num что это python

Введение в Python

Поиск

Новое на сайте

Типы данных в Python

Переменные в Python:

Переменная в языке программирования это название для зарезервированного места в памяти компьютера, предназначенное для хранения значений. Это означает, что когда вы создаете переменную, вы на самом деле резервируете определенное место в памяти компьютера.

Основываясь на типе данных переменной, интерпретатор выделяет необходимое количество памяти и решает, что может находится в зарезервированной области памяти.

Для понимания, можете думать о переменной как о коробке, в которую можно положить любую вещь, но только определенного размера. Размер в данном примере будет типом переменной. Это не совсем верное определение, но оно дает общее представление о картине в целом.

Присвоение значения переменной:

В Python вам не нужно объявлять тип переменной вручную (как, например в С++). Объявление происходит автоматически (это называется динамическая типизация), когда вы присваиваете значение переменной. Знак равенства ( = ) используется для присвоения значения переменной.

При выполнении, данный код выведет:

Множественное присвоение значений:

В Python возможно присваивать одно значение нескольким переменным сразу. Например:

В данном создается объект со значением 1, и все 3 переменные указывают на область в памяти, в которой он находится.

Встроенные типы данных в Python:

К стандартным типам данных в Python относят:

Числовой тип данных в Python:

Числовой тип данных в Python предназначен для хранения числовых значений. Это неизменяемый тип данных, что означает, что изменение значения числового типа данных приведет к созданию нового объекта в памяти (и удалению старого)

Числовые объекты создаются, когда вы присваиваете им значение. Например:

Также вы можете удалять числовой объект при помощи ключевого слова del. Синтаксис команды del следующий:

В Python есть четыре вида числового типа данных:

Примеры видов числового типа данных:

int long float complex
151924361L0.03.14j
102-0x19323L15.2045.j
-7860122L-21.99.322e-36j
00xDEFABCECBDAECBFBAEl32.3+e18.876j
0b10535633629843L-90.-.6545+0J
-0x260-052318172735L-32.54e1003e+26J
0x69-4721885298529L70.2-E124.53e-7j

Строки в Python:

Оператор плюс ( + ) для строк соединяет две строки в одну, звездочка ( * ) оператор повторения. Например:

В результате вы увидите следующее

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Списки в Python:

Списки, пожалуй, самый универсальный составной тип данных в Python. Список состоит из элементов, разделенных запятыми, находящихся между квадратными скобками ( [ ] ). В определенной мере, списки подобны массивам в C. Единственной разницей является то, что элементы одного списка могут иметь разные типы данных.

В результате вы увидите :

Кортежи в Python:

Кортеж это еще один составной тип данных, похожий на список. Кортеж состоит из ряда значений, разделенных запятыми, заключенными в круглые скобки ( ( ) ). Основным различием между списками и кортежами является то, что элементы кортежей не могут быть изменены. То есть, кортежи можно рассматривать как списки доступные только для чтения.

Если у вас нет необходимости изменять элементы списка, то для экономии места в памяти лучше использовать тип данных кортеж.

В результате вы получите:

При этом, следующие действия доступны для списков и недоступны для кортежей:

Словари в Python:

Пары ключ, значение словаря заключаются в фигурные скобки ( < >). Есть несколько способов создания словарей:

Данный код выведет следующее:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Обратите внимание, что ключи и значения выводятся не в том порядке, в котором мы их задавали.

Сеты в Python:

Сет в Python это еще один изменяемый, коллекционный тип данных, отличительной чертой которого является то, что он хранит только уникальные значания.

Создать сеты можно следующими способами:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Преобразование типов данных:

Иногда может возникнуть необходимость преобразовать один тип данных в другой. Для этого существуют специальные встроенные функции Python. Вот некоторые из них:

Источник

Изучение NumPy с визуальными примерами для начинающих

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Пакет NumPy является незаменимым помощником Python. Он тянет на себе анализ данных, машинное обучение и научные вычисления, а также существенно облегчает обработку векторов и матриц. Некоторые ведущие пакеты Python используют NumPy как основной элемент своей инфраструктуры. К их числу относятся scikit-learn, SciPy, pandas и tensorflow. Помимо возможности разобрать по косточкам числовые данные, умение работать с NumPy дает значительное преимущество при отладке более сложных сценариев библиотек.

Содержание

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

В данной статье будут рассмотрены основные способы использования NumPy на примерах, а также типы представления данных (таблицы, картинки, текст и так далее) перед их последующей подачей модели машинного обучения.

Создание массивов NumPy

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Нередки случаи, когда необходимо, чтобы NumPy инициализировал значения массива.

Есть вопросы по Python?

На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!

Telegram Чат & Канал

Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!

Паблик VK

Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

После создания массивов можно манипулировать ими довольно любопытными способами.

Арифметические операции над массивами NumPy

Создадим два массива NumPy и продемонстрируем выгоду их использования.

Массивы будут называться data и ones :

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

При сложении массивов складываются значения каждого ряда. Это сделать очень просто, достаточно написать data + ones :

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Новичкам может прийтись по душе тот факт, что использование абстракций подобного рода не требует написания циклов for с вычислениями. Это отличная абстракция, которая позволяет оценить поставленную задачу на более высоком уровне.

Помимо сложения, здесь также можно выполнить следующие простые арифметические операции:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Как можно увидеть в примере выше, NumPy сам понял, что умножить на указанное число нужно каждый элемент массива. Данный концепт называется трансляцией, или broadcating. Трансляция бывает весьма полезна.

Индексация массива NumPy

Массив NumPy можно разделить на части и присвоить им индексы. Принцип работы похож на то, как это происходит со списками Python.

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Агрегирование в NumPy

Дополнительным преимуществом NumPy является наличие в нем функций агрегирования:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Это лишь небольшая часть довольно обширного списка функций агрегирования в NumPy.

Использование нескольких размерностей NumPy

Создание матриц NumPy на примерах

Созданные в следующей форме списки из списков Python можно передать NumPy. Он создаст матрицу, которая будет представлять данные списки:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Достаточно только добавить им кортеж, в котором будут указаны размерности матрицы, которую мы создаем.

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Арифметические операции над матрицами NumPy

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Арифметические операции над матрицами разных размеров возможны в том случае, если размерность одной из матриц равно одному. Это значит, что в матрице только один столбец или один ряд. В таком случае для выполнения операции NumPy будет использовать правила трансляции:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

dot() Скалярное произведение NumPy

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

На изображении выше под каждой фигурой указана ее размерность. Это сделано с целью отметить, что размерности обеих матриц должны совпадать с той стороны, где они соприкасаются. Визуально представить данную операцию можно следующим образом:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Индексация матрицы NumPy

Операции индексации и деления незаменимы, когда дело доходит до манипуляции с матрицами:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Агрегирование матриц NumPy

Агрегирование матриц происходит точно так же, как агрегирование векторов:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Транспонирование и изменение формы матриц в numpy

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Еще больше размерностей NumPy

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

В большинстве случаев для указания новой размерности требуется просто добавить запятую к параметрам функции NumPy:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

На заметку: Стоит иметь в виду, что при выводе 3-мерного массива NumPy результат, представленный в виде текста, выглядит иначе, нежели показано в примере выше. Порядок вывода n-мерного массива NumPy следующий — последняя ось зацикливается быстрее всего, а первая медленнее всего. Это значит, что вывод np.ones((4,3,2)) будет иметь вид:

Примеры работы с NumPy

Подытожим все вышесказанное. Вот несколько примеров полезных инструментов NumPy, которые могут значительно облегчить процесс написания кода.

Математические формулы NumPy

Необходимость внедрения математических формул, которые будут работать с матрицами и векторами, является главной причиной использования NumPy. Именно поэтому NumPy пользуется большой популярностью среди представителей науки. В качестве примера рассмотрим формулу среднеквадратичной ошибки, которая является центральной для контролируемых моделей машинного обучения, что решают проблемы регрессии:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Реализовать данную формулу в NumPy довольно легко:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Главное достоинство NumPy в том, что его не заботит, если predictions и labels содержат одно или тысячи значение (до тех пор, пока они оба одного размера). Рассмотрим пример, последовательно изучив четыре операции в следующей строке кода:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

У обоих векторов predictions и labels по три значения. Это значит, что в данном случае n равно трем. После выполнения указанного выше вычитания мы получим значения, которые будут выглядеть следующим образом:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Затем мы можем возвести значения вектора в квадрат:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Теперь мы вычисляем эти значения:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Таким образом мы получаем значение ошибки некого прогноза и score за качество модели.

Представление данных NumPy

Задумайтесь о всех тех типах данных, которыми вам понадобится оперировать, создавая различные модели работы (электронные таблицы, изображения, аудио и так далее). Очень многие типы могут быть представлены как n-мерные массивы:

Таблицы NumPy — примеры использования таблиц

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Аудио и временные ряды в NumPy

Фрагмент аудио файла выглядит следующим образом:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

То же самое касается данных временных рядов, например, изменения стоимости акций со временем.

Обработка изображений в NumPy

Изображение является матрицей пикселей по размеру (высота х ширина).

Вот как выглядит фрагмент изображения:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Если изображение цветное, каждый пиксель представлен тремя числами. Здесь за основу берется цветовая модель RGB — красный (R), зеленый (G) и синий (B).

В данном случае нам понадобится третья размерность, так как каждая клетка вмещает только одно число. Таким образом, цветная картинка будет представлена массивом ndarray с размерностями: (высота х ширина х 3).

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Обработка текста в NumPy на примерах

Когда дело доходит до текста, подход несколько меняется. Цифровое представление текста предполагает создание некого python словаря, то есть инвентаря всех уникальных слов, которые бы распознавались моделью, а также векторно (embedding step). Попробуем представить в цифровой форме цитату из стихотворения арабского поэта Антара ибн Шаддада, переведенную на английский язык:

“Have the bards who preceded me left any theme unsung?”

Перед переводом данного предложения в нужную цифровую форму модель должна будет проанализировать огромное количество текста. Здесь можно обработать небольшой набор данный, после чего использовать его для создания словаря из 71 290 слов.

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Предложение может быть разбито на массив токенов, что будут словами или частями слов в зависимости от установленных общих правил:

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Затем в данной таблице словаря вместо каждого слова мы ставим его id :

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Однако данные id все еще не обладают достаточным количеством информации о модели как таковой. Поэтому перед передачей последовательности слов в модель токены/слова должны быть заменены их векторными представлениями. В данном случае используется 50-мерное векторное представление Word2vec.

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Теперь мы получили числовой том, с которым модель может работать и делать полезные вещи. Некоторые строки остались пустыми, однако они могут быть заполнены другими примерами, на которых модель может тренироваться или делать прогнозы.

(На заметку: Поэма, строчку из которой мы использовали в примере, увековечила своего автора в веках. Будучи незаконнорожденным сыном главы племени от рабыни, Антара ибн Шаддан мастерски владел языком поэзии. Вокруг исторической фигуры поэта сложились мифы и легенды, а его стихи стали частью классической арабской литературы).

num что это python. Смотреть фото num что это python. Смотреть картинку num что это python. Картинка про num что это python. Фото num что это python

Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.

E-mail: vasile.buldumac@ati.utm.md

Образование
Universitatea Tehnică a Moldovei (utm.md)

Источник

NumPy, часть 1: начало работы

NumPy — это библиотека языка Python, добавляющая поддержку больших многомерных массивов и матриц, вместе с большой библиотекой высокоуровневых (и очень быстрых) математических функций для операций с этими массивами.

Установка NumPy

На Windows на том же сайте есть exe установщики. Или, если возникают проблемы, рекомендую ещё хороший сборник библиотек http://www.lfd.uci.edu/

Начинаем работу

Основным объектом NumPy является однородный многомерный массив (в numpy называется numpy.ndarray). Это многомерный массив элементов (обычно чисел), одного типа.

Наиболее важные атрибуты объектов ndarray:

Создание массивов

Функция array() трансформирует вложенные последовательности в многомерные массивы. Тип элементов массива зависит от типа элементов исходной последовательности (но можно и переопределить его в момент создания).

Можно также переопределить тип в момент создания:

Функция array() не единственная функция для создания массивов. Обычно элементы массива вначале неизвестны, а массив, в котором они будут храниться, уже нужен. Поэтому имеется несколько функций для того, чтобы создавать массивы с каким-то исходным содержимым (по умолчанию тип создаваемого массива — float64).

Функция zeros() создает массив из нулей, а функция ones() — массив из единиц. Обе функции принимают кортеж с размерами, и аргумент dtype:

Функция eye() создаёт единичную матрицу (двумерный массив)

Функция empty() создает массив без его заполнения. Исходное содержимое случайно и зависит от состояния памяти на момент создания массива (то есть от того мусора, что в ней хранится):

Для создания последовательностей чисел, в NumPy имеется функция arange(), аналогичная встроенной в Python range(), только вместо списков она возвращает массивы, и принимает не только целые значения:

Вообще, при использовании arange() с аргументами типа float, сложно быть уверенным в том, сколько элементов будет получено (из-за ограничения точности чисел с плавающей запятой). Поэтому, в таких случаях обычно лучше использовать функцию linspace(), которая вместо шага в качестве одного из аргументов принимает число, равное количеству нужных элементов:

fromfunction(): применяет функцию ко всем комбинациям индексов

Печать массивов

Если массив слишком большой, чтобы его печатать, NumPy автоматически скрывает центральную часть массива и выводит только его уголки.

Если вам действительно нужно увидеть весь массив, используйте функцию numpy.set_printoptions:

И вообще, с помощью этой функции можно настроить печать массивов «под себя». Функция numpy.set_printoptions принимает несколько аргументов:

precision : количество отображаемых цифр после запятой (по умолчанию 8).

threshold : количество элементов в массиве, вызывающее обрезание элементов (по умолчанию 1000).

edgeitems : количество элементов в начале и в конце каждой размерности массива (по умолчанию 3).

linewidth : количество символов в строке, после которых осуществляется перенос (по умолчанию 75).

suppress : если True, не печатает маленькие значения в scientific notation (по умолчанию False).

nanstr : строковое представление NaN (по умолчанию ‘nan’).

infstr : строковое представление inf (по умолчанию ‘inf’).

formatter : позволяет более тонко управлять печатью массивов. Здесь я его рассматривать не буду, можете почитать здесь (на английском).

И вообще, пользуйтесь официальной документацией по numpy, а в этом пособии я постараюсь описать всё необходимое. В следующей части мы рассмотрим базовые операции над массивами.

Источник

NumPy в Python. Часть 1

Предисловие переводчика


Доброго времени суток, Хабр. Запускаю цикл статей, которые являются переводом небольшого мана по numpy, ссылочка. Приятного чтения.

Введение

Установка

Если у вас есть Python(x, y) (Примечание переводчика: Python(x, y), это дистрибутив свободного научного и инженерного программного обеспечения для численных расчётов, анализа и визуализации данных на основе языка программирования Python и большого числа модулей (библиотек)) на платформе Windows, то вы готовы начинать. Если же нет, то после установки python, вам нужно установить пакеты самостоятельно, сначала NumPy потом SciPy. Установка доступна здесь. Следуйте установке на странице, там всё предельно понятно.

Немного дополнительной информации

Сообщество NumPy и SciPy поддерживает онлайн руководство, включающие гайды и туториалы, тут: docs.scipy.org/doc.

Импорт модуля numpy

Есть несколько путей импорта. Стандартный метод это — использовать простое выражение:

Тем не менее, для большого количества вызовов функций numpy, становится утомительно писать numpy.X снова и снова. Вместо этого намного легче сделать это так:

Это выражение позволяет нам получать доступ к numpy объектам используя np.X вместо numpy.X. Также можно импортировать numpy прямо в используемое пространство имен, чтобы вообще не использовать функции через точку, а вызывать их напрямую:

Однако, этот вариант не приветствуется в программировании на python, так как убирает некоторые полезные структуры, которые модуль предоставляет. До конца этого туториала мы будем использовать второй вариант импорта (import numpy as np).

Массивы

Главной особенностью numpy является объект array. Массивы схожи со списками в python, исключая тот факт, что элементы массива должны иметь одинаковый тип данных, как float и int. С массивами можно проводить числовые операции с большим объемом информации в разы быстрее и, главное, намного эффективнее чем со списками.

Создание массива из списка:

Здесь функция array принимает два аргумента: список для конвертации в массив и тип для каждого элемента. Ко всем элементам можно получить доступ и манипулировать ими так же, как вы бы это делали с обычными списками:

Массивы могут быть и многомерными. В отличии от списков можно использовать запятые в скобках. Вот пример двумерного массива (матрица):

Array slicing работает с многомерными массивами аналогично, как и с одномерными, применяя каждый срез, как фильтр для установленного измерения. Используйте «:» в измерении для указывания использования всех элементов этого измерения:

Метод shape возвращает количество строк и столбцов в матрице:

Метод dtype возвращает тип переменных, хранящихся в массиве:

Тут float64, это числовой тип данных в numpy, который используется для хранения вещественных чисел двойной точности. Так же как float в Python.

Метод len возвращает длину первого измерения (оси):

Метод in используется для проверки на наличие элемента в массиве:

Массивы можно переформировать при помощи метода, который задает новый многомерный массив. Следуя следующему примеру, мы переформатируем одномерный массив из десяти элементов во двумерный массив, состоящий из пяти строк и двух столбцов:

Обратите внимание, метод reshape создает новый массив, а не модифицирует оригинальный.

Имейте ввиду, связывание имен в python работает и с массивами. Метод copy используется для создания копии существующего массива в памяти:

Списки можно тоже создавать с массивов:

Можно также переконвертировать массив в бинарную строку (то есть, не human-readable форму). Используйте метод tostring для этого. Метод fromstring работает в для обратного преобразования. Эти операции иногда полезны для сохранения большого количества данных в файлах, которые могут быть считаны в будущем.

Заполнение массива одинаковым значением.

Транспонирование массивов также возможно, при этом создается новый массив:

Многомерный массив можно переконвертировать в одномерный при помощи метода flatten:

Два или больше массивов можно сконкатенировать при помощи метода concatenate:

Если массив не одномерный, можно задать ось, по которой будет происходить соединение. По умолчанию (не задавая значения оси), соединение будет происходить по первому измерению:

В заключении, размерность массива может быть увеличена при использовании константы newaxis в квадратных скобках:

Заметьте, тут каждый массив двумерный; созданный при помощи newaxis имеет размерность один. Метод newaxis подходит для удобного создания надлежаще-мерных массивов в векторной и матричной математике.

На этом у нас конец первой части перевода. Спасибо за внимание.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *