ещё раз напоминаю: ЗАГОРЕЛАСЬ ЛАМПА НЕИСПРАВНОСТИ — НУЖНО СДЕЛАТЬ ДИАГНОСТИКУ! Не нужно паниковать. Не нужно гадать и рыскать по форумам с вопросом «Что это может быть?». Автомобиль сам расскажет, что у него случилось, надо только научиться понимать его «язык».
И ещё одно важное замечание (для тех, кто не читает до конца): все системы кроме блока управления двигателем и АКПП имеют энергонезависимую память, поэтому только этот блок можно «обнулить» отключением питания, для остальных систем нужен сканер или особая процедура «сброса». Не стоит чуть что отключать аккумулятор — если неисправность есть, это не поможет, а вот стереть нужную для диагностики и нформацию можно.
Содержание:
1. Диагностический разъём.
2. Индикаторы приборной панели.
3. Принципы отображения кодов.
4. Диагностика системы управления двигателем (PGM-Fi).
5. Диагностика АКПП.
6. Диагностика ABS, VSA, TSA.
8. Диагностика электроусилителя руля (EPS).
9. Диагностика электрооборудования салона.
10. Заключение + видео.
1. Диагностический разъём.
Находим диагностический разъём OBD (его так же именуют OBD-2, OBD II, что сути не меняет). В CR-V третьего поколения он находится под панелью, над правой ногой водителя. В других моделях Honda он в любом случае внизу панели с водительской стороны, например в Accord и Pilot под панелью слева от водительских ног, в Civic хитро запрятан в уголочек между панелью над ногами водителя и центральной консолью.
При выключенном зажигании замыкаем перемычкой контакты 9 и 4 диагностического разъёма (контакт 9 — это SCS (Service Check Signal), контакты 4 и 5 — «масса»). В качестве перемычки идеальный вариант — это кусок провода с плоскими клеммами на концах (лепестки 2х0.5 мм), но в отсутствии такого можно воспользоваться куском одножильного провода или на худой конец канцелярской скрепкой. Важно, что бы был надёжный контакт и перемычка не выпадала из гнёзд.
Внимание! Не перепутайте левую и правую стороны разъёма и не замкните на «массу» контакт 16 (это питание +12В)! Если всё же замкнёте, страшного ничего не произойдёт — сгорит предохранитель «back-up», но зачем нужны лишние хлопоты…
2. Индикаторы приборной панели.
Установив перемычку, включаем зажигание и смотрим на приборную панель — индикаторы всех систем будут гореть или мигать. Наблюдаем за тем индикатором, какую систему диагностируем:
— индикатор MIL (Malfunction Indicator Lamp — индикаторная лампа неисправности, в народе — Check-Engine «чек енжин») о тображает коды неисправностей двигателя.
— индикатор «ABS» отображает коды неисправностей ABS, VSA, TSA.
— индикатор SRS («беременный мужик», не путайте этот индикатор с индикатором непристёгнутого ремня) о ображает коды неисправностей SRS.
— индикатор режима «D» в режиме диагностики отображает коды неисправностей АКПП.
— индикатор EPS отображает коды неисправностей электроусилителя руля (в комплектациях с гидроусилителем этот индикатор отсутствует).
На ЖК дисплее также отображаются коды неисправностей, но радоваться тому, что у Вас бортовой компьютер, который сейчас всё расскажет… рано. На дисплее отображаются только коды неисправностей электрооборудования салона, которое включает в себя: приборную панель, климат-контроль, центральный замок, стеклоподъёмники и всё остальное, что реализовано в MICU. Не пытайтесь сопоставить эти коды неисправностям двигателя или других систем.
3. Принципы отображения кодов.
Коды, которые показывают индикаторы не всегда соответствуют тем кодам, которые выдают сканеры. При «ручной» диагностике показываются короткие коды состоящие из двух цифр (реже из трёх). Интерпретацию этих кодов смотрите в разделе Документация, ну и при дальнейншем описании диагностики систем я буду заострять внимание, какие именно цифры следует смотреть.
Индикаторы показывают коды в виде серий длинных и коротких вспышек, где длинные вспышки показывают первую цифру (т.е. десятки), а короткие — вторую (единицы), количество вспышек соответствует цифре. Этот принцип хорошо виден на следующем временнОм графике:
Длинные вспышки значительно длиннее коротких, поэтому различить их легко.
Коды демонстрируются от меньшего к большему, т.е. если в памяти несколько кодов, например 7, 22 и 50, то сперва будет показан код 7 (7 коротких вспышек), потом 22 (2 длинных 2 коротких), и потом 50 (5 длинных). После показа последнего кода следует пауза 2-3 секунды и всё повторяется (правда тут есть исключения — система SRS показывает коды один раз, об этом будет сказано ниже).
Если общий принцип понятен, тогда далее рассмотрим особенности диагностики каждой системы отдельно.
4. Диагностика системы управления двигателем (PGM-Fi).
Поводом для диагностики является индикатор MIL (он же «check engine»), который загорелся или загорался при работе двигателя. Даже если индикатор погас, код неисправности сохраняется в памяти (если не отключать аккумулятор).
Коды неисправностей двигателя бывают двух видов: стандарт OBD и Honda DTC. В формате OBD коды представлены в виде буквы и 4-х цифр. В формате Honda DTC коды представлены в виде двух чисел, разделённых дефисом: основкой код и дополнительный код. Например: P0341(57-3) Camshaft Position (CMP) Sensor and Crankshaft Position (CKP) Sensor Incorrect Phase Detected (Обнаружена некорректная фаза между датчиками СКР и СМР A), тут P0341 — это код стандарта OBD, а 57-3 — код в формате Honda DTC, где 57 — основной код, 3 — дополнительный.
Основной код указывает на группу неисправностей, а дополнительный уточняет неисправность в группе, например:
P0340 (57-1) Camshaft Position (CMP) Sensor A No Signal (Отсутствует сигнал датчика положения распределительного вала (СМР А))
P0341(57-3) Camshaft Position (CMP) Sensor and Crankshaft Position (CKP) Sensor Incorrect Phase Detected (Обнаружена некорректная фаза между датчиками положения колнечатого вала СКР и распределительного вала СМР A)
P0344(57-2) Camshaft Position (CMP) Sensor A Circuit Intermittent Interruption (Неверные параметры цепи датчика положения распределительного вала (СМР А))
При «ручной» диагностике индикатор MIL показывает основной код Honda DTC, это двух- или трех- значное число. В таблице кодов неисправностей двигателя этот код указан в скобках.
Принцип отображения стандартный: длиные вспышки — 1.2с, короткие — 0.5с. Интервалы между вспышками 0.2с, но между длинными вспышками интервалы почему то чередуются — 0.2с и 0.3с. Зачем такое чередование интервалов я не понимаю (есть у меня предположение, что это просто программный «косяк» разработчиков), но из за этого при наблюдении вспышек создаётся впечатление, что длинные вспышки следуют парами, и это несколько сбивает с толку.
Трёхзначные коды отображаются так: первые две цифры — десятками, последняя — единицами. Т.е. код 168 будет показан как 16 длинных вспышек и 8 коротких.
Коды так же демонстрируются от меньших к большим и после показа всех кодов повторяются по кругу.
Расшифровку кодов смотрим тут: Коды неисправностей двигателя Honda CR-V 07-11 г.в.
Если в памяти неисправностей нет — индикатор MIL будет гореть непрерывно.
Сброс памяти.
Блок управления двигателем обнуляется просто отключением питания.
В то время как все остальные электронные блоки в автомобиле имеют энергонезависимую память, блок управления двигателем и АКПП по прежнему требует непрерывного питания. Интересно почему? Ведь для производителя установить энергонезависимую память в блок управления совершенно несложно. Думаю, что дело в стандарте OBD, требующего единую, одинаковую для всех производителей процедуру сброса памяти. Ну что ж… Нам проще.
Итак, для обнуления блока управления двигателем достаточно просто на полминуты-минуту отсоединить клемму от аккумулятора.
Но тут есть одно неудобство: магнитола тоже сбросится и затребует ввода кода разблокировки. Что бы избежать этого, можно выполнить сброс, вытащив в блоке предохранителей моторного отсека два предохранителя: №18 и №19 (естественно зажигание при этом должно быть выключено).
5. Диагностика АКПП.
АКПП диагностируется точно так же как и двигатель, только считать нужно вспышки индикатора «D».
Тут всё так же, только без «свистопляски» с интервалами — все они одинаковые, по 0.5с, длинные вспышки — 1.2с, короткие 0.2с, спутать их очень сложно.
Коды двузначные, соответствуют основным кодам Honda DTC (число перед дефисом). Расшифровку смотрим тут: Коды неисправностей АКПП Honda CR-V 07-11 г.в.
При отсутствии в памяти кодов неисправностей индикатор «D» в режиме диагностики не горит.
Сброс памяти тут производится так же как и в блоке управления двигателем (собственно говоря блок у них один общий, системы разделяются программно).
6. Диагностика ABS, VSA, TSA.
Т.к. все эти системы реализованы на базе ABS, при диагностике все неисправности показывывает один индикатор — «ABS».
Коды неисправностей ABS представляют собой двух- или трёх-значное число (аналогов в стандарте OBD у них нет) и при «ручной» диагностике демонстрируются целиком. Тут есть одна особенность — первая цифра трехначных кодов (сотни) отображается в виде серии из четырёх очень коротких вспышек:
Длительность серии «суперкоротких» вспышек меньше секунды, остальные вспышки почти «стандартные»: длинные — 1.3с, короткие 0.3с.
Расшифровку кодов смотрим тут: Коды неисправностей ABS, VSA, TSA Honda CR-V 07-11 г.в.
Сброс памяти. Блок ABS имеет энергонезависимую память, поэтому для его «обнуления» без сканера нужна особая процедура:
1. При выключенном зажигании замкнуть контакты №4 и №9 разъёма OBD.
2. Нажать педаль тормоза и удерживая её включить зажигание.
3. Индикатор «ABS» загорится и погаснет, как только он погаснет — отпустить педаль тормоза.
4. После того как индикатор загорится второй раз — вновь нажать педаль тормоза.
5. Когда индикатор вновь погаснет — отпустить педаль тормоза.
6. Через несколько секунд индикатор моргнёт два раза — память очищена
С первого раза может не получиться (тут требуется определённая сноровка), попробуйте ещё раз. Важно, что бы педаль тормоза была нажата при включении зажигания, контакт SCS в диагностическом разъёме был замкнут на «массу», и до окончания процедуры зажигание не выключалось.
7. Диагностика SRS.
Тут принцип отображения кодов «стандартный» разве что отличается большими паузами между длинными вспышками, из-за чего весь процесс кажется очень медленным:
Продолжительность длинных вспышек — 1 сек., пауза между ними даже чуть чуть больше — 1.4с. Короткие вспышки с паузами одинаковые — по 0.3с. Ничего сложного нет, визуально вспышки распознаются легко.
Коды неисправностей SRS состоят из двух частей: основной и дополнительной, разделённых дефисом. Индикатор демонстрирует основнную часть, состоящую из двух цифр, или буквы с цифрой. Буквенные коды обозначаются уже знакомыми по ABS сериями из 4-х «быстрых» вспышек:
A — серия из 4-х «быстрых» вспышек
B — серия из 4-х «быстрых» вспышек + одна длинная
C — серия из 4-х «быстрых» вспышек + две длинных
D — серия из 4-х «быстрых» вспышек + три длинных
E — серия из 4-х «быстрых» вспышек + четыре длинных
F — серия из 4-х «быстрых» вспышек + пять длинных
Таким образом при сработке фронтальной подушки безопасности и/или преднатяжителя ремня водителя будет отображён код F1 следующим образом: 4 «быстрые» + 5 длинных + 1 короткая.
За расшифровкой кодов следуем сюда: Коды неисправностей SRS Honda CR-V 07-11 г.в.
Сброс памяти.
Блок SRS так же имеет энергонезависимую память, поэтому для обнуления его нужно выполнить специальную процедуру.
Сначала необходимо найти разъём MES (memory erased signal) — это двухконтактный жёлтый разъём, вставленный в пустое гнездо блока предохранителей в салоне. В CR-V третьего поколения это место в верхнем левом углу блока. Что бы убедиться, что это действительно он, загляните в гнездо, куда он был вставлен — гнездо не имеет ответных контактов.
Далее для обнуления нужна такая перемычка, которую можно быстро вставлять и вытаскивать. Поскольку врядли у Вас найдётся специальный инструмет 07PAZ-0010100, я рекомендую в качестве перемычки использовать два отрезка провода с оголёными концами — одни концы нужно вставить в разъём, другие будете замыкать и размыкать руками.
1. При выключенном зажигании вставить перемычку в разъём MES (замкнуть контакты) и включить зажигание.
2. Индикатор SRS загорится на некоторое время и погаснет, как только погаснет — убрать перемычку (разомкнуть контакты).
3. Индикатор SRS вновь загорится — вставить перемычку.
4. Индикатор погаснет — убрать перемычку.
5. Индикатор моргнёт два раза — память очищена.
Внимание! После срабатывания системы SRS в память записываются коды F1, F2, F3, F4, F5, F6. В этом случае обнуление блока невозможно ни перемычкой, ни дилерским сканером — блок подлежит замене.
8. Диагностика электроусилителя руля (EPS).
Во время «ручной» диагностики, если в системе электроусилителя руля нет неисправностей, индикатор EPS непрерывно мигает с одинаковыми интервалами.
Если в памяти есть коды неисправностей, то алгоритм традиционный:
Длинные вспышки 1.3с, короткие 0.4с, интервалы между вспышками по 0.4с.
Коды двузначные, представляют собой основную часть кодов неисправности EPS. Расшифровка тут: Коды неисправностей EPS Honda CR-V 07-11 г.в.
Метода сброса памяти EPS без сканера я не обнаружил. Замечено только одно: если неисправность устранена, то при очередном включении зажигания (не в режиме диагностики) индикатор EPS погаснет сам.
9. Диагностика электрооборудования салона.
Коды неисправностей электрооборудования салона при «ручной» диагностике отображаются на ЖК дисплее приборной панели целиком как есть — пять знаков: буква + четыре цифры. Помимо кода неисправности рядом с ним высвечивается код системы, в которой зафискирована данная неисправность.
10 — MICU50 — Модуль управления приборами51 — Блок климат-контроля73 — Блок адаптивного переднего освещения74 — Датчик дождя/автоматического включения света94 — HandsFree96 — Блок иммобилайзера / приёмника ДУ
«Перелистывание» кодов производится кратковременными нажатиями кнопки SELECT/RESET на приборной панели.
Если ни в одном блоке нет кодов неисправностей, на дисплее будет короткая надпись «no».
Расшифровку кодов смотрим в разделе «Документация»: Коды неисправностей электрооборудования кузова Honda CR-V 07-11 г.в.
Сброс памяти всех блоков электрооборудования салона осуществляется очень просто: в режиме диагностики (с установленной перемычкой SCS) необходимо нажать и долго (не менее 10 сек.) удерживать кнопку SELECT/RESET на приборной панели. Коды будут сброшены и на дисплее высветится надпись: «no».
10. Заключение.
В заключении я предлагаю посмотреть небольшой видеоролик, в котором показана приборная панель в режиме диагностики. Можно даже потренироваться в «чтении» кодов и проверить себя — правильный ответ дан в конце ролика.
p.s. Указанная методика диагностики применима и к следующему (четвёртому) поколению CR-V и другим Хондам этих годов выпуска. Пока что я не нашёл таблиц расшифровки кодов неисправностей, но принципы отображения точно подходят. У меня и видео имеется, только это уже другая история…
Pgm Fi honda что это значит?
Описание топливной системы и системы выпуска отработанных газов — Система PGM-FI
Программируемая система впрыска топлива (PGM-FI) представляет собой распределенную систему впрыска топлива последовательного действия.
Реле электромагнитной муфты включения кондиционера воздуха (А/С)
Когда компьютер ЕСМ/РСМ получает команду на включение кондиционера воздуха, он задерживает на некоторое время подачу питания к компрессору кондиционера воздуха и обогащает смесь, чтобы обеспечить плавный переход к работе с включенным кондиционером воздуха.
Датчик отношения массы воздуха к массе топлива (А/F)
Датчик A/F работает в широком диапазоне состава смеси воздуха с топливом. Датчик A/F устанавливается на входе в трехкомпонентный каталитический нейтрализатор (TWC) и посылает сигналы в компьютер ЕСМ/РСМ, который, соответственно, изменяет продолжительность впрыскивания топлива.
Датчик барометрического давления (BARO)
Датчик BARO установлен внутри компьютера ЕСМ/РСМ. Он преобразует величину атмосферного давления в сигнал напряжения, который корректирует базовую продолжительность процеса впрыскивания топлива.
Датчик положения распределительного вала (CMP)
Датчик CMP определяет положение цилиндра № 1 в качестве эталонного для управления последовательным впрыскиванием топлива в каждый цилиндр.
Датчик положения коленчатого вала (СКР)
Датчик CKP определяет частоту вращения коленчатого вала, момент опережения зажигания и момент начала впрыскивания топлива для каждого цилиндра, а также определяет пропуски сгорания в цилиндрах двигателя.
Датчики 1 и 2 температуры охлаждающей жидкости (ЕСТ)
Датчики ЕСТ 1 и 2 представляют собой резистор, который изменяет свое сопротивление в зависимости от температуры (терморезистор). Сопротивление снижается по мере повышения температуры охлаждающей жидкости двигателя.
Управление углом опережения зажигания
Компьютер ЕСМ/РСМ содержит в своей памяти базовые зависимости угла опережения зажигания при различных частотах вращения двигателя и абсолютного давления. Компьютер также корректирует угол опережения зажигания в зависимости от температуры охладающей жидкости и темперуты воздуха на впуске.
Момент начала и продолжительность впрыскивания топлива
Компьютер ЕСМ/РСМ содержит в своей памяти базовые зависимости продолжительности впрыскивания топлива при различных частотах вращения двигателя и давления воздуха во впускном коллекторе. Базовая величина продолжительности впрыскивания топлива, после того, как она считывается из памяти компьютера, далее корректриуется в соответствии с сигналами, посылаемыми от различных датчиков, для получения окончательной величины продолжительности впрыскивания.
Отслеживая в течение длительного времени параметры процесса впрыскивания топлива, компьютер ЕСМ/РСМ определяет неисправности, возникающие в системе впрыскивания топлива в течение длительного времени, и генерирует диагностический код неисправности (DTC).
Система борьбы с детонацией регулирует угол опрежения зажигания с целью снижения детонации до минимального уровня.
Датчик абсолютного давления воздуха во впускном коллекторе (МАР)
Датчик МАР преобразует абсолютное давление воздуха во впускном коллекторе в электрические сигналы, поступающие к компьютер ЕСМ/РСМ.
Датчик массы воздушного потока (MAF) /датчик температуры впускного воздуха (IAT)
Датчик массы воздушного потока (MAF)/датчик температуры впускного воздуха (IAT) содержит нить накала и терморезистор. Он расположен во впускном воздушной канале. Сопротивление нити накала и терморезистора меняется в зависимости от температуры впускного воздуха и воздушного потока. Цепь регулирования в датчике MAF контролирует ток для поддержания установленной температуры нити накала. Цепь регулирования преобразует ток в напряжение, которое подводится к ECM/PCM..
Датчик уровня масла (модели KE, KG, TR)
Данный датчик определяет уровень моторного масла.
Датчик частоты вращения вторичного вала (промежуточного вала)
Этот датчик определяет частоту вращения промежуточного вала.
Вторичный подогреваемый кислородный датчик (вторичный датчик HO2S)
Вторичный кислородный датчик (HO2S) определяет содержание кислорода в отработавших газах на выходе из трехкомпонентного каталитического нейтрализатора (TWC) и посылает сигналыв компьютер ECM/PCM, что соответственно изменяет продолжительность впрыскивания топлива. Для стабилизации своего выходного сигнала датчик имеет встроенный подогреватель. Компьютер ЕСМ/РСМ сравнивает сигнал датчика HO2S с сигналом датчика A/F для определения эффективности работы каталитического нейтрализатора. Вторичный кислородный датчик (HO2S) расположен в трехкомпонентном каталитическом нейтрализаторе.
ВПРЫСК ВПРЫСКУ РОЗНЬ
часть вторая
Как мы уже писали в предыдущей статье цикла, многие современные технологии, «приходящие» в подвесные двигатели, были вначале апробированы на суше — в автомобильных двигателях. Характерный пример такого подхода демонстрирует один из старейших производителей четырехтактных подвесных моторов — фирма Honda. Порой в некоторых «околоводных» журналах можно прочитать, что на таком-то моторе установлен силовой агрегат от. К примеру, автомобиля Honda Accord (речь в данном случае идет о двигателе «Honda BF115»). Однако это все же не совсем так. В действительности производитель некоторые изменения, разумеется, вносит, причем порой довольно существенные, поэтому речь может идти не столько о простом заимствовании конкретных узлов или деталей, сколько о принципах и технологиях, которые применяются при производстве и конструировании силового агрегата. В подвесных моторах все устроено «чуть-чуть» не так, как у автомобильных — ведь они должны отвечать более жестким требованиям, предъявляемым в числе прочего, к весу и габаритам. Трудно себе представить, что будет с обычным автомобильным двигателем, если его, например, поставить на попа. Как себя в этом случае поведет, скажем, система смазки? Однако это все лирика.
Всячески опробовав на автомобилях и мотоциклах основные технологии, используемые при создании систем питания двигателей, Honda, решив, что ее сухопутной продукции надежности уже не занимать, перешла к усовершенствованиям подвесных моторов. В результате на ее моторах более 100 л.с. стали появляться электронные системы впрыска. Были эксперименты и с менее мощными моторами, однако сегодня маломощные моторы этой марки, предлагаемые на рынке, имеют карбюраторные системы питания. Видимо, по каким-то причинам разработчики посчитали внедрение впрысковых систем на маломощные двигатели не очень выгодным делом.
По большому счету системы впрыска подвесных моторов Honda очень напоминают «сухопутные», если не брать в расчет их компоновку и вес. В них также присутствует насос (или насосы), который создает первичное давление в топливной магистрали, есть форсунки, через которые топливо подается в камеру сгорания, есть. Иными словами есть все, что положено приличному впрыску (или, если угодно, «инжектору»). Работой этой достаточно сложной системы руководит компьютер, который считывает при посредстве датчиков (до 18 у Honda BF225) необходимую информацию и обрабатывает ее в соответствии с программой, которая в него заложена. У двигателя BF225 имеется программируемый управляющий блок PGM-FI, благодаря которому становится возможным щадящий и быстрый запуск двигателя при любых погодных условиях.
Система распределенного (многоточечного) впрыска, управляемого при помощи PGM-FI, на автомобильных двигателях Honda впервые появилась около 20 лет назад. В то время многие фирмы, выпускающие системы питания, за основу приготовления смеси брали массовый расход воздуха — его общее количество, попадающее во впускной тракт, измеряемое с помощью воздухоизмерительных пластин. «Хондовский» подход в отличие от остальных изначально строился на том, что за основу «воздушной составляющей» брались вычисляемые данные о количестве воздуха, поступающего во впускной коллектор в каждый конкретный момент времени. Вычисления базировались на анализе реальных мгновенных показателей: атмосферного давления, разрежения во впускном коллекторе, оборотов, скорости, угла открытия дроссельной заслонки, степени открытия клапана рециркуляции, количества кислорода в выхлопных газах и т.д. Такой подход позволил значительно стабилизировать работу двигателя при работе в совершенно разных режимах и облегчить его запуск. Разумеется, вследствие более качественного приготовления топливной смеси уменьшается расход топлива и увеличивается долговечность мотора. Сегодня в мире автомобилей система управления впрыском PGM-FI считается если не эталоном, то, по крайней мере, входит в тройку самых надежных и безотказных.
Системы впрыска — не единственная особенность мощных подвесных двигателей Honda. Для увеличения мощности, тяги и улучшения работы силовой установки в различных режимах Honda применяет свою уникальную технологию VTEC, которая также с успехом используется и на «сухопутных» моторах. Благодаря этой системе, которая отвечает за механическое изменение объема подачи воздуха и заключается в достаточно простом изменении подъема клапанов, работа двигателя при частоте вращения коленвала выше 4500 об/мин становится более устойчивой, снижается расход топлива и улучшается сгорание топливной смеси. Поскольку система VTEC является своего рода «козырной картой» Honda, не применяющейся никем из других производителей, рассмотрим ее чуть более подробно.
VTEC, или «Variable valve Timing and lift Electronic Control», можно перевести как «система электронного управления фазами и величиной подъема клапанов». Реально Honda использует четыре ее модификации, мы же рассмотрим только одну, ту, что применяется на подвесных лодочных моторах этой фирмы — на Honda BF225. В головках блока цилиндров данного двигателя расположено по одному распределительному валу, каждый из которых управляет 12 клапанами (по два на впуск и на выпуск в каждом цилиндре). Вал имеет не 12, а 15 кулачков — три из них используются для привода специального поводка, который непосредственно с клапанами никак не связан и на малых оборотах не влияет на их поведение, двигаясь абсолютно независимо. Это важно отметить, поскольку система VTEC уже успела обрасти различными слухами и легендами. При увеличении же числа оборотов свыше 4500 происходит повышение давления масла в двигателе, сигнал с электронного датчика открывает специальный клапан, и под воздействием давления масла подпружиненный рычажок, перемещаясь, связывает воедино этот дополнительный поводок с толкателями впускных клапанов. Поскольку профиль и размеры кулачка, управляющего поводком, отличаются от остальных, клапаны начинают «слушаться» именно его, в то время как кулачки, управляющие собственно толкателями впускных клапанов, вращаются вхолостую, без непосредственного контакта с ними. Происходит изменение фаз газораспределения, одновременно увеличиваются и подъем выпускных клапанов, и время их открытия на высоких оборотах мотора. За счет увеличения объема поступающего в цилиндры воздуха двигатель «дышит» заметно легче.
Так фирма за счет применения относительно простой технологии добилась значительного улучшения работы двигателя на оборотах выше 4500. (Уместно заметить, что на большинстве моторных судов крейсерская скорость достигается именно в этом режиме.) Поэтому владелец подобного двигателя на крейсерском ходу судна располагает определенным запасом, обеспечивающим ему, к примеру, облегченный выход на глиссирование при повышенной нагрузке. В то же время фазы газораспределения на низких оборотах оптимизированы для достижения наименьшего расхода топлива и наименьшего уровня шума. Фактически, получился своего рода двухрежимный двигатель, имеющий на больших оборотах более высокую мощность, чем сравнимые по объему двигатели, не оборудованные системами VTEC или наддувом.
В данном исполнении VTEC регулировка величины подъема происходит только для впускных клапанов, в отличие от ее остальных модификаций, где подобная регулировка существует и для клапанов выпускных. Надо сказать, что у некоторых автомобильных двигателей Honda, оборудованных системой VTEC, имеются несколько наборов дополнительных кулачков и поводков, позволяющих двигателю работать не в двух, а в трех или даже четырех режимах работы, но для лодочных моторов, по большей части работающих на неизменных оборотах, фирма, очевидно, сочла это излишеством. Все это свидетельствует об определенной осторожности Honda в отношении лодочных моторов. К слову сказать, иногда в прессе сами руководители компании определяют свою стратегию развития подвесников как «консервативную инновацию».
Продолжая разговор о системе VTEC, нельзя не коснуться существующих о ней мифов. Один из них (очень широко распространенный, особенно среди автомобилистов) заключается в том, что, поскольку эти двигатели имеют несколько меньший крутящий момент по сравнению с аналогичными двигателями той же мощности — как правило, более высокообъемными, то и по своей динамике они везде и всегда им уступят. Однако это глубокое заблуждение — особенно если речь идет о лодочныых моторах. Очень важна форма кривой крутящего момента, а вот здесь двигатели VTEC демонстрируют прекрасные результаты: их внешняя характеристика является на сегодняшний день одной из самых «плоских» среди четырехтактников, представленных на рынке. Это не очень хорошо разве что для резких рывков с места и для «драг-рейсинга», но там, где двигатель стремительно сорвавшегося с места конкурента уже начнет «задыхаться», лодочный мотор Honda с системой VTEC будет еще разгонять и разгонять свое судно. Да и для движения с повышенной нагрузкой на высокой скорости эти двигатели подходят почти идеально. К тому же они заметно легче. Правда, надо отметить, что VTEC сегодня устанавливается только на очень мощные подвесные моторы типа BF225 (его 3.5-литровый V-образный аналог ставится на автомобили «Honda Odyssey» и «Acura MDX»).
Казалось бы, при чем тут впрыск? А вот при чем. Электронно-управляемая система VTEC не может существовать отдельно от электронного впрыска. Многие до сих пор его побаиваются, а зря. Эта система питания, прежде чем быть «призванной на флот», прошла суровые испытания на суше и доказала не только свою выгоду с точки зрения экономии топлива и увеличения ресурса мотора, но и свою надежность. Нынче ситуация с подвесными моторами удивительно напоминает проблемы покупки-продажи автомобилей иностранного производства в России середины 90-х гг., когда народ отказывался покупать машины, оснащенные впрыском, мотивируя это якобы неремонтопригодностью этих систем. «Неизвестный науке зверь» всегда страшен и вокруг него всегда рождается масса слухов и домыслов, которые подпитываются неграмотностью или плохой информированностью. Но покажите сегодня человека, который сознательно отказывается от покупки автомобиля, оснащенного впрыском (отечественные поделки в счет не берем). Таких, наверное, найдется не более двух из десяти, а десять лет назад их было восемь из десяти.
Так что те, кто в наши дни считают, что подвесные моторы, оснащенные системами впрыска, — это «неизвестный науке зверь», рискуют через какое-то время остаться в меньшинстве, а, значит, и в проигрыше.
Внешняя характеристика двигателя BF225. Видно, что кривая крутящего момента очень пологая.
Игорь Владимиров, Павел Игнатьев, Фото «Honda»
Журнал КиЯ №191 02.07.2005
- Уменьшить камеру сгорания что будет
- отечественные актеры мужчины фото