nimh nicd что это
Никель-металлгидридные аккумуляторы
Исследования в области никель-металлгидридных батарей начались в 1970х годах как совершенствование никель-водородных батарей, поскольку вес и объем никель-водородных батарей не удовлетворял производителей (водород в этих батареях находился под высоким давлением, что требовало прочного и тяжелого стального корпуса). Использование водорода в виде гидридов металлов позволило снизить вес и объем батарей, также снизилась и опасность взрыва батареи при перегреве.
Начиная с 1980х была существенно улучшена технология производства NiMH батарей и началось коммерческое использование в различных областях. Успеху NiNH батарей способствовала увеличенная емкость (на 40% по сравнению с NiCd), использование материалов, годных к вторичной переработке («дружественность» природной среде), а также весьма длительных срок службы, часто превышающий показатели NiCd аккумуляторов.
Преимущества и недостатки NiMH аккумуляторов
Преимущества
・ бОльшая емкость — на 40% и более, чем обычные NiCd батареи
・ намного меньшая выраженность эффекта «памяти» по сравнению с никель-кадмиевыми аккумуляторами — циклы обслуживания батареи можно проводить в 2-3 раза реже
・ простая возможность транспортировки — авиакомпании перевозят без всяких предварительных условий
・ экологически безопасны — возможна переработка
Недостатки
・ ограниченное время жизни батареи — обычно около 500-700 циклов полного заряда/разряда (хотя в зависимости от режимов работы и внутреннего устройства могут быть различия в разы).
・ эффект памяти — NiMH батареи требуют периодической тренировки (цикла полного разряда/заряда аккумулятора)
・ Относительно малый срок хранения батарей — обычно не более 3х лет при хранении в разряженном состоянии, после чего теряются основные характеристики. Хранение в прохладных условиях при частичном заряде в 40-60% замедляют процесс старения батарей.
・ Высокий саморазряд батарей
・ Ограниченная мощностная емкость — при превышении допустимых нагрузок уменьшается время жизни батарей.
・ Требуется специальное зарядное устройство со стадийным алгоритмом заряда, поскольку при заряде выделяется большое количество тепла и никель-металлгидридные батареи прохо переносят перезаряд.
・ Плохая переносимость высоких температур (свыше 25-30 по Цельсию)
Конструкция NiMH аккумуляторов и АКБ
Современные никель-металлгидридные аккумуляторы имеют внутреннюю конструкцию, схожую с конструкцией никель-кадмиевых аккумуляторов. Положительный оксидно-никелевый электрод, щелочной электролит и расчетное давление водорода совпадают в обеих аккумуляторных системах. Различны только отрицательные электроды: у никель-кадмиевых аккумуляторов – кадмиевый электрод, у никель-металлгидридных – электрод на базе сплава поглощающих водород металлов.
В современных никель-металлгидридных аккумуляторах используется состав водородоадсорбирующего сплава вида AB2 и AB5. Другие сплавы вида AB или A2B не получили широкого распространения. Что же обозначают загадочные буквы A и B в составе сплава? – Под символом A скрывается металл (или смесь металлов), при образовании гидридов которых выделяется тепло. Соответственно, символ B обозначает металл, который реагирует с водородом эндотермически.
Для отрицательных электродов типа AB5 используется смесь редкоземельных элементов группы лантана (компонент А) и никель с примесями других металлов (кобальт, алюминий, марганец) – компонент B. Для электродов типа AB2 используются титан и никель с примесями циркония, ванадия, железа, марганца, хрома.
Никель-металлгидридные аккумуляторы с электродами типа AB5 имеют большее распространение из-за лучших показателей циклируемости, несмотря на то, что аккумуляторы с электродами типа AB2 более дешевы, имеют большую емкость и лучшие мощностные показатели.
В процессе циклирования происходит колебания объема отрицательного электрода до 15-25% от исходного за счет поглощения/выделения водорода. В результате колебаний объема возникает большое количество микротрещин в материале электрода. Это явление объясняет, почему для нового никель-металлгидридного аккумулятора необходимо произвести несколько «тренировочных» циклов заряда/разряда для приведения значений мощности и емкости аккумулятора к номинальным. Также у образования микротрещин есть и отрицательная сторона – увеличивается площадь поверхности электрода, которая подвергается коррозии с расходованием электролита, что приводит к постепенному увеличению внутреннего сопротивления элемента и снижению емкости. Для уменьшения скорости коррозийных процессов рекомендуется хранить никель-металлгидридные аккумуляторы в заряженном состоянии.
Отрицательный электрод имеет избыточную емкость по отношению к положительному как по перезаряду, так и по переразряду для обеспечения приемлемого уровня выделения водорода. Из-за коррозии сплава постепенно уменьшается емкость по перезаряду отрицательного электрода. Как только избыточная емкость по перезаряду исчерпается, на отрицательном электроде в конце заряда начнет выделяться большое количество водорода, что приведет к стравливанию избыточного количества водорода через клапаны элемента, «выкипанию» электролита и выходу аккумулятора из строя. Поэтому для заряда никель-металлгидридных аккумуляторов необходимо специальное зарядное усройство, учитывающее специфику поведения аккумулятора для избегания опасности саморазрушения аккумуляторного элемента. При сборе батареи аккумуляторов необходимо предусмотреть хорошую вентиляцию элементов и не курить рядом с заряжающейся никель-металлгидридной батареей большой емкости.
Со временем в результате циклирования возрастает и саморазряд аккумулятора за счет появления больших пор в материале сепаратора и образовании электрического соединения между пластинами электродов. Эта проблема может быть временно решена путем нескольких циклов глубокого разряда аккумулятора с последующим полным зарядом.
При заряде никель-металлгидридных аккумуляторов выделяется достаточно большое количество тепла, особенно в конце заряда, что является одним из признаков необходимости завершения заряда. При собирании нескольких аккумуляторных элементов в батарею необходима система контроля параметров батареи (BMS), а также наличие терморазмыкающихся токопроводящих соединительных перемычек между частью аккумуляторных элементов. Также желательно соединять аккумуляторы в батарее путем точечной сварки перемычек, а не пайки.
Разряд никель-металлгидридных аккумуляторов при низких температурах лимитируется тем фактом, что эта реакция эндотермическая и на отрицательном электроде образуется вода, разбавляющая электролит, что приводит к высокой вероятности замерзания электролита. Поэтому, чем меньше температура окружающей среды, тем меньше отдаваемая мощность и емкость аккумулятора. Напротив, при повышенной температуре в процессе разряда разрядная емкость никель-металлгидридного аккумулятора будет максимальной.
Знание конструкции и принципов работы позволит с большим пониманием отнестись к процессу эксплуатации никель-металлгидридных аккумуляторов. Надеюсь, информация, почерпнутая в статье, позволит продлить жизнь вашей аккумуляторной батареи и избежать возможных опасных последствий из-за недопонимания принципов безопасного использования никель-металлгидридных аккумуляторов.
P.S. youROCK посоветовал вставить несколько графиков и картинок, не хотел этого делать из-за соображений копирайта, однако попробую их вставить со ссылкой на источник
Зависимось характеристик никель-металлгидридной аккумуляторной батареи на 6В от циклирования
емкость и саморазряд показаны в процентах от номинальных
изображение взято с batteryuniversity.com/parttwo-36.htm
Разрядные характеристики NiMH-аккумуляторов при различных
токах разряда при температуре окружающей среды 20 °С
изображение взято с www.compress.ru/Article.aspx?id=16846&iid=781
Никель-металлгидридная батарейка Duracell
изображение взято с www.3dnews.ru/digital/1battery/index8.htm
P.P.S.
Схема перспективного направления создания биполярных аккумуляторных батарей
схема взятя с Биполярные свинцово-кислотные батареи
Ni-Cd, Ni-MH и Li-Ion аккумуляторы. В чем разница. Плюсы и минусы
Основные типы аккумуляторов:
Ni-Cd Никель-кадмиевые аккумуляторы
Для аккумуляторного инструмента никель-кадмиевые аккумуляторы являются фактическим стандартом. Инженерам хорошо известны их достоинства и недостатки, в частности Ni-Cd Никель-кадмиевые аккумуляторы содержат кадмий – тяжёлый металл повышенной токсичности.
У никель-кадмиевых аккумуляторов есть так называемый «эффект памяти» суть которого сводится к тому, что при заряде не полностью разряженного аккумулятора его новый разряд возможен только до того уровня, с которого его зарядили. Другими словами аккумулятор «помнит» уровень остаточного заряда, с которого его полностью зарядили.
Итак, при заряде не полностью разряженного Ni-Cd аккумулятора происходит уменьшение его ёмкости.
Существует несколько способов борьбы с этим явлением. Опишем только самый простой и надёжный способ.
При использовании аккумуляторного инструмента с Ni-Cd аккумуляторными батареями следует придерживаться простого правила: заряжать только полностью разряженные аккумуляторы.
Рекомендуется хранить Ni-Cd Никель-кадмиевые аккумуляторные батареи в разряженном состоянии, желательно чтобы разряд не был глубоким, в противном случае это может вызвать необратимые процессы в батарее.
Плюсы Ni-Cd Никель-кадмиевых аккумуляторов
Минусы Ni-Cd Никель-кадмиевых аккумуляторов
Ni-MH Никель-металлогидридные аккумуляторы
Эти аккумуляторы предлагаются на рынке как менее токсичные (по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами) и более экологически безопасные, как в производстве, так и при утилизации.
На практике Ni-MH Никель-металлогидридные аккумуляторы действительно демонстрируют весьма большую ёмкость при габаритах и массе, несколько меньших, чем у стандартных Ni-Cd Никель-кадмиевых аккумуляторов.
Благодаря практически полному отказу от применения токсичных тяжелых металлов в конструкции Ni-MH Никель-металлогидридных аккумуляторов последние после использования могут быть утилизованы вполне безопасно и без экологических последствий.
У никель-металлогидридных аккумуляторов несколько снижен «эффект памяти». На практике «эффект памяти» практически незаметен из-за высокого саморазряда этих аккумуляторов.
При эксплуатации Ni-MH Никель-металлогидридных аккумуляторов желательно разряжать их в процессе работы не полностью.
Хранить Ni-MH Никель-металлогидридные аккумуляторы следует в заряженном состоянии. При длительных (более месяца) перерывах в работе аккумуляторы следует перезаряжать.
Плюсы Ni-MH Никель-металлогидридных аккумуляторов
Минусы Ni-MH Никель-металлогидридных аккумуляторов
Li-Ion Литий-ионные аккумуляторы
Несомненным достоинством литий-ионных аккумуляторов является практически незаметный «эффект памяти».
Благодаря этому замечательному свойству Li-Ion аккумулятор можно заряжать или подзаряжать по мере необходимости, исходя из потребностей. Например, можно подзарядить не полностью разряженный литий-ионный аккумулятор перед важной, ответственной или продолжительной работой.
Длительное хранение рекомендуется производить при половинном уровне заряда литий-ионного аккумулятора.
К сожалению эти аккумуляторы являются наиболее дорогими аккумуляторными батареями. Кроме того литий-ионные аккумуляторы имеют ограниченный срок службы, независящий от числа циклов разряд-заряд.
Резюмируя можно предположить, что литий-ионные аккумуляторы лучше всего пригодны для случаев постоянной интенсивной эксплуатации аккумуляторного инструмента.
Плюсы Li-Ion Литий-ионных аккумуляторов
Минусы Li-Ion Литий-ионных аккумуляторов
Из практики эксплуатации Li-Ion Литий-ионных аккумуляторов в телефонах, фотокамерах и т.д. можно отметить, что эти аккумуляторы служат в среднем от 4 до 6 лет и выдерживают за это время около 250-300 циклов разряда-заряда. При этом абсолютно точно замечено: больше циклов разряд-заряд – короче срок службы Li-Ion Литий-ионных аккумуляторов!
Все эти типы аккумуляторов имеют такой важный параметр как емкость. Емкость аккумулятора показывает, сколько времени он сможет питать подключенную к нему нагрузку. У радиостанции емкость аккумулятора измеряется в миллиампер-часах. Эта характеристика обычно указывается на самой батарее.
Для примера возьмем радиостанцию Альфа 80 и ее батарею емкостью 2800 мАч. При цикле работы 5/5/90, где 5% времени работы радиостанции на передачу, 5% работы на прием, 90% времени дежурный режим — время работы радиостанции составит не менее 15 часов. Чем ниже будет этот параметр у батареи, тем меньше она сможет проработать.
Следите за новостями в наших группах:
Ni-Cd, Ni-MH и Li-Ion аккумуляторы. В чем разница. Плюсы и минусы
Основные типы аккумуляторов:
Ni-Cd Никель-кадмиевые аккумуляторы
Для аккумуляторного инструмента никель-кадмиевые аккумуляторы являются фактическим стандартом. Инженерам хорошо известны их достоинства и недостатки, в частности Ni-Cd Никель-кадмиевые аккумуляторы содержат кадмий – тяжёлый металл повышенной токсичности.
У никель-кадмиевых аккумуляторов есть так называемый «эффект памяти» суть которого сводится к тому, что при заряде не полностью разряженного аккумулятора его новый разряд возможен только до того уровня, с которого его зарядили. Другими словами аккумулятор «помнит» уровень остаточного заряда, с которого его полностью зарядили.
Итак, при заряде не полностью разряженного Ni-Cd аккумулятора происходит уменьшение его ёмкости.
Существует несколько способов борьбы с этим явлением. Опишем только самый простой и надёжный способ.
При использовании аккумуляторного инструмента с Ni-Cd аккумуляторными батареями следует придерживаться простого правила: заряжать только полностью разряженные аккумуляторы.
Рекомендуется хранить Ni-Cd Никель-кадмиевые аккумуляторные батареи в разряженном состоянии, желательно чтобы разряд не был глубоким, в противном случае это может вызвать необратимые процессы в батарее.
Плюсы Ni-Cd Никель-кадмиевых аккумуляторов
Минусы Ni-Cd Никель-кадмиевых аккумуляторов
Ni-MH Никель-металлогидридные аккумуляторы
Эти аккумуляторы предлагаются на рынке как менее токсичные (по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами) и более экологически безопасные, как в производстве, так и при утилизации.
На практике Ni-MH Никель-металлогидридные аккумуляторы действительно демонстрируют весьма большую ёмкость при габаритах и массе, несколько меньших, чем у стандартных Ni-Cd Никель-кадмиевых аккумуляторов.
Благодаря практически полному отказу от применения токсичных тяжелых металлов в конструкции Ni-MH Никель-металлогидридных аккумуляторов последние после использования могут быть утилизованы вполне безопасно и без экологических последствий.
У никель-металлогидридных аккумуляторов несколько снижен «эффект памяти». На практике «эффект памяти» практически незаметен из-за высокого саморазряда этих аккумуляторов.
При эксплуатации Ni-MH Никель-металлогидридных аккумуляторов желательно разряжать их в процессе работы не полностью.
Хранить Ni-MH Никель-металлогидридные аккумуляторы следует в заряженном состоянии. При длительных (более месяца) перерывах в работе аккумуляторы следует перезаряжать.
Плюсы Ni-MH Никель-металлогидридных аккумуляторов
Минусы Ni-MH Никель-металлогидридных аккумуляторов
Li-Ion Литий-ионные аккумуляторы
Несомненным достоинством литий-ионных аккумуляторов является практически незаметный «эффект памяти».
Благодаря этому замечательному свойству Li-Ion аккумулятор можно заряжать или подзаряжать по мере необходимости, исходя из потребностей. Например, можно подзарядить не полностью разряженный литий-ионный аккумулятор перед важной, ответственной или продолжительной работой.
Длительное хранение рекомендуется производить при половинном уровне заряда литий-ионного аккумулятора.
К сожалению эти аккумуляторы являются наиболее дорогими аккумуляторными батареями. Кроме того литий-ионные аккумуляторы имеют ограниченный срок службы, независящий от числа циклов разряд-заряд.
Резюмируя можно предположить, что литий-ионные аккумуляторы лучше всего пригодны для случаев постоянной интенсивной эксплуатации аккумуляторного инструмента.
Плюсы Li-Ion Литий-ионных аккумуляторов
Минусы Li-Ion Литий-ионных аккумуляторов
Из практики эксплуатации Li-Ion Литий-ионных аккумуляторов в телефонах, фотокамерах и т.д. можно отметить, что эти аккумуляторы служат в среднем от 4 до 6 лет и выдерживают за это время около 250-300 циклов разряда-заряда. При этом абсолютно точно замечено: больше циклов разряд-заряд – короче срок службы Li-Ion Литий-ионных аккумуляторов!
Все эти типы аккумуляторов имеют такой важный параметр как емкость. Емкость аккумулятора показывает, сколько времени он сможет питать подключенную к нему нагрузку. У радиостанции емкость аккумулятора измеряется в миллиампер-часах. Эта характеристика обычно указывается на самой батарее.
Для примера возьмем радиостанцию Альфа 80 и ее батарею емкостью 2800 мАч. При цикле работы 5/5/90, где 5% времени работы радиостанции на передачу, 5% работы на прием, 90% времени дежурный режим — время работы радиостанции составит не менее 15 часов. Чем ниже будет этот параметр у батареи, тем меньше она сможет проработать.
Следите за новостями в наших группах:
О герметичных щелочных Ni-Cd и Ni-Mh аккумуляторах
Приводимые далее сведения представляют попытку как-то систематизировать накопленный опыт эксплуатации герметичных щелочных элементов и аккумуляторных батарей Ni-Cd и Ni-Mh типов. Эти данные вовсе не претендуют на абсолютную полноту и 100% корректность. Возможно, кто-то сможет их перепроверить и уточнить.
В настоящее время основным источником питания автономных устройств являются никель-металлогидридные (Ni-Mh) аккумуляторы герметичного типа. Конструктивно Ni-Mh аккумуляторы отличаются от считающихся устаревшими никель-кадмиевых (Ni-Cd) аккумуляторов конструкцией отрицательного электрода.
В Ni-Mh аккумуляторах этот электрод состоит из губчатого металла с развитой поверхностью, абсорбирующей образующиеся при электролизе положительно заряженные ионы водорода. Прообразом Ni-Mh аккумуляторов можно считать изобретённый в 50-х годах прошлого столетия «газовый» аккумулятор Преснякова.
В Ni-Cd аккумуляторах ионы водорода связываются химически. С эксплуатационной точки зрения Ni-Mh аккумуляторы отличаются от Ni-Cd в положительную сторону повышенной удельной ёмкостью (на единицу веса или объёма) и в отрицательную сторону — заметным саморазрядом, что, впрочем, компенсируется их высокой ёмкостью. С другой стороны, Ni-Mh аккумуляторам совершенно не свойственен эффект «памяти», осложняющий эксплуатацию аккумуляторов Ni-Cd типа.
Суть последнего эффекта сводится к потере реальной ёмкости Ni-Cd аккумуляторов при их неполном заряде или разряде. Иными словами, на отдачу Ni-Cd аккумулятора сказывается предыстория как их заряда, так и их разряда. Ni- Cd аккумулятор как бы «запоминает» значение ёмкости, отданной на предыдущем цикле заряда, и это становится его текущей ёмкостью.
Такая текущая ёмкость может только уменьшаться, что считается необратимым процессом. Правда, последние исследования показали, что при специальной схеме заряда/разряда ёмкость Ni-Cd аккумуляторов может быть восстановлена до начального и, что интереснее, даже большего уровня.
Суть такого восстановительного цикла для Ni-Cd аккумуляторов состоит в их заряде до напряжения 1,23… 1,3 В и затем быстрым, примерно, 1/2-1 часовом разряде до напряжения 0,8.1 В с последующим медленным разрядом до напряжения 0…0,5 В в течение 20…100 часов.
Затем таким способом разряженный аккумулятор подвергается ускоренной 1/2…2 часовой зарядке до напряжения 1,1…1,2 В и медленной дозарядке в течение 2…10 часов до напряжения 1,25…1,3 В. Все приведённые значения являются ориентировочными и определяются номинальной ёмкостью Ni-Cd аккумулятора и степенью потери им ёмкости.
Если восстановительный цикл не даёт приращения реальной ёмкости, аккумулятор непригоден для дальнейшей эксплуатации и подлежит замене. При положительном результате цикл заряда/разряда повторяют, пока не прекратится нарастание ёмкости. Если достигнутая при этом ёмкость всё же оказывается недостаточной, аккумулятор опять таки придётся заменить.
Процесс восстановления достаточно капризный и не отличается стабильностью. Тем не менее, лет 15…20 назад было создано специальное зарядное устройство для восстановления Ni-Cd аккумуляторов. Упоминание об этом устройстве, как ни странно, удалось найти только в книге В. Жельникова «Криптография от папируса до компьютера» (- М.: ABF, 1996).
Из других источников известно, что самый надёжный способ определения степени заряда аккумуляторов, и притом любого типа (!?), состоит в измерении их внутреннего сопротивления на переменном токе специальной формы. Хотя, правильнее, надо полагать, измерять надо не сопротивление а степень гармонических искажений тока под воздействием подводимого фиксированного напряжения (скажем, 0,2…0,5 В амплитудного значения) синусоидальной формы.
Ni-Mh в этом смысле проще в эксплуатации и по данным производителей выдерживают большее число циклов заряд/разряда.
Щелочной элемент с напряжением 1 В под нагрузкой (в амперах равной 1/10 полной ёмкости) считается полностью разряженным.
ЭДС полностью заряженного элемента Ni-Cd и Ni-Mh типов несколько различается. Для Ni-Cd элемента нормальным считается 1,2…1,25 В без нагрузки, в то время как для Ni-Mh элемента эта величина несколько выше — 1,25…1,35 В.
Нормальное время заряда Ni-Cd аккумуляторов около 10.12 часов, в то время, как Ni-Mh допускают ускоренную от 1/2 до 2.3 часов зарядку без каких-либо последствий. Правда, аномально быстрый ускоренный заряд (1/2…1.5 часа) допускают Ni-Mh аккумуляторы только отдельных производителей. Величина сообщаемого аккумулятору заряда примерно на 20…25% выше его номинальной ёмкости, причём меньшие значения относятся к аккумуляторам Ni-Cd, а большие — к аккумуляторам Ni-Mh типов.
Для заряда Ni-Mh аккумуляторов пригодны те же виды зарядных устройств, что и для Ni-Cd аккумуляторов. Однако использовать для Ni-Cd аккумуляторов зарядные устройства от Ni-Mh аккумуляторов нельзя, если последние рассчитаны на ускоренный заряд.
Промышленность выпускает три типа зарядных устройств для герметичных аккумуляторов типоразмеров AA и AAA. В простейших из них заряд осуществляется по времени 6.20 часов в зависимости от ёмкости аккумулятора. В более совершенных устройствах это время отсчитывается не по часам, а программируется вручную встроенным таймером. Наконец, самые совершенные устройства, увы, рассчитанные только на ускоренный заряд Ni-Mh аккумуляторов, контролируют не только ток и степень заряда, но ещё и температуру корпуса аккумулятора, что достаточно актуально для автономных герметичных источников питания. В качестве дополнительных в такие устройства обычно встраивается защита от переполюсовки и подключения неперезаряжаемых Mn-Zn (марганец-цинк) или Ag-Zn (серебро-цинк) элементов.
Практика показала, что при правильной эксплуатации элементы Ni-Cd типа обладают заведомо лучшей предсказуемостью характеристик и фактически выдерживают гораздо больше число циклов заряд/разряд, по сравнению с гарантируемым производителем.
Предварительно отобранные Ni-Cd элементы можно свободно объединять в последовательные батареи, заряжаемые как единое целое. Соединять последовательно Ni-Mh элементы также можно, но для предотвращения быстрого падения ёмкости батареи заряжать их приходится всё же индивидуально, что не слишком удобно. Возможно и параллельное соединение элементов одного типа в батарею. Некоторое ограничение для элементов Ni-Cd типа обусловлено выявленной их склонностью к внезапным отказам.
Как оказалось в Ni-Cd аккумуляторах герметичных конструкций иногда возникают внутренние короткие замыкания. Причиной таких замыканий, как и в Ag-Zn аккумуляторах, является рост дендритов в виде острых металлических «усов», прокалывающих разделяющий электроды сепаратор. Но, в отличие от Ag-Zn такие замыкания в Ni-Cd аккумуляторах невозможно «выжечь» кратковременным пропусканием тока значительной величины. Причём такой вид отказов для аккумуляторов Ni-Mh типа пока наблюдать не приходилось.
Свои недостатки имеют и аккумуляторы Ni-Mh типа. Помимо отмеченной их склонности к саморазряду удалось установить, что ток саморазряда зависит от множества преходящих факторов и крайне нестабилен в процессе эксплуатации. Даже через 5-6 заряд/разрядных циклов различие предварительно отобранных по значению ёмкости и току саморазряда Ni-Mh элементов становится слишком заметным.
В целом остаётся впечатление, что Ni-Cd аккумуляторы при грамотной эксплуатации обеспечивают всё же большую надёжность по сравнению с Ni-Mh, хотя многие с этим не согласятся.
Вызывает лишь удивление, что все без исключения производители мобильных телефонов снабжают свои устройства полностью автоматическими зарядными устройствами, прекращающими заряд при достижении батареи полной ёмкости. Правда, используются в этих аппаратах преимущественно дорогие Li-Ion (литий- ионные) и ещё более дорогие Li-polimer (литий-полимерные) аккумуляторы.
Вместе с тем, зарядные устройства мобильных аппаратов весьма доступны и стоят много дешевле «зарядников» для аккумуляторов AA и AAA типов. По- видимому, возможна и переделка их под Ni-Cd и Ni-Mh аккумуляторы, но соответствующие описания встречать не приходилось.
И, тем не менее, повод для оптимизма есть. Дело в том, что существуют некоторые модели «мобильников» от Siemens, штатный комплект питания которых состоит из трёх последовательно соединённых Ni-Cd элементов AA типа, допускающих замену на обычные элементы Mn-Zn системы (естественно, без подзарядки).
Поэтому возможно, что трёхвольтовые зарядные устройства мобильных телефонных аппаратов (в устаревших моделях использовались 5-вольтовые батареи) без всяких переделок можно применять и как автоматические зарядные устройства для батарей из трёх последовательно соединённых Ni-Cd или Ni-Mh элементов типов AA или AAA.
Вообще же, складывается впечатление, что различие типов зарядных устройств скорее влияет на удобство их использования и лишь во вторую очередь сказывается на эксплуатационных характеристиках заряжаемых аккумуляторов.
Приведённые выше разрозненные сведения по малогабаритным герметичным щелочным аккумуляторам Ni-Cd и Ni-Mh типа для удобства обозрения сведены в таблицу. Не упомянутая ранее технологическая воспроизводимость введена для оценки возможности подбора среди приобретённых в разное время аккумуляторов по близким характеристикам.
Сравнительная таблица параметров аккумуляторов