необходимые для жизни элементы условно называют дающими жизнь

Круговорот биогенных элементов

Среди них калий, кальций, магний (иногда натрий) относятся к группе макроэлементов, так как они необходимы в больших количествах (выражающихся в сотых долях сухого вещества); однако такие элементы, как железо, бор, цинк, медь, марганец, молибден, кобальт, анион хлора, относятся к микроэлементам и нужны лишь в малых количествах (выражающихся в миллионных долях сухого вещества).

На суше главным источником биогенных элементов (катионов) служит почва, которая получает их в процессе разрушения материнских пород. Катионы абсорбируются корнями, распределяются различными органами растений, накапливаются в листве, т.е. входят в корм растительноядных потребителей последующих порядков в цепи питания.

Минерализация погибших организмов возвращает биогенные катионы в почву, создается впечатление, что цикл способен продолжаться беспрерывно. Однако почва выщелачивается дождями, дождевые воды переносят катионы в систему подземного стока, а также и в поверхностный сток: в реки, моря, иногда в значительных количествах.

Различают круговороты газового типа с резервуарами неорганических соединений в атмосфере или океанах (N2, О2, СО2,Н2О) и круговороты осадочного типа с менее обширными резервуарами в земной коре (Р, Са, Fе).

Необходимые для жизни элементы и растворенные соли условно называют биогенными элементами (дающими жизнь), или питательными веществами. Среди биогенных элементов различают две группы: макротрофные вещества и микротрофные вещества.

Первые охватывают элементы, которые составляют химическую основу тканей живых организмов. Сюда относятся: углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.

Вторые включают в себя элементы и их соединения, также необходимые для существования живых систем, но в исключительно малых количествах. Такие вещества часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Хотя микротрофные элементы необходимы для организмов в очень малых количествах, их недостаток может сильно ограничить продуктивность, так же как и нехватка биогенных элементов.

Циркуляция биогенных элементов сопровождается обычно их химическими превращениями. Нитратный азот, например, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В процессах денитрификации и фиксации азота принимают участие различные механизмы, как биологические, так и химические.

Углерод, содержащийся в атмосфере в виде СО2, является одним из исходных компонентов для фотосинтеза, а затем вместе с органическим веществом потребляется консументами. При дыхании растений и животных, а также за счет редуцентов углерод в виде СО2 возвращается в атмосферу.

В отличие от азота и углерода резервуар фосфора находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами (образование гуано). Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

В отличие от энергии биогенные элементы могут использоваться неоднократно: круговорот их характерная черта. Другое отличие от энергии состоит в том, что запасы биогенных элементов непостоянны. Процесс связывания некоторой их части в виде живой биомассы снижает количество, остающееся в среде экосистемы.

Рассмотрим подробнее биогеохимические круговороты некоторых веществ. биогенный элемент круговорот

Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.

2. Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 1015 m, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды.

Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в ФРГ, Шри-Ланка и СССР). Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ. В форме диоксида углерода он входит в состав земной атмосферы, в которой на его долю приходится 0,046% массы.

Источник

Конспект лекции по дисциплине «Естествознание» на тему «Биосфера. Учение В.И.Вернадского о биосфере и ноосфере. Круговорот элементов в биосфере.»

Конспект лекции по теме:

Биосфера. Учение В.И.Вернадского о биосфере и ноосфере.

Круговорот элементов в биосфере.

1. Общие сведения о биосфере. В.И.Вернадский о биосфере.

2. Биологические циклы углерода, кислорода, азота, фосфора.

3. Глобальные проблемы биосферы.

1. Общие сведения о биосфере. В.И.Вернадский о биосфере.

Понятие «биосфера» в научную литературу введено в 1875 г. австрийским ученым-геологом Эдуардом Зюссом.

Биосфера включает в себя:

живое вещество, то есть совокупность всех живых организмов

(растения, животные, микроорганизмы);

биогенное вещество, то есть органо-минеральные или органические

продукты, созданные живым веществом (торф, каменный уголь, нефть);

биокосное вещество, созданное живыми организмами вместе с

неживой (косной) природой (водой, атмосферой, горными породами),—

Все компоненты биосферы тесно взаимодействуют между собой,

составляя целостную, сложно организованную систему. С возникновением жизни стало проявляться влияние живой материи на геологические процессы Земли. Деятельность живого вещества, привела к возникновению нового образования — биосферы, тесно взаимосвязанной единой системы геологических и биологических тел и процессов преобразования энергии и вещества.

Основные функции живого вещества:

В биосферу входят: нижняя часть атмосферы до озонового экрана,

вся гидросфера и верхняя часть литосферы.

Биосфера, возникнув и сформировавшись 1—2 млрд. лет назад,

находится в постоянном динамическом равновесии и развитии.

Эволюционный процесс сопровождался увеличением эффективности преобразования энергии и вещества биологическими системами: организмами, популяциями, сообществами.

В настоящее время человек стал главной силой, изменяющей процессы

в биосфере. Научно-технический прогресс значительно опередил наши

знания законов биосферы,то привело к нарушению биосферного

равновесия. Необходимо изучать законы природы, чтобы предотвратить ее

разрушение, найти пути разумного использования природных ресурсов.

2. Биологические циклы углерода, кислорода, азота, фосфора.

Целостность природных экосистем особенно отчетливо проявляется

при рассмотрении циркулирующих в них потоков вещества. Энергия доступна для живых организмов в форме солнечной радиации, которая может быть связана в процессе фотосинтеза. Расходуясь затем в виде химической энергии, она теряется, превращаясь в тепло. Вещество же может передаваться по замкнутым циклам, многократно циркулируя между организмами и окружающей средой. Круговые движения химических элементов называются биогеохимическими циклами. Необходимые для жизни элементы и растворенные соли условно

называют биогенными элементами (дающими жизнь), или питательными веществами. Среди биогенных элементов различают две группы:

макроэлементы и микроэлементы .

Первые охватывают элементы, которые составляют химическую

основу тканей живых организмов. Сюда относятся: углерод, водород,

кислород, азот, фосфор, калий, кальций, магний, сера.

Вторые включают в себя элементы и их соединения, также

необходимые для существования живых систем, но в очень малых количествах. Такие вещества называют микроэлементами . Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт.

Наибольшее значение для различных экосистем имеют 3 газа,

входящих в состав атмосферы: кислород, углекислый газ и азот.

1) Кислород необходим всем для дыхания. Под действием ультрафиолетовых лучей он превращался в озон. По мере накопления озона произошло образование озонового слоя в верхних слоях атмосферы. Озоновый слой, как экран, надежно защищает поверхность Земли от ультрафиолетовой радиации, гибельной для живых организмов. Кислород в биосфере вступает в реакцию с большим количеством органических и неорганических веществ, а также водород, соединяясь с которым, кислород образует воду.

2) Углекислый газ (диоксид углерода) используется в процессе фотосинтеза для образования органических веществ. Именно благодаря этому процессу замыкается круговорот углерода в биосфере. Как и кислород, углерод входит в состав почв, растений, животных, участвует в многообразных механизмах круговорота веществ в природе.

3) Азот — незаменимый биогенный элемент, поскольку он входит в состав белков и нуклеиновых кислот. Атмосфера — неисчерпаемый резервуар азота, однако основная часть живых организмов не может непосредственно использовать этот азот: он должен быть предварительно связан в виде химических соединений.

Хозяйственная деятельность человека , начинает оказывать весьма ощутимое влияние на процессы, происходящие в биосфере. До определенного уровня биосфера способна к саморегуляции, что позволяет свести к минимуму негативные последствия деятельности человека. Но существует предел, когда биосфера уже не в состоянии поддерживать равновесие.

1) « Парниковый эффект ». По данным ученых, за 80-е гг. средняя температура воздуха в северном полушарии повысилась по сравнению с концом 19 в., на 0,5-0,6 0 С. Ученые связывают повышение t 0 в первую очередь с увеличением содержания углекислого газа и аэрозолей в атмосфере. Это приводит к чрезмерному поглощению воздухом теплового излучения Земли.

Потепление климата может привести к интенсивному таянию ледников

и повышению уровня Мирового океана. Изменения, которые могут произойти вследствие этого, просто трудно предсказать.

2) Истощение озонового слоя . В последние годы учёные все с больше

отмечают истощение озонового слоя атмосферы, который является защитным экраном от ультрафиолетового излучения. Особенно быстро этот процесс происходит над полюсами планеты, где появились так называемые озоновые дыры. Опасность заключается в том, что ультрафиолетовое излучение губительно для живых организмов.

3) Массовое сведение лесов – одна из наиболее важных глобальных

проблем современности. Леса поглощают атмосферные загрязнения антропогенного происхождения, защищают почву от эрозии, регулируют нормальный сток поверхностных вод, препятствуют снижению уровня грунтовых вод и заливанию рек, каналов и водохранилищ.

Уменьшение площади лесов нарушает процесс круговорота кислорода и углерода в биосфере. Сведение лесов влечет за собой гибель их богатейших флоры и фауны.

4) Отходы производства . Серьезной экологической проблемой стали

отходы промышленного и сельскохозяйственного производства. В настоящее

время делаются попытки уменьшить количество отходов, загрязняющих

окружающую среду. С этой целью разрабатываются и устанавливаются

сложнейшие фильтры, строятся дорогостоящие очистные сооружения и отстойники.

Очевидно, решение проблемы возможно при разработке и внедрении в

производство совершенно новых, замкнутых технологий.

5) Сельское хозяйство . В сельскохозяйственном производстве важно

строго соблюдать правила агротехники и следить за нормами внесения

удобрений. Так как химические средства борьбы с вредителями и сорняками

приводят к существенным нарушениям экологического равновесия, ведутся

поиски путей преодоления этого кризиса в нескольких направлениях.

6) Производство энергии . Очень сложные экологические проблемы

связаны с получением энергии на теплоэлектроэнергетических предприятиях. Потребность в энергии – одна из основных жизненных потребностей человека. Энергия нужна не только для нормальной деятельности современного сложно организованного человеческого общества, но и для простого физического существования каждого человеческого организма.

ГЭС на первый взгляд являются экологически чистыми предприятиями, не наносящими вреда природе. Но теперь стало ясно, что этим строительством нанесен урон и природе, и людям.

Во-первых, строительство плотин на больших равнинных реках приводят к затоплению огромных территорий под водохранилища. Это связано с переселением большого числа людей и потерей пастбищных угодий.

Во-вторых, перегораживая реку, плотина создает непреодолимые

препятствия на путях миграций проходных и полупроходных рыб,

поднимающихся на нерест в верховьях рек.

В-третьих, вода в хранилищах застаивается, ее проточность

замедляется, что сказывается на жизни всех живых существ, обитающих в

В- четвертых, местное повышение воды влияет на грунтовые воды.

Приводит к затоплению, заболачиванию берегов.

АЭС являются с экологической точки зрения, наиболее чистыми

энергетическими комплексами. Опасность радиоактивных отходов осознается. Поэтому эксплутационные нормы атомных электростанций предусматривают

Уголь обладает небольшой природной радиоактивностью, поэтому

суммарные радиоактивные выбросы ТЭС получаются выше АЭС.

АЭС таят в себе большую опасность в случае аварий реакторов.

Вопросы для контроля

1.Основные компоненты биосферы.

2. Какие функции в биосфере выполняет живое вещество.

3. Чем отличаются круговорот веществ и поток энергии?

4. Что такое парниковый эффект, каковы его причины.

5. Каковы причины образования озоновых дыр?

6. Как осуществляется круговорот азота в природе?

7. Какие процессы обеспечивают круговорот кислорода в природе?

8. Какое отрицательное воздействие на среду оказывают ТЭС, ГЭС, АЭС?

9. Что такое ноосфера?

10. Значение трудов В.И.Вернадского.

1. Арустамов Э.А. Природопользование. – М.: Дашков и К, 2005

2.Гальперин М.В. Экологические основы природопользования.- Ростов н/Д:

3.Денисов В.В., Денисова И.А. Экология: 100 экзаменационных ответов.-

М.:ИКЦ «Март», Ростов__2003

4. Криксунов Е.А. Экология. – М.: Дрофа, 2003

Источник

Биогеохимические циклы углерода, азота, фосфора

Биогеохимический цикл углерода

Биогенные элементы благодаря участию в круговороте могут использоваться неоднократно. Запасы биогенных элементов непостоянны: некоторая их часть связана и входит в состав живой биомассы, что снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы в конечном счете не разлагались, запас питательных веществ исчерпался бы и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофных организмов, в первую очередь редуцентов, — решающий фактор поддержания круговорота биогенных элементов и сохранения жизни.

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

Глобальный круговорот углерода. Цифры — миллионы миллиардов грамм (10 15 г); для фондов — в среднем, для потоков — в год

Рассмотрение характеристик БГХ-циклов нескольких важнейших элементов следует начать, естественно, с углерода. Углерод является основой органических соединений, и поэтому цикл углерода имеет особое значение для живых организмов. Важнейшей особенностью этого цикла является наличие запасов CO2, углекислого газа, в атмосфере, откуда его могут черпать живые организмы. Перемещение углерода через живые организмы тесно связано с перемещением иных биогенов. Например, соотношение потоков углерода и азота через живое вещество составляет примерно 6:1 (шесть атомов углерода на один атом азота), а соотношение потоков углерода и фосфора — примерно 100:1. Естественно, это отражает соотношения самих элементов в составе живого вещества.

Промышленные выбросы угарного газа (CO) в атмосферу равны его естественному поступлению или даже превышают его.

Биогеохимический цикл азота

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

Биогеохимический цикл фосфора

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

Некоторые организмы могут играть исключительно важную роль в круговороте фосфора. Моллюски, например, фильтруя воду и извлекая оттуда мелкие организмы, их остатки, захватывают и удерживают большое количество фосфора. Несмотря на то что роль моллюсков в пищевых цепях прибрежных морских сообществ невелика (они не образуют плотных скоплений с высокой биомассой, их пищевая ценность невысока), эти организмы имеют первостепенное значение как фактор, позволяющий сохранить плодородие той зоны моря, где они обитают. Популяции моллюсков подобны природным аккумуляторам, только вместо электроэнергии они накапливают и удерживают фосфор, необходимый для поддержания жизни в прибрежных зонах морей. Иначе говоря, популяция этих организмов более важна для экосистемы как “посредник” в обмене веществом между живой и неживой природой (сообществом и биотопом).
Этот пример — хорошая иллюстрация того, что ценность вида в природе не всегда зависит от таких показателей, как его обилие или сырьевые качества. Эта ценность может проявляться лишь косвенно и не всегда обнаруживается при поверхностном исследовании.

Источник

Биогеохимические циклы. Круговорот углерода

Решение задания

Обмен химических элементов между живыми организмами и неорганической средой называют биогеохимическим круговоротом, или биогеохимическим циклом. Необходимые для жизни элементы условно называют биогенными (дающими жизнь) элементами, или питательными веществами. Различают две группы питательных веществ:
К макротрофным веществам относятся элементы, которые составляют химическую основу тканей живых организмов. Это углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.
К микротрофным относят элементы, содержание которых в живых организмах незначительное. Их часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Недостаток микроэлементов может оказывать сильное влияние на живые организмы (в частности, ограничивать рост растений), так же как и нехватка биогенных элементов. Биогеохимический цикл углерода. Естественным источником углерода, используемого растениями для синтеза органического вещества, служит углекислый газ, входящий в состав атмосферы или находящийся в растворённом состоянии в воде. В процессе фотосинтеза углекислый газ превращается растениями в органическое вещество, служащее пищей животным.
Дыхание, брожение и сгорание топлива возвращают углекислый газ в атмосферу.
Запасы углерода в атмосфере оцениваются в 700 млрд т, а в гидросфере — в 50 000 млрд т. Согласно расчётам, за год в результате фотосинтеза прирост растительной массы на суше и в воде равен соответственно 50 и 180 млрд т.

Просмотров: 554
Книга: Ответы на билеты по биологии для 11 класса, Узбекистан 2021
Билет: №3

Источник

Круговорот веществ в биосфере

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

Циркуляция химических элементов (веществ) в биосфере называется биогеохимическими циклами. Живые организмы играют в этих процессах решающую роль. Необходимые для жизни элементы условно называют биогенными (дающими жизнь) элементами, или питательными веществами. Различают две группы питательных веществ.

К макротрофным относятся элементы, которые составляют химическую основу тканей живых организмов. Это углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.

Микротрофные вещества включают в себя элементы и их соединения, также необходимые для существования живых систем, но в исключительно малых количествах. Такие вещества часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Недостаток микроэлементов может оказывать сильное влияние на живые организмы (в частности, ограничивать рост растений), так же как и нехватка биогенных элементов.

Циркуляция биогенных элементов обычно сопровождается их химическими превращениями. Азотфиксирующие бактерии, клубеньковые и цианобактерии переводят свободный азот в нитраты. Нитратный азот растениями превращается в белковый, затем животный белок переходит в мочевину. Аммонифицирующие бактерии мочевину превращают в аммиак, который или вновь превращается в нитратную форму (нитрифицирующими бактериями) или с помощью денитрифицирующих бактерий нитраты превращаются в свободный азот, который возвращается в атмосферу. В биохимическом цикле азота действуют различные механизмы, как биологические, так и химические. Схема циркуляции азота в биосфере представлена на рисунке 68.

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

В отличие от энергии биогенные элементы благодаря участию в круговороте могут использоваться неоднократно. Запасы биогенных элементов непостоянны: некоторая их часть связана и входит в состав живой биомассы, что снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы в конечном счете не разлагались, запас питательных веществ исчерпался бы и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофных организмов, в первую очередь редуцентов, — решающий фактор поддержания круговорота биогенных элементов и сохранения жизни.

Рассмотрим биогеохимический цикл углерода. Естественным источником углерода, используемого растениями для синтеза органического вещества, служит углекислота, входящая в состав атмосферы или находящаяся в растворенном состоянии в воде. Основные звенья круговорота углерода показаны на рисунке 69. В процессе фотосинтеза углекислота превращается в органическое вещество, служащее пищей животным. Дыхание, брожение и сгорание топлива возвращают углекислоту в атмосферу. Запасы углерода в атмосфере оцениваются в 700 млрд т, а в гидросфере — в 50 000 млрд т. Согласно расчетам, за год в результате фотосинтеза прирост растительной массы на суше и в воде равен соответственно 50 и 180 млрд т.

Одним из наиболее простых циклов является цикл фосфора (рис. 70). Основные запасы фосфора содержат различные горные породы, которые постепенно (в результате разрушения и эрозии) отдают свои фосфаты наземным экосистемам. Фосфаты потребляют растения и используют их для синтеза органических веществ. С выделениями животных и при разложении органики микроорганизмами фосфаты возвращаются в почву и затем снова используются растениями. Помимо этого часть фосфатов выносится с током воды в море. Это обеспечивает развитие фитопланктона и всех пищевых цепей с участием фосфора. Часть фосфора, содержащаяся в морской воде, может вновь вернуться на сушу в виде гуано — экскрементов морских птиц. Там, где они образуют большие колонии, гуано добывают как очень ценное удобрение.

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

Некоторые организмы могут играть исключительно важную роль в круговороте фосфора. Моллюски, например, фильтруя воду и извлекая оттуда мелкие организмы, их остатки, захватывают и удерживают большое количество фосфора. Несмотря на то, что роль моллюсков в пищевых цепях прибрежных морских сообществ невелика (они не образуют плотных скоплений с высокой биомассой, их пищевая ценность невысока), эти организмы имеют первостепенное значение как фактор, позволяющий сохранить плодородие той зоны моря, где они обитают.

необходимые для жизни элементы условно называют дающими жизнь. Смотреть фото необходимые для жизни элементы условно называют дающими жизнь. Смотреть картинку необходимые для жизни элементы условно называют дающими жизнь. Картинка про необходимые для жизни элементы условно называют дающими жизнь. Фото необходимые для жизни элементы условно называют дающими жизнь

Популяции моллюсков подобны природным аккумуляторам, только вместо электроэнергии они накапливают и удерживают фосфор, необходимый для поддержания жизни в прибрежных зонах морей.

Иначе говоря, популяция этих организмов более важна для экосистемы как «посредник» в обмене веществом между живой и неживой природой (сообществом и биотопом). Этот пример — хорошая иллюстрация того, что ценность вида в природе не всегда зависит от таких показателей, как его обилие или сырьевые качества. Эта ценность может проявляться лишь косвенно и не всегда обнаруживается при поверхностном исследовании.

Письменная работа с карточками на 10 мин:

1. Круговорот азота в природе.

2. Круговорот углерода в природе.

3. Круговорот фосфора в природе.

Карточка у доски:

1. Какие организмы способны фиксировать атмосферный азот?

2. Какие организмы мочевину превращают в аммиак?

3. Какие организмы аммиак превращают в нитраты?

4. Каково значение денитрифицирующих бактерий?

5. Как углерод попадает из неживой природы в живые организмы?

6. Как углерод возвращается из живых организмов в неживую природу?

7. Как фосфор попадает в живые организмы?

8. Как фосфор возвращается в неживую природу?

9. Какой процесс обеспечивает пополнение кислорода в атмосфере?

Тестовое задание:

1. Организмы, способные фиксировать атмосферный азот:

3. Клубеньковые бактерии.

4. Некоторые свободноживущие бактерии.

2. Организмы, превращающие мочевину в аммиак:

1. Нитрифицирующие бактерии.

2. Клубеньковые бактерии.

3. Аммонифицирующие бактерии.

4. Денитрифицирующие бактерии.

3. Организмы, превращающие аммиак в нитратную форму:

1. Нитрифицирующие бактерии.

2. Клубеньковые бактерии.

3. Аммонифицирующие бактерии.

4. Денитрифицирующие бактерии.

4. Организмы, возвращающие азот в атмосферу:

1. Нитрифицирующие бактерии.

2. Клубеньковые бактерии.

3. Аммонифицирующие бактерии.

4. Денитрифицирующие бактерии.

5. Организмы, в основном захватывающие неорганическую форму углерода:

**6. Организмы, возвращающие углерод в неживую природу при дыхании:

7. Организмы, в основном захватывающие неорганические фосфаты:

**8. Как фосфор возвращается неживую природу:

1. С выделениями животных.

2. С помощью бактерий гниения.

3. Денитрифицирующими бактериями.

4. Аммонифицирующими бактериями.

9. Какой процесс обеспечивает пополнение кислорода в атмосфере:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *