nvidia wmi что это

WMI что это такое и с чего начать?

Для начала что такое WMI (Windows Management Instrumentation)? Это технология, которая с помощью единого интерфейса позволяет управлять компонентами как локальной, так и удаленной операционной системы.
Данный материал рассчитан на тех, кто что-то слышал о WMI, но не знает с чего начать его «ковырять». А так же на тех, кто и не подозревал о существовании такого удобного инструмента.

Я не буду рассказывать о том, как работает, как устроена данная технология, если возникнет интерес — информацию всегда можно найти в MSDN. Моя цель — помочь обеспечить быстрый старт, для тех, кто хочет начать использовать данную технологию.

Что дает применение WMI на практике? Возможность изменять различные параметры операционной системы, управлять общими ресурсами, запрашивать информацию об установленных устройствах, запущенных процессах и т.д.

Кому может пригодиться WMI? Я думаю всем. Вы можете использовать возможности WMI не только из Ваших программ на C#, C++ и других языках программирования, но и создавать собственные скрипты, автоматизирующие процесс сбора информации, изменения конфигурации локальной или удаленной машины.

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

Чтобы долго не занудствовать я приведу пример получения информации об установленном процессоре. В списке Namespaces (пространство имен) выбираем root\CIMV2, в списке Classes (классы) выбираем Win32_Processor. В списке Results (в нем перечислены свойства класса) выбираем Name и нажимаем Execute Code. В появившемся окне видим название (или названия) установленного процессора.

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

Другой пример — выведем список расшаренных ресурсов. В этот раз выберем класс Win32_Share, в списке свойств выберем Name затем Execute Code. Получили список ресурсов.

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

Давайте теперь закроем доступ к какому-нибудь ресурсу, в моем случае это Temp. Переходим на закладку Execute a Method в списке классов выбираем все тот же Win32_Share, в списке Methods (методы класса) выбираем Delete, выбираем папку Temp, Execute Code, если все прошло успешно, то папка Temp более не числится в списке общих ресурсов.

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

Если Вам не хватает возможностей WMI — Вы всегда можете создать собственный класс. Пример создания такого класса уже публиковался на Хабре.

На этом все, желаю удачи в освоении и применении данной технологии.

Источник

Что такое nvWmi.exe? Это безопасно или вирус? Как удалить или исправить это

Что такое nvWmi.exe?

nvWmi.exe это исполняемый файл, который является частью NVIDIA WMI 296.35 Программа, разработанная NVIDIA Corporation, Программное обеспечение обычно о 2.32 MB по размеру.

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

NvWmi.exe безопасно, или это вирус или вредоносная программа?

Первое, что поможет вам определить, является ли тот или иной файл законным процессом Windows или вирусом, это местоположение самого исполняемого файла. Например, такой процесс, как nvWmi.exe, должен запускаться из C: \ Program Files \ NVIDIA Corporation \ Installer2 \ Display.NVWMI.0 \ nvWmi.exe и нигде в другом месте.

Если статус процесса «Проверенная подписывающая сторона» указан как «Невозможно проверить», вам следует взглянуть на процесс. Не все хорошие процессы Windows имеют метку проверенной подписи, но ни один из плохих.

Наиболее важные факты о nvWmi.exe:

Если у вас возникли какие-либо трудности с этим исполняемым файлом, вы должны определить, заслуживает ли он доверия, перед удалением nvWmi.exe. Для этого найдите этот процесс в диспетчере задач.

Найдите его местоположение (оно должно быть в C: \ Program Files \ NVIDIA Corporation \ Installer2 \ Display.NVWMI.0) и сравните размер и т. Д. С приведенными выше фактами.

Если вы подозреваете, что можете быть заражены вирусом, вы должны немедленно попытаться это исправить. Чтобы удалить вирус nvWmi.exe, вам необходимо Загрузите и установите приложение полной безопасности, например Malwarebytes., Обратите внимание, что не все инструменты могут обнаружить все типы вредоносных программ, поэтому вам может потребоваться попробовать несколько вариантов, прежде чем вы добьетесь успеха.

Могу ли я удалить или удалить nvWmi.exe?

Не следует удалять безопасный исполняемый файл без уважительной причины, так как это может повлиять на производительность любых связанных программ, использующих этот файл. Не забывайте регулярно обновлять программное обеспечение и программы, чтобы избежать будущих проблем, вызванных поврежденными файлами. Что касается проблем с функциональностью программного обеспечения, проверяйте обновления драйверов и программного обеспечения чаще, чтобы избежать или вообще не возникало таких проблем.

Однако, если это не вирус и вам необходимо удалить nvWmi.exe, вы можете удалить NVIDIA WMI 296.35 со своего компьютера с помощью программы удаления, которая должна находиться по адресу: «C: \ Windows \ system32 \ RunDll32.EXE» » C: \ Program Files \ NVIDIA Corporation \ Installer2 \ installer.0 \ NVI2.DLL «, UninstallPackage Display.NVWMI. Если вы не можете найти его деинсталлятор, вам может потребоваться удалить NVIDIA WMI 296.35, чтобы полностью удалить nvWmi.exe. Вы можете использовать функцию «Добавить / удалить программу» в Панели управления Windows.

Распространенные сообщения об ошибках в nvWmi.exe

Наиболее распространенные ошибки nvWmi.exe, которые могут возникнуть:

• «Ошибка приложения nvWmi.exe.»
• «Ошибка nvWmi.exe».
• «Возникла ошибка в приложении nvWmi.exe. Приложение будет закрыто. Приносим извинения за неудобства».
• «nvWmi.exe не является допустимым приложением Win32».
• «nvWmi.exe не запущен».
• «nvWmi.exe не найден».
• «Не удается найти nvWmi.exe.»
• «Ошибка запуска программы: nvWmi.exe.»
• «Неверный путь к приложению: nvWmi.exe.»

Как исправить nvWmi.exe

Если у вас возникла более серьезная проблема, постарайтесь запомнить последнее, что вы сделали, или последнее, что вы установили перед проблемой. Использовать resmon Команда для определения процессов, вызывающих вашу проблему. Даже в случае серьезных проблем вместо переустановки Windows вы должны попытаться восстановить вашу установку или, в случае Windows 8, выполнив команду DISM.exe / Online / Очистка-изображение / Восстановить здоровье, Это позволяет восстановить операционную систему без потери данных.

Чтобы помочь вам проанализировать процесс nvWmi.exe на вашем компьютере, вам могут пригодиться следующие программы: Менеджер задач безопасности отображает все запущенные задачи Windows, включая встроенные скрытые процессы, такие как мониторинг клавиатуры и браузера или записи автозапуска. Единый рейтинг риска безопасности указывает на вероятность того, что это шпионское ПО, вредоносное ПО или потенциальный троянский конь. Это антивирус обнаруживает и удаляет со своего жесткого диска шпионское и рекламное ПО, трояны, кейлоггеры, вредоносное ПО и трекеры.

Обновлен декабрь 2021:

Мы рекомендуем вам попробовать это новое программное обеспечение, которое исправляет компьютерные ошибки, защищает их от вредоносных программ и оптимизирует производительность вашего ПК. Этот новый инструмент исправляет широкий спектр компьютерных ошибок, защищает от таких вещей, как потеря файлов, вредоносное ПО и сбои оборудования.

Загрузите или переустановите nvWmi.exe

Вход в музей Мадам Тюссо не рекомендуется загружать заменяемые exe-файлы с любых сайтов загрузки, поскольку они могут содержать вирусы и т. д. Если вам нужно скачать или переустановить nvWmi.exe, мы рекомендуем переустановить основное приложение, связанное с ним. NVIDIA WMI 296.35.

Информация об операционной системе

Ошибки nvWmi.exe могут появляться в любых из нижеперечисленных операционных систем Microsoft Windows:

Источник

NVIDIA Windows Management Instrumentation SDK

Use Microsoft Windows Management Instrumentation (WMI) to remotely control NVIDIA Quadro, GRID and NVS GPUs.

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

Join the NVIDIA Developer Program

Get access to the latest software releases and tools and receive notifications and invites to join special developer events, early access programs and educational webinars. The program is free-to-join and open to all developers.

NVIDIA Enterprise Management Toolkit called NVWMI lets IT administrators create scripts and programs for many administrative tasks and functions such as configuring GPU settings, retrieving GPU information, and performing automated tasks. The features of NVWMI operate across networks making it extremely powerful for remote administration and configuration of NVIDIA professional GPUs in Windows machines (virtual or physical) on corporate networks. The NVWMI SDK includes documentation and code samples demonstrating coding techniques for using NVWMI.

What’s new in NVWMI 2.29

The minimum required NVIDIA Display Driver version is 368.39.

Download NVWMI 2.29

Step 1: Obtain NVIDIA NVWMI Toolkit Standalone Installer

NVWMI is also available as part of the display driver package. Use this standalone version if you need to update NVWMI independently, without updating the NVIDIA Display Driver. Minimum required NVIDIA Display Driver version is 368.39.

By clicking the «Agree & Download» button below, you are confirming that you have read and agree to be bound by the License For Customer Use of NVIDIA Software for use of the driver. The driver will begin downloading immediately after clicking on the «Agree & Download» button below.

Step 2: Obtain NVIDIA NVWMI SDK Package

The NVWMI SDK is a collection of code samples that demonstrate the use of NVWMI.

By clicking the «Agree & Download» button below, you are confirming that you have read and agree to be bound by the SOFTWARE DEVELOPER KITS, SAMPLES AND TOOLS LICENSE AGREEMENT for use of the SDK package. The download will begin immediately after clicking on the «Agree & Download» button below.

To access older versions of the NVWMI Toolit standalone installers, visit the NVWMI Toolkit Standalone Archive page.

Key Features of NVWMI

NVWMI Usage

nvidia wmi что это. Смотреть фото nvidia wmi что это. Смотреть картинку nvidia wmi что это. Картинка про nvidia wmi что это. Фото nvidia wmi что это

Control and monitor QuadroSync implementation using NVWMI.
Image Courtesy of BARCO/ElbitSystems – 4k cluster

Supported GPUs

Quadro Series:P6000, P5000, M6000, M5000, M4000, M2000, M5500, M5000M, M4000M, M3000M, M2000M, M1000M, M600M, M500M, K6000, K5000, K4000, K2000D, K2000, K1200, K620, K600, K420, K5100M, K4100M, K3100M, K2100M, K1100M, K610M, K510M, K5000M, K4000M, K3000M, K2000M, K1000M, K500M, FX 5800, FX 580, FX 570, FX 5600, FX 4800, FX 4700 X2, FX 4600, FX 380 Low Profile, FX 3800, FX 380, FX 3700, FX 370, FX 3450, FX 1800, FX 1700, FX 1800M, FX 880M, FX 380M, CX, 7000, 6000, 5000, 4000 for Mac, 4000, 2000D, 2000, 600, 410, 400
NVS Series:NVS 810, NVS 510, NVS 450, NVS 420, NVS 315, NVS 310, NVS 300, NVS 295, NVS 290
Tesla Series:P100, P40, P4, M60, M6, M40, M4, K80
Quadro Plex Series:S Series, Model IV, D Series, 7000

Resources

Developer Forums

Our forum community is where Developers can ask questions, share experiences and participate in discussions with NVIDIA and other experts in the field.
Check out the forums here.

Источник

Преимущества профессиональной графики NVIDIA Quadro при работе с САПР приложениями

Дмитрий Чехлов. Автор многочисленных публикаций, посвященных компьютерной графике и 3D-технологиям, автор книги «Визуализация в Autodesk Maya: mental ray renderer», художник по освещению и затенению, технический специалист в области компьютерной визуализации, Активист Autodesk Community, Autodesk Certified Professional, участник программ Autodesk Developer Network и NVIDIA Partner Network.

Поддержка высоких уровней сглаживания

Наше знакомство с возможностями профессиональной графики и сравнение с возможностями игровой графики мы начнем с поддержки высокого сглаживания краев геометрии и линий. В отличие от игровых приложений, где высокое качество сглаживания может увеличить время визуализации кадра в профессиональных приложениях решается иная задача – качество выводимого изображения. Чем выше качество сглаживания линий и краев геометрии, тем легче анализировать модель или чертеж, определять детали и элементы сборок, и многое другое. Наиболее часто используется метод multisampling antialiasing. Он достаточно прост и доступен в библиотеках всех графических API. Однако для повышения качества сглаживания и устранения «ступенчатости» в гранях и линиях может потребоваться применение не только базовых методик сглаживания, но также и расширенных алгоритмов, позволяющих улучшать качество изображения.

Драйверы профессиональных карт Quadro предоставляют возможность выбирать в панели управления высокий уровень сглаживания – до 64х. На практике это дает существенно лучшее восприятие множества линий и границ объектов в сцене. На игровых видеокартах GeForce такие уровни сглаживания просто недоступны. На рисунке ниже приведен скриншот NVIDIA Control Panel для графических ускорителей GeForce и Quadro с активным режимом сглаживания Override any application settings.
Здесь я хочу сделать небольшую ремарку. Поддержка сглаживания 64x может быть недоступна только в ряде некоторых графических ядер современных приложений. Многие разработчики стараются самостоятельно реализовать сглаживание линий и геометрии независимо от управления данной функцией со стороны драйвера.

Рис. 1-1. Драйвер GPU NVIDIA Quadro предоставляет возможность выбора более высокого качества сглаживания граней объектов и линий, по сравнению с драйвером для GPU NVIDIA GeForce.

В отличие от игровых графических ускорителей, в профессиональных ускорителях реализованы улучшенные методики обработки геометрии. Это позволяет значительно увеличить производительность в процессе воспроизведения анимации и загрузить в память все необходимые данные.[1]
Фильтрация текстурных карт играет важную роль, это актуально при работе над игровыми приложениями и при разработке аппаратных шейдеров, для Open GL или DirectX. Но для того, чтобы обрабатывать большое количество текстурных карт и реализовывать поддержку карт с высоким разрешением (до 16K), необходим другой подход при работе с графической памятью.

Использование графической памяти

Память графического ускорителя играет важную роль в обеспечении высокой производительности. Это один из ключевых показателей возможностей GPU. Такие возможности графических ядер, как кэширование геометрии и запись данных напрямую в графическую память, при достаточном объеме предоставляет гибкие возможности для воспроизведения анимации и интерактивного перемещения в сложных сценах без снижения производительности. Большие объемы памяти особенно важны в работе с GPU-ускоренными движками визуализации и такими технологиями, как Alembic, и интерактивными приложениями для презентационной визуализации (напр. Autodesk VRED).
Важной функцией при работе с памятью является её очистка для последующих задач или оптимальное использование для хранения данных. В профессиональных графических ускорителях память используется более равномерно, чем в игровых решениях. Это обусловлено максимально сбалансированной работой программного обеспечения и драйвера GPU, а также возможностям очистки памяти реализованной в нем.
В зависимости от проектов объем данных может варьироваться, а в ряде случаев может быть колоссален по определению, профессиональные карты традиционно оснащаются большим объемом памяти. Только среди профессиональных ускорителей есть возможность использовать до 24 Гб памяти, которые помогают работать с текстурами, моделями, данными любой сложности и хранить их, не опираясь на создание резервного кэша.
Мы провели тест на использование памяти профессиональными GPU. Основная его задача заключалась в отслеживании использования графической памяти в процессе моделирования трехмерной геометрии.
В процессе загрузки сцены и текстурных карт графическое ядро приложения старается полностью использовать память. В большинстве случаев 2 — 4 Гб графической памяти достаточно для работы над моделями средней сложности. С другой стороны, когда сцена содержит больше объектов и текстур, требования к объемам и возможностям памяти возрастают и могут потребоваться объемы в 8, 12 и более Гб, а так же повышаются требования к её рациональному использованию.
Рисунок ниже демонстрирует пример того, какой объем памяти используется при загрузке модели в пакете Autodesk Maya 2016. Так как в драйвере выбрано автоматическое распределение ресурсов GPU, графическое ядро программы отдало приоритет GPU с большим объемом памяти.

Рис. 2-1. Пример работы графического ядра приложения с GPU NVIDIA Quadro. И пример использования памяти при активизации режима отображения текстурных карт.

На диаграмме в Performance Monitor вы можете видеть, какой объем памяти требуется для хранения модели вагона. Поскольку отображение текстурных карт не активно, используется 1/3 объема графической памяти. Когда активизируется режим отображения текстурных карт, все используемые в сцене и в шейдерах модели текстуры будут загружены в память графического процессора. Но в отличие от игровых графических процессоров, память профессиональных графических процессоров используется более рационально. Когда данные не нужны, они будут выгружены из памяти и загружены обратно только тогда, когда это необходимо. Если же выполняется копирование геометрии и модели, нет необходимости в создании дубликатов данных в графической памяти, легче создать взаимосвязанные образцы и использовать их. Обратите внимание, что объем памяти немного меняется, увеличиваясь, а затем доходит до прежнего уровня. При этом, в сцене содержится больше объектов и экземпляров текстурных карт.

Рис. 2-2. Пример использования памяти при создании дубликатов геометрии и шейдеров с текстурами.

Оптимизация работы памяти на профессиональных графических ускорителях достигается за счет оптимизации графических ядер на основе расширений API OpenGL и Direct3D.

Управление рабочими столами

Одним из серьезных недостатков игровой графики является отсутствие функций для создания и управления рабочими столами. Обычно это решается с помощью реализованных в ОС функций или сторонних решений. Это накладывает множество ограничений. Но пользователи профессиональных ускорителей не имеют таких ограничений и могут использовать как функционал от NVIDIA, так и предоставляемые операционной системой функции. Таким образом, можно выполнять огромное количество комбинаций рабочих пространств на любой вкус. В отличие от игровых решений, профессиональные карты Quadro предоставляют инструменты для управления рабочими столами и их конфигурациями. nView Desktop Management входит в состав дистрибутива драйвера и программного обеспечения NVIDIA Quadro и предоставляет пользователям необходимый функционал для настройки рабочего пространства и распределения множества приложений между несколькими рабочими столами.

Рис. 3-1. Пример применения nView Desktop Management для управления тремя рабочими столами.

Рабочие столы могут быть разбиты с помощью сетки, в каждую ячейку которой может быть помещено окно всего приложения или его отдельный диалог. На практике это очень удобно, особенно при работе с многооконными приложениями, где требуется организовать множество диалогов или буферов кадров. На рисунке ниже приведен пример организации нескольких окон с помощью разбивки по сетке.

Рис. 3-2. Пример применения функции Guideline Editor для распределения диалоговых окон приложений.

Еще одна полезная функция — привязка к границам экрана. В отличие от стандартной реализации в операционных системах Windows и Linux. Благодаря инструментарию nView Desktop Management, вы можете настроить определение границ экрана и действие окон приложения в процессе операций с ними.

Рис. 3-3. Функции Windows Manager позволяют пользователю лучше управлять окнами приложений.

Инструменты мониторинга и конфигурации

Так как графические ускорители NVIDIA Quadro ориентированы на профессиональных и корпоративных пользователей, разработчики NVIDIA предусмотрели специальный набор инструментов NVIDIA WMI (Windows Management Instrumentation) и специальный инструмент NVIDIA SMI для мониторинга загруженности графических процессоров, памяти и контроля температурного режима. Инструментарий NVIDIA WMI входит в дистрибутив драйвера для NVIDIA Quadro и доступен наряду с nView Desktop Management. Рисунок 4-1 наглядно демонстрирует компоненты установки драйверов NVIDIA GeForce и NVIDIA Quadro.

Рис. 4-1. Компоненты установки драйверов GPU NVIDIA для линейки GeForce и линейки Quadro.

После установки драйвера с компонентами NVIDIA WMI, вы можете использовать все возможности мониторинга с помощью Microsoft Management Console и Performance Monitor. А если в ваши задачи входит администрирование нескольких удаленных компьютеров, подключение к ним и сбор данных произойдет гораздо быстрее, если использовать возможности локальной сети.

Рис. 4-2. Инструментарий Microsoft Management Console с оснасткой Performance Monitor и добавленными счетчиками NVIDIA GPU (NVIDIA WMI).

На рисунке выше приведен пример мониторинга производительности графических процессоров с помощью MMC, куда могут быть добавлены счетчики с помощью соответствующего диалога.

Также, в отличие от игровых видеокарт, в профессиональных GPU реализована возможность конфигурации под определенные задачи. Например, на одном из установленных в системе GPU вам необходимо выполнять только вычисления с помощью NVIDIA CUDA, а на другом/других, вам необходимо и вычислять и работать с графикой. Для распределения нагрузки вы можете использовать утилиту NVIDIA SMI, доступную как для Windows, так и Linux и выполнить соответствующую конфигурацию GPU. Данная утилита также доступна и для некоторых моделей игровых графических ускорителей, к ним относятся модели выпускаемые под брендом GTX Titan. Но функционал в данном случае будет сильно ограничен.

Рис. 4-3. Утилита NVIDIA SMI отображающая информацию о загрузке графических процессоров.

Конфигурация для работы с несколькими GPU

При возрастающем объеме данных, содержащихся в комплексных моделях, для достижения высокой скорости визуализации необходимо применение производительных GPU.

В драйвере NVIDIA Quadro доступна большая группа настроек — «Workstation», с помощью которой выполняется конфигурация GPU. При конфигурации вы можете выбирать, какой из доступных GPU будет использоваться для работы только с графикой, а какой для работы с графикой и вычислений. В драйвере для игровых графических ускорителей вы можете выбирать только графический процессор для вычислений в CUDA-приложениях. Что существенно ограничивает пользователя в конфигурации.

Рис. 5-1. Выбор GPU для визуализации виртуального пространства в OpenGL приложении, выбор GPU для вычислений в CUDA приложении и глобальная конфигурация параметров рабочей станции.

Рассмотрим наглядный пример настройки графических процессоров для распределения задач между вычислениями и визуализацией окон проекций на примере Autodesk 3ds Max и NVIDIA iray renderer. По умолчанию, 3ds Max и Iray используют все доступные графические процессоры. Обычно тот GPU, который используется операционной системой, будет не активен в Iray, а сам 3ds Max использует его для визуализации виртуального пространства. С другой стороны, если выполнить соответствующую конфигурацию драйвера, тот GPU, который не будет активен, не будет отображаться в списке доступных для визуализации в Iray устройств.

Рис. 5-2. Пример параметров NVIDIA Iray, когда все GPU могут быть использованы для вычислений и когда для вычислений может быть использованы устройства глобально определенные драйвером.

Рассматриваемое условие доступно для всех приложений, требующих распределения нагрузки между несколькими графическими процессорами. Это могут быть САПР, использующие графический процессор для ускорения вычислений и для визуализации, это могут быть мультидисплейные системы, когда множество дисплеев отображают информацию, а дополнительные графические процессоры выполняют вычисления в CUDA или OpenCL приложениях.

Несколько примеров реализации функций в САПР с GPU NVIDIA Quadro

В процессе исследования и написания данной статьи мною и моими коллегами было протестировано и изучено несколько известных и доступных пакетов САПР, использующих графическое ядро на основе библиотек Open GL, а так же их возможности, использующие технологии OpenCL и NVIDIA CUDA.
Основной упор мы делали на качестве изображения и производительности графического ядра при визуализации параметрической модели в виртуальном пространстве, использование ресурсов графических процессоров и выполнении вычислений общего назначения.

Производительность зависит не только от графики

Производительность такого программного обеспечения, как САПР, зависит от множества факторов. Результат выполняемых пользователем операций, вычисляется центральным процессором, а повторное вычисление всей модели может потребовать времени. Графические ускорители выполняют задачи связанные с визуализацией векторных данных параметрической модели, полученной в процессе вычислений с помощью центрального процессора и хранимой в оперативной памяти. С другой стороны, графический ускоритель может ускорить процесс вычислений в хорошо распараллеливаемых алгоритмах с помощью NVIDIA CUDA или OpenCL. Помимо этого, на протяжении нескольких лет компанией NVIDIA и её партнерами по консорциуму Khronos Group ведется разработка расширений для Open GL, позволяющих выполнять оптимизацию производительности приложений. Многие профессиональные графические приложения и их ядра начинают использовать возможности этих расширений для увеличения производительности.
Ключевая идея заключается в минимизации простоя в процессе вычислений, выполняемых на CPU и передаваемых GPU для визуализации. По своей сути, графический процессор не будет ожидать данные, которые к нему поступают после вычислений на CPU, и промежуток времени, в который GPU бездействует, будет заполнен определенными задачами, например вычислениями.

Рис. 6-1. Пример распределения задач между множеством потоков в процессе обработки сцены.

На рисунке 6-1 приведен пример профилирования сцены Autodesk Maya в процессе воспроизведения анимации. Каждый из голубых блоков — задачи, связанные с визуализацией силами Viewport 2.0, а каждый из блоков коричневого цвета — вычисление определенного элемента сцены с помощью CPU. В то время, когда выполняются вычисления в процессе трансформации и деформации объектов, графическое ядро программы выполняет визуализацию получаемых от CPU и данных. Из этого следует значительное повышение производительности в визуализации и вычислениях всей системы в целом. Когда мы снимаем с CPU лишние задачи по вычислениям, его возможности можно использовать для решения последовательных задач, но в то же время, хорошо распараллеливаемые и графические задачи выполняются на GPU. Таким образом, мы получаем прирост производительности графического ядра и приложения в целом.

КОМПАС-3D

Одним из удачных примеров реализации поддержки возможностей графических ускорителей и программного обеспечения NVIDIA Quadro является машиностроительная САПР — КОМПАС-3D. В отличие от конкурирующих решений, разработчики из компании АСКОН, совместно со специалистами компании NVIDIA, реализовали прямую поддержку функций драйвера NVIDIA Quadro.

Рис. 6-2. Пример отображения модели в виртуальном пространстве пакета КОМПАС-3D V16 на GPU NVIDIA GeForce и NVIDIA Quadro.

Рисунок 6-2 наглядно демонстрирует поддержку высокого уровня сглаживания, настраиваемого с помощью драйвера NVIDIA Quadro. При этом используемая плоскость отсечки также визуализируется с помощью графического ускорителя. В отличие от других решений, все параметры и контроль качества выполняется с помощью панели управления драйвером, а не через интерфейс приложения. В самом же приложении вы можете выбрать, будет ли использовано аппаратное ускорение или нет.

T-FLEX CAD

Еще один хороший пример использования технологий компании NVIDIA и возможностей профессиональной графики Quadro, является пакет T-FLEX CAD. Он также использует возможности спецификаций Open GL и драйвера NVIDIA Quadro, но обладает дополнительным функционалом — поддержкой визуализации трассировки лучей с использованием технологии NVIDIA OptiX.

В отличие от пакета КОМПАС-3D, пакет T-FLEX CAD обладает глобальными настройками графической подсистемы в самом приложении и предоставляет пользователю возможность управлять качеством сглаживания и выполнять базовую оптимизацию производительности.

Рис. 6-4. Пример визуализации с помощью NVIDIA OptiX в T-FLEX CAD.

Библиотека OptiX позволяет выполнять трассировку лучей в режиме реального времени и обеспечивает разработчиков необходимыми спецификациями для разработки шейдеров материалов и источников света, а также инструментами интеграции с API OpenGL и Direct3D.

Важным достоинством работы с такими приложениями как КОМПАС-3D и T-FLEX CAD является поддержка OpenGL, это важное условие при работе с Multi-GPU конфигурациями. Вы можете распределить каждое из приложений на выделенный GPU с помощью драйвера NVIDIA Quadro и выполнять все необходимые вычисления и работу со сценами в каждом из приложений. Это удобно, когда необходимо готовить проект в нескольких приложениях и передавать данные из одного приложения в другое.

SOLIDWORKS

Пакет SolidWorks предоставляет своим пользователям богатый функционал. Его графическое ядро также оптимизировано для работы с профессиональными графическими ускорителями. Одной из важнейших функций для создания высококачественных образов напрямую в SolidWorks является функционал, заложенный в RealView.

Рис. 6-5. С помощью SolidWorks RealView вы можете создавать высококачественные иллюстрации с помощью OpenGL и аппаратных шейдеров.

Графическое ядро SolidWorks позволяет формировать высококачественные образы с высокой детализацией и такими эффектами, как штриховка и контурные линии. Для увеличения реализма модели, вы можете активизировать вычисление эффекта Ambient Occlusion. Данный эффект отлично визуализируется современными профессиональными графическими ускорителями и может быть применен на сложных сборках с большим количеством деталей.

При использовании профессиональных ускорителей NVIDIA Quadro пользователям SolidWorks доступны все основные возможности графического ядра и высококачественного затенения.[2]

SOLIDWORKS Visualize

Для высококачественной визуализации изображений и анимации в пакет программ SolidWorks входят два продукта SolidWorks Visualize Standard и SolidWorks Visualize Professional. Эти продукты используют возможности ядра NVIDIA iRay для фотореалистичной визуализации создаваемых моделей.
Ядро NVIDIA iRay может работать в двух режимах, высококачественном фотореалистичном режиме (Unbiased mode) и в упрощенном режиме, основанном на простой трассировке лучей (Biased mode).

Рис. 6-6. Пакет SolidWorks Visualize позволяет выполнять фотореалистичную визуализацию изображений с применением возможностей графических ускорителей.

Благодаря поддержке возможностей распределения нагрузки в задачах между различными GPU высокую производительность в SolidWorks Visualize помогают обеспечивать multi-gpu конфигурации с NVIDIA Quadro и NVIDIA Tesla. Вы можете выполнять отображение сцены в OpenGL на графическом ускорителе NVIDIA Quadro, а визуализацию сцены с высоким качеством и реалистичными освещением и материалами можете выполнять силами специализированных вычислителей NVIDIA Tesla. Это помогает распределить нагрузку и добиться высокой производительности в интерактивной навигации. Все управление графическими ускорителями может быть осуществлено с помощью драйвера для NVIDIA Quadro и NVIDIA Tesla.

CATIA LiveRendering

Система интерактивной и фотореалистичной визуализации CATIA LiveRendering также основана на технологии NVIDIA iRay. С ее помощью вы можете выполнять визуализацию изображений и моделей, создаваемых с помощью системы CATIA и предоставлять полученные образы клиентам.

Рис. 6-7. Система визуализации CATIA LiveRendering на основе NVIDIA iRay.

Как и весь комплекс CATIA, решение LiveRendering является отдельным элементом, но интенсивно связанным со всей системой в целом. Для обеспечения высокой производительности и комфорта в работе с множеством приложений и решений комплекса, необходимо обратиться к профессиональным решениям, позволяющим выполнять визуализацию виртуального пространства и вычисления на GPU без перерасхода ресурсов.

Решение LiveRendering может быть использовано совместно с NVIDIA Quadro и программно-аппаратной платформой NVIDIA Quadro VCA, позволяя увеличивать производительность в работе над комплексными и сложными моделями.

Autodesk 3ds Max

Пакет Autodesk 3ds Max является одним из лидирующих инструментов для создания компьютерной графики и анимации, а так же для высококачественной визуализации. Приложение использует множество технологий для достижения оптимальной производительности как при визуализации сцен в видовых окнах проекций, так и в вычислениях общего назначения. Разработчики компании Autodesk, совместно с NVIDIA реализовали поддержку ключевых возможностей DirectX и поддержку современных графических процессоров, интеграцию NVIDIA PhysX и его компонентов, а также поддержку вычислений общего назначения для тесселяции геометрии с помощью OpenSubdiv.

Рис. 6-8. Autodesk 3ds Max 2016 с выбранным в качестве текущей системы визуализации NVIDIA Iray.

Компания NVIDIA ведет разработку комплексных решений для фотореалистичной визуализации и технологий, позволяющих использовать обширные возможности GPU для ускорения вычислений. Системы визуализации NVIDIA iRay, NVIDIA mental ray и язык описания материалов NVIDIA MDL, интегрированные в Autodesk 3ds Max, благодаря применению совместно с графическими ускорителями NVIDIA Quadro и NVIDIA Tesla, представляют комплексную платформу для визуализации в режиме Active Shade и окончательной высококачественной визуализации.
Пользователи V-Ray и Octane Renderer также по достоинству оценят возможности ускорения вычислений в процессе визуализации. В каждом из представленных ядер визуализации реализована поддержка Multi-GPU конфигураций систем. Программное обеспечение рабочих станций с несколькими GPU NVIDIA Quadro или NVIDIA Tesla может быть сконфигурировано для использования, одного, нескольких или всех графических процессоров, доступных в системе. А благодаря драйверу и программному обеспечению NVIDIA Quadro, пользователю предоставляется возможность оптимально использовать память графического процессора для хранения данных и вычислений.

Autodesk Maya

Система 3D моделирования и анимации Autodesk Maya по праву считается одним из лидирующих в индустрии M&E решений для создания высококачественной фотореалистичной анимации и визуальных эффектов. С помощью открытых форматов данных и мощнейшей системе макропрограммирования на основе Maya Embedded Language и Python, пакет получил признание среди многих профессиональных художников и технических директоров студий. Графическое ядро Maya может использовать одно из двух графических API – Open GL или DirectX, что позволяет использовать её как на платформе Windows, так и на платформах macOS и Linux.

Рис. 6-9. Графическое ядро Viewport 2.0 позволяет работать как со сложными моделями, так и текстурами с большим разрешением, а также предоставляет возможность использовать базовые методы затенения и визуализации.

Ядро Viewport 2.0 является многопоточным графическим ядром, использующим возможности систем с многоядерными процессорами и несколькими GPU (Multi-GPU). Графические ускорители NVIDIA Quadro и NVIDIA Tesla могут быть использованы для визуализации и работы с комплексными сценами, содержащими большое количество геометрии и текстуры в большом разрешении, а также обеспечивают высокое качество сглаживания и эффектов Bump Mapping, Tessellation и Ambient Occlusion.
Графические ускорители в Maya играют важную роль, они могут быть использованы не только для отображения виртуального пространства сцены, но и для ускорения работы ядра программы, обрабатывающего как геометрию и ее тесселяцию, так и деформеры, используемые для ускорения процессов вычислений трансформации геометрии в сцене.

На приведенном выше видео представлен пример использования GPU для ускорения обработки сцены в процессе воспроизведения анимации. Прирост скорости воспроизведения анимации обеспечивается оптимизацией деформеров и ядра программы для многопоточных вычислений. В процессе просмотра обратите внимание на изменяющееся значение Frame Rate, в зависимости от того, какой режим выбран DG, Serial, Serial + GPU Override, Parallel и Parallel + GPU Override.
Как и в случае с 3ds Max, пользователи могут использовать все возможности графических ускорителей для увеличения производительности в процессе визуализации с помощью таких движков визуализации, как NVIDIA mental ray, V-Ray, NVIDIA iRay for Maya, V-Ray RT, Octane Renderer и других.

Приложения Adobe Creative Cloud

Практически все ключевые приложения, входящие в пакет Adobe Creative Cloud предоставляют поддержку современных технологий, реализованных в графических ускорителях, линейки Quadro. Известный пакет Adobe Photoshop СС использует возможности графических ускорителей для того что-бы обеспечивать высокую производительность в визуализации холста и работу таких инструментов, как Hand tool, Rotate canvas tool, Zoom tool и обеспечивает визуализацию трехмерного пространства в процессе работы с 3D моделями.

Рис. 6-10. Графический ускоритель используется для увеличения производительности инструмента Rotate canvas в Adobe Photoshop CC.

Пользователи, использующие профессиональные дисплеи с поддержкой отображения цветов 10-bit канал (30-bit display), при использовании графических ускорителей NVIDIA Quadro могут использовать возможности данных GPU для отображения 30-bit цветов, что существенно увеличивает качество визуализации изображений, содержащих большое количество градиентов и требующих высокую точность цветопередачи. Это актуально, в процессе работы с научными и медицинскими изображениями, получаемыми с помощью компьютерной томографии и других высокоточных приборов.

Рис. 6-11. C NVIDIA Quadro, вы можете использовать все возможности графического ядра Adobe Photoshop CC.

Многие из фильтров в Adobe Photoshop поддерживают возможности вычислений с помощью GPU с применением Open CL. Такой подход позволяет значительно увеличить производительность в обработке изображений с большим разрешением и содержащими множество слоев.

Редактор векторной графики Adobe Illustrator CC включает в своем арсенале возможности для ускорения обработки и вычислений векторных форм, с помощью набора расширений NVIDIA Path Rendering доступных для OpenGL. Данный подход позволяет увеличить производительность обработки сложных векторных иллюстраций ядром Adobe Illustrator в несколько раз и обеспечивает высокое качество отображения векторных форм.

Индустрия кинематографа и современного телевидения уже давно перешагнула за рамки формата Full HD, современные фильмы снимаются с помощью камер, поддерживающих разрешения кадра 4K и 5K. Это накладывает определенные требования к рабочим станциям и возможностям графической подсистемы для обработки материала с таким разрешением и примененными к нему эффектами. Пакет нелинейного монтажа Adobe Premiere Pro CC использует возможности графических ускорителей для увеличения производительности воспроизведения видео, обработки эффектов и переходов.

Ядро Adobe Mercury Playback Engine предоставляет возможность использовать возможности GPU для ускорения вычислений. Пользователи могут использовать возможности данного ядра, не ограничиваясь только одним пакетом Premiere Pro, они доступны и в Adobe Photoshop CC и Adobe Media Encoder CC, когда вы выполняете сборку и экспорт видео.

При использовании GPU с большими объемами памяти, достигается значительное увеличение производительности в воспроизведении видео высокого разрешения с эффектами и масками в режиме реального времени.
Пакет Adobe After Effects CC также использует возможности GPU для ускорения вычислений. Помимо того, что в данном пакете используется OpenGL для отображения пространства композиции, так и для визуализации трехмерных композиций, освещения, 3D объектов и материалов, используются возможности библиотеки NVIDIA OptiX.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *