найдена жизнь на марсе
Возможно, сорок лет назад на Марсе все-таки нашли жизнь в закладки 4
В 1976 году два посадочных аппарата «Викинг» стали первыми американскими аппаратами с Земли, которые сели на Марс. Они сделали первые высококачественные снимки планеты, изучили географические особенности планеты и проанализировали геологический состав атмосферы и поверхности. Но самое интересное, что они также провели эксперименты в поисках микробной жизни в марсианской почве.
И никому не сказали!
Есть ли жизнь на Марсе?
В целом эти эксперименты по обнаружению жизни произвели неожиданные и противоречивые результаты. Один из экспериментов — Labeled Release (LR) — показал, что марсианский грунт дает положительный результат на метаболизм — на Земле из этого почти наверняка предположили бы наличие жизни. Но никаких следов органического материала обнаружено не было, а значит и жизни. Откуда мог взяться метаболизм, если не было никакой органики?
С момента проведения этих экспериментов прошло сорок лет, но ученые до сих пор не могут сойтись во мнении. Общий консенсус состоит в том, что посадочные модули «Викинг» не нашли убедительных доказательств жизни на Марсе. Тем не менее небольшая группа ученых утверждает, что результаты «Викинга» говорят в пользу жизни на Марсе.
Одним из видных сторонников этой точки зрения является Гилберт Левин, проводивший эксперимент LR. Поначалу Левин считал результаты LR неясными и утверждал, что результаты согласуются с биологией. Но в 1997 году, после множества дальнейших экспериментов на Земле и вместе с новыми открытиями на Марсе, а также обнаружения микроорганизмов, живущих на Земле в условиях, похожих на марсианские, он и его коллега Патрисия Страат утверждают, что марсианские результаты лучше всего объясняются живыми организмами.
Фото поверхности Марса, сделанное «Викингом»
Не так давно Левин и Страат опубликовали большую статью в журнале Astrobiology, в которой пересмотрели результаты эксперимента LR «Викинга» в свете последних находок на Марсе и недавних предположений, что неорганические вещества могут имитировать наблюдаемые метаболические процессы. Они заявили, что ни один из предложенных процессов неживых веществ не объясняет результаты «Викинга», и марсианские микробы по-прежнему остаются лучшим объяснением результатов.
Как был устроен эксперимент Labeled Release
В ходе эксперимента LR оба аппарата «Викинг-1» и «Викинг-2» собрали образцы марсианского грунта, ввели в них каплю разбавленного раствора питательных веществ, а затем наблюдали за воздухом над почвой, ожидая увидеть признаки метаболических побочных продуктов. Поскольку питательные вещества были помечены радиоактивным углеродом-14, если микроорганизмы в почве метаболизировали питательные вещества, они должны были произвести радиоактивные побочные продукты вроде радиоактивного диоксида углерода или метана.
Кроме того, казалось, что источник метаболизма был относительно хрупким, поскольку метаболическая активность значительно снижалась при нагревании образца до 50 градусов и полностью отсутствовала при хранении почвы в темноте на протяжении двух месяцев при температуре в 10 градусов.
Левин и Страат считают, что эти результаты уверенно говорят о том, что в марсианской почве была жизнь.
Небиологическая жизнь на Марсе
С тех пор, как были проведены эксперименты, ученые занимались поиском других видов небиологических химических веществ, которые могли бы произвести идентичные результаты.
В своей новой работе Левин и Страат рассматривают некоторые из этих предложений. Один из возможных кандидатов — это формиат, компонент муравьиной кислоты, встречающийся на Земле в природных условиях. В 2003 году эксперимент по типу LR показал, что формиат в образце почвы из пустыни Атакама в Южной Америке дал положительный результат, несмотря на то что почва там не содержит никаких микроорганизмов. Тем не менее в этом исследовании не проводился стерильный контроль, а концентрация формиата в пустыне Атакама, вероятно, намного выше, чем на Марсе.
Другой потенциальный кандидат — это перхлорат или один из продуктов его распада. В 2009 году миссия Phoenix на Марсе обнаружила перхлораты в марсианской почве. Хотя перхлораты могли бы дать положительный результат, поскольку производят газ при взаимодействии с некоторыми аминокислотами, они не разрушаются при температуре 160 градусов и будут давать положительные результаты даже после стерильного контроля.
Исследование от 2013 года позволило предположить, что космические лучи и солнечное излучение может приводить к тому, что перхлораты распадаются на гипохлорит, который должен давать положительный результат и, в отличие от перхлоратов, разрушается при нагревании до 160 градусов. По этим причинам гипохлорит является лучшим кандидатом, объясняющим результаты LR.
Тем не менее Левин и Страат пишут, что гипохлорит не испытывали при температуре 50 градусов (при которой активность марсианской почвы значительно снижалась) или после длительного хранения в темноте (что произвело отрицательный результат для марсианских образцов). Таким образом, на данный момент ни один небиологический агент не удовлетворил все результаты LR.
Кто живет на Марсе?
Точно не Мэтт Деймон
Сегодня ученые знают гораздо больше о Марсе, чем 40 лет назад. Одно из самых больших открытий случилось в 2014 году, когда лаборатория марсохода «Кьюриосити» впервые обнаружила органические молекулы на Марсе.
Открытие органического вещества на Марсе поднимает вопрос о том, почему эксперимент «Викинга» не обнаружил органическую материю в 1976 году. Как объясняет Левин, есть несколько возможных причин, объясняющих отрицательные результаты «Викинга».
«Мы давно указывали на проблему с газовым хромато-масс-спектрометром «Викинга» (хромас), говорит Левин. «Даже его экспериментатор доктор Клаус Биман часто подчеркивал, что хромас не был экспериментом по обнаружению жизни. Ему нужен был минимум один миллион микробных клеток, чтобы найти какую-либо органическую материю. В дополнение к этому инструмент часто подводил во время испытаний на Земле. Позже было заявлено, что перхлорат в почве уничтожил органическую материю. Тем не менее я с осторожностью отношусь к этому заявлению, поскольку нет никаких свидетельств перхлората в местах высадки «Викингов».
Кто скрывает, что на Марсе была жизнь?
Опубликовать работу о жизни на Марсе — это, конечно, не то, что опубликовать какое-нибудь типичное исследование. На протяжении многих лет, исследования Левина включали низкокалорийные подсластители, фармацевтические препараты, безопасные пестициды, а также процессы очистки сточных вод, среди прочего. Потребовалось порядка 20 лет, чтобы Левин и Страат опубликовали документ на тему пересмотра результатов эксперимента LR «Викинга».
«С тех пор, как я впервые пришел к выводу, что LR нашел жизнь (в 1997 году), крупные журналы отказывались принимать наши публикации», рассказал Левин Phys.org. «Я и мой соэкспериментатор, доктор Патрисия Энн Страат, публиковались в основном в разделе астробиологии в SPIE Proceedings после показа работы на ежегодных конвенциях SPIE. На заседании Канадского космического агентства я встретил доктора Шерри Кэди, редактора Astrobiology. Она предложила мне представить документ для экспертной оценки. Я это сделал, и его сразу же отвергли. Вместе с Пэт мы решили подготовить работу, которая выдержит максимальную научную критику. Потребовались годы бесчисленных пересмотров и внесений правок в ответ на мириады замечаний рецензентов, но мы упорно шли к своей цели. Мы думаем, что та публикация была так тщательно вылизана, что к ней уже невозможно придраться».
Посадочный модуль «Викинга»
Что изменится после обнаружения жизни на Марсе?
Левин и Страат думают, что допущение наличия жизни на Марсе может серьезно повлиять будущие исследования.
«Кажется разумным, что научное сообщество поддерживает биологию в качестве подходящего объяснения экспериментальным результатам LR», пишут ученые. «Кажется неизбежным, что астронавты однажды будут исследовать Марс. Ради их здоровья и безопасности, биологию стоит считать основным возможным объяснением результатов LR».
Левин и Страат предполагают, что тщательно разработанные эксперименты могут помочь ответить на вопрос о существовании жизни на Марсе. В частности, эксперименты LR-типа могут ответить на вопросы биологического или химического происхождения метаболизма. Также важно продолжать поиск органических молекул вроде аминокислот, простых углеводородов, липидов, белков и ДНК. Дальнейшие эксперименты могут позволить изучить марсианскую почву под микроскопом.
И все же все будущие эксперименты будут иметь неизбежный недостаток: возможное загрязнение, оставленное предыдущими спускаемыми аппаратами. В этом плане у «Викингов» была уникальная возможность исследовать девственно чистый Марс.
Нас обманывали 40 лет. Учёный NASA рассказал, как нашли жизнь на Марсе
Его зовут Гилберт Левин, сейчас ему 69. А когда было 26, он был главным исследователем марсианской поверхности. По крайней мере, в США.
Фото © Getty Images
Не знаем как на Марсе, но на Земле жизнь — интересная штука. К примеру, открытие космического масштаба может совершить вовсе никакой не астроном. Гилберт Левин изначально вообще-то не интересовался никакими планетами, кроме своей родной. Он получил учёную степень по инженерии окружающей среды (так и называется профессия — Environmental engineering), работал в Департаменте здравоохранения, занимался контролем за загрязнением воздуха.
Однажды изобрёл уникальный метод проверять воду, еду и вообще всё на наличие вредных микробов — радиоизотопный: надо положить в проверяемую среду немного радиоактивных соединений и посмотреть, что будет. Если имеются искомые бактерии, то они будут поедать эти соединения и выделять радиоактивный газ, что непременно будет зафиксировано. Это ноу-хау и оказалось космическим. Дело в том, что оно позволяет искать не только какие-то именно болезнетворные микробы, но и микробы вообще. В NASA очень заинтересовались и пригласили молодого учёного к себе. Сказали, что есть мысль проверить на стерильность… Марс.
И вот талантливый инженер уже готовит знаменитых «Викингов» к решению вопроса века. Первый аппарат — Viking 1 — сел на Красной планете 20 июля 1976 года. Viking 2 последовал за ним 3 сентября того же года. Надо сказать, они в разных местах были: один на равнине Хриса, это западное полушарие, а второй — уже на равнине Утопия, гораздо правее и севернее.
Оба провели эксперимент доктора Левина: положили на марсианский грунт, так сказать, пищу для потенциальных бактерий — органику, помеченную природным радиоактивным изотопом углеродом-14. То есть, ежели там кто-то есть, он обязательно проглотит наживку и начнётся метаболизм — обмен веществ. Первый Viking подсовывал «еду» на освещённое солнцем место, второй — в тенёк, под камень. Такие манипуляции провели несколько раз. И видите ли, дорогие и многоуважаемые читатели, какая ситуация. Результаты-то, как бы это сказать… Положительные. В обоих местах. Четыре из шести первых тестов показали, что метаболизм пошёл.
Но сенсации не получилось. Опять-таки очень интересно: и один, и другой «Викинг» снова закидывали ту же удочку через неделю — и ничего. Поэтому в научном сообществе пожали плечами и сказали: ну, это, наверное, какой-нибудь химический процесс был, не биологический. В двух разных местах.
Проходит лет двадцать. К тому времени на Марсе побывал Mars Pathfinder, и он показал, что климат на Красной планете когда-то был намного лучше, то есть более тёплый и влажный. А на Земле меж тем нашли «чёрных курильщиков» — гидротермальные источники, вокруг которых микроорганизмы прекрасно себя чувствуют в совершенно немыслимых условиях. Левин в соавторстве с ещё одним исследователем — Барри Дигрегорио — издаёт книгу «Марс: живая планета». Учёные настаивают, что все возможные химические варианты на самом деле не так убедительны. И мир опять встретил это с недоверием.
Через несколько лет на Марс прилетает Opportunity и присылает, к примеру, вот такой снимок. Обратите внимание — это всё-таки не какой-нибудь там паранормальный сайт с фейковыми историями, это официальный сайт Mars Exploration rovers с эмблемой NASA, и в адресной строке значится nasa.gov. То есть это вполне чинный и благородный источник. 2004 год. «Сол» 182. Это значит, 182-й день работы марсохода на поверхности.
Подобное аппарат запечатлел и в другие «солы». В СМИ эти шарики сравнили с грибами дождевиками, но в NASA предпочли ягоды, а именно — чернику. Правда, только для запоминающейся ассоциации, потому что на самом деле, как уверяют в космическом агентстве, этот урожай состоит из минерала под названием гематит, или красный железняк. Это разновидность железной руды.
Эти рыхлые шарики, богатые гематитом, размером с пулю для пневматического пистолета, внедряются в марсианскую скалу, как черника в кексе, и со временем высвобождаются в результате эрозии
Подпись к снимку, опубликованному NASA
Ну хорошо, а как вам, к примеру, такое? Это уже Curiosity и 2016 год. Что, тоже гематит какой-то? Или у марсохода шуруп открутился?
Стоит ещё, пожалуй, напомнить о марсианских нашлёпках, очень похожих на земные строматолиты — это такие своеобразные постройки, которые сооружают цианобактерии.
Вкратце мы имеем: положительные результаты широко используемого микробиологического теста, подтверждения по итогам контрольных исследований, совпадение результатов в двух местах посадки «Викингов», провал попыток найти не биологическое объяснение
Гилберт Левин, главный исследователь программы «Викинг»
Возможно, сорок лет назад на Марсе все-таки нашли жизнь
В 1976 году два посадочных аппарата «Викинг» стали первыми американскими аппаратами с Земли, которые сели на Марс. Они сделали первые высококачественные снимки планеты, изучили географические особенности планеты и проанализировали геологический состав атмосферы и поверхности. Но самое интересное, что они также провели эксперименты в поисках микробной жизни в марсианской почве.
И никому не сказали!
Есть ли жизнь на Марсе?
В целом эти эксперименты по обнаружению жизни произвели неожиданные и противоречивые результаты. Один из экспериментов — Labeled Release (LR) — показал, что марсианский грунт дает положительный результат на метаболизм — на Земле из этого почти наверняка предположили бы наличие жизни. Но никаких следов органического материала обнаружено не было, а значит и жизни. Откуда мог взяться метаболизм, если не было никакой органики?
С момента проведения этих экспериментов прошло сорок лет, но ученые до сих пор не могут сойтись во мнении. Общий консенсус состоит в том, что посадочные модули «Викинг» не нашли убедительных доказательств жизни на Марсе. Тем не менее небольшая группа ученых утверждает, что результаты «Викинга» говорят в пользу жизни на Марсе.
Одним из видных сторонников этой точки зрения является Гилберт Левин, проводивший эксперимент LR. Поначалу Левин считал результаты LR неясными и утверждал, что результаты согласуются с биологией. Но в 1997 году, после множества дальнейших экспериментов на Земле и вместе с новыми открытиями на Марсе, а также обнаружения микроорганизмов, живущих на Земле в условиях, похожих на марсианские, он и его коллега Патрисия Страат утверждают, что марсианские результаты лучше всего объясняются живыми организмами.
Фото поверхности Марса, сделанное «Викингом»
Не так давно Левин и Страат опубликовали большую статью в журнале Astrobiology, в которой пересмотрели результаты эксперимента LR «Викинга» в свете последних находок на Марсе и недавних предположений, что неорганические вещества могут имитировать наблюдаемые метаболические процессы. Они заявили, что ни один из предложенных процессов неживых веществ не объясняет результаты «Викинга», и марсианские микробы по-прежнему остаются лучшим объяснением результатов.
Как был устроен эксперимент Labeled Release
В ходе эксперимента LR оба аппарата «Викинг-1» и «Викинг-2» собрали образцы марсианского грунта, ввели в них каплю разбавленного раствора питательных веществ, а затем наблюдали за воздухом над почвой, ожидая увидеть признаки метаболических побочных продуктов. Поскольку питательные вещества были помечены радиоактивным углеродом-14, если микроорганизмы в почве метаболизировали питательные вещества, они должны были произвести радиоактивные побочные продукты вроде радиоактивного диоксида углерода или метана.
Кроме того, казалось, что источник метаболизма был относительно хрупким, поскольку метаболическая активность значительно снижалась при нагревании образца до 50 градусов и полностью отсутствовала при хранении почвы в темноте на протяжении двух месяцев при температуре в 10 градусов.
Левин и Страат считают, что эти результаты уверенно говорят о том, что в марсианской почве была жизнь.
Небиологическая жизнь на Марсе
С тех пор, как были проведены эксперименты, ученые занимались поиском других видов небиологических химических веществ, которые могли бы произвести идентичные результаты.
В своей новой работе Левин и Страат рассматривают некоторые из этих предложений. Один из возможных кандидатов — это формиат, компонент муравьиной кислоты, встречающийся на Земле в природных условиях. В 2003 году эксперимент по типу LR показал, что формиат в образце почвы из пустыни Атакама в Южной Америке дал положительный результат, несмотря на то что почва там не содержит никаких микроорганизмов. Тем не менее в этом исследовании не проводился стерильный контроль, а концентрация формиата в пустыне Атакама, вероятно, намного выше, чем на Марсе.
Другой потенциальный кандидат — это перхлорат или один из продуктов его распада. В 2009 году миссия Phoenix на Марсе обнаружила перхлораты в марсианской почве. Хотя перхлораты могли бы дать положительный результат, поскольку производят газ при взаимодействии с некоторыми аминокислотами, они не разрушаются при температуре 160 градусов и будут давать положительные результаты даже после стерильного контроля.
Исследование от 2013 года позволило предположить, что космические лучи и солнечное излучение может приводить к тому, что перхлораты распадаются на гипохлорит, который должен давать положительный результат и, в отличие от перхлоратов, разрушается при нагревании до 160 градусов. По этим причинам гипохлорит является лучшим кандидатом, объясняющим результаты LR.
Тем не менее Левин и Страат пишут, что гипохлорит не испытывали при температуре 50 градусов (при которой активность марсианской почвы значительно снижалась) или после длительного хранения в темноте (что произвело отрицательный результат для марсианских образцов). Таким образом, на данный момент ни один небиологический агент не удовлетворил все результаты LR.
Кто живет на Марсе?
Точно не Мэтт Деймон
Сегодня ученые знают гораздо больше о Марсе, чем 40 лет назад. Одно из самых больших открытий случилось в 2014 году, когда лаборатория марсохода «Кьюриосити» впервые обнаружила органические молекулы на Марсе.
Открытие органического вещества на Марсе поднимает вопрос о том, почему эксперимент «Викинга» не обнаружил органическую материю в 1976 году. Как объясняет Левин, есть несколько возможных причин, объясняющих отрицательные результаты «Викинга».
«Мы давно указывали на проблему с газовым хромато-масс-спектрометром «Викинга» (хромас), говорит Левин. «Даже его экспериментатор доктор Клаус Биман часто подчеркивал, что хромас не был экспериментом по обнаружению жизни. Ему нужен был минимум один миллион микробных клеток, чтобы найти какую-либо органическую материю. В дополнение к этому инструмент часто подводил во время испытаний на Земле. Позже было заявлено, что перхлорат в почве уничтожил органическую материю. Тем не менее я с осторожностью отношусь к этому заявлению, поскольку нет никаких свидетельств перхлората в местах высадки «Викингов».
Кто скрывает, что на Марсе была жизнь?
Опубликовать работу о жизни на Марсе — это, конечно, не то, что опубликовать какое-нибудь типичное исследование. На протяжении многих лет, исследования Левина включали низкокалорийные подсластители, фармацевтические препараты, безопасные пестициды, а также процессы очистки сточных вод, среди прочего. Потребовалось порядка 20 лет, чтобы Левин и Страат опубликовали документ на тему пересмотра результатов эксперимента LR «Викинга».
«С тех пор, как я впервые пришел к выводу, что LR нашел жизнь (в 1997 году), крупные журналы отказывались принимать наши публикации», рассказал Левин Phys.org. «Я и мой соэкспериментатор, доктор Патрисия Энн Страат, публиковались в основном в разделе астробиологии в SPIE Proceedings после показа работы на ежегодных конвенциях SPIE. На заседании Канадского космического агентства я встретил доктора Шерри Кэди, редактора Astrobiology. Она предложила мне представить документ для экспертной оценки. Я это сделал, и его сразу же отвергли. Вместе с Пэт мы решили подготовить работу, которая выдержит максимальную научную критику. Потребовались годы бесчисленных пересмотров и внесений правок в ответ на мириады замечаний рецензентов, но мы упорно шли к своей цели. Мы думаем, что та публикация была так тщательно вылизана, что к ней уже невозможно придраться».
Посадочный модуль «Викинга»
Что изменится после обнаружения жизни на Марсе?
Левин и Страат думают, что допущение наличия жизни на Марсе может серьезно повлиять будущие исследования.
«Кажется разумным, что научное сообщество поддерживает биологию в качестве подходящего объяснения экспериментальным результатам LR», пишут ученые. «Кажется неизбежным, что астронавты однажды будут исследовать Марс. Ради их здоровья и безопасности, биологию стоит считать основным возможным объяснением результатов LR».
Левин и Страат предполагают, что тщательно разработанные эксперименты могут помочь ответить на вопрос о существовании жизни на Марсе. В частности, эксперименты LR-типа могут ответить на вопросы биологического или химического происхождения метаболизма. Также важно продолжать поиск органических молекул вроде аминокислот, простых углеводородов, липидов, белков и ДНК. Дальнейшие эксперименты могут позволить изучить марсианскую почву под микроскопом.
И все же все будущие эксперименты будут иметь неизбежный недостаток: возможное загрязнение, оставленное предыдущими спускаемыми аппаратами. В этом плане у «Викингов» была уникальная возможность исследовать девственно чистый Марс.
Все за сегодня
Политика
Экономика
Наука
Война и ВПК
Общество
ИноБлоги
Подкасты
Мультимедиа
Наука
Wired (США): ученые «заглянули» внутрь Марса, и вот что они там обнаружили
Аппараты InSight и Perseverance отправляют на Землю беспрецедентные данные обо всем, начиная с марсотрясений и кончая информацией о внутренних слоях Красной планеты.
Если люди на Земле ведут напряженную борьбу с пандемией covid-19, страдают от рекордной жары и пытаются понять, как сделать так, чтобы у них не закончилась вода, то наши космические аппараты на Марсе живут намного спокойнее. (Помогает и то, что им не надо дышать.) Припарковавшись на марсианской поверхности, спускаемый аппарат «Инсайт» прислушивается к марсотрясениям, а марсоход «Персеверанс» катается по ней в поисках жизни.
На этой неделе ученые обнародовали целую серию научных выводов, сделанных на основе информации, полученной от отважных роботов. Сегодня они опубликовали три статьи в журнале «Сайнс» (Science), подготовленные десятками ученых из разных стран мира. В них исследователи рассказывают о хитрых способах использования сейсмометра аппарата «Инсайт», при помощи которых им удалось заглянуть вглубь Красной планеты. Этот прибор обогатил их беспрецедентными знаниями о марсианской коре, мантии и ядре. Ученые впервые составили карту внутренностей другой планеты. А вчера вторая группа ученых провела пресс-конференцию, на которой объявила предварительные результаты исследовательской работы марсохода «Персеверанс», а также рассказала о следующих шагах, которые он предпримет в рамках изучения поверхности кратера Езеро. Этот кратер когда-то был озером, и мог стать обиталищем древней микробной жизни.
Ученым предстоит еще многое узнать о Красной планете. «Она построена из таких же конструктивных блоков, как и Земля, но очень сильно от нее отличается, — сказала сейсмолог из Кембриджского университета Санне Коттар (Sanne Cottaar), подготовившая для «Сайнс» статью по трем новым исследованиям. — Есть масса свидетельств, что эволюция Марса во многом проходила иначе. А сейчас, когда ученые формируют внутреннее изображение слоев планеты, у нас появляются новые способы понять, как формировался Марс, и как он возник».
Контекст
Yahoo News Japan: европейцы в сотрудничестве с россиянами ищут жизнь на Марсе
Опасная посадка и селфи на Марсе: видео с китайского марсохода заинтриговали ученых (Nature)
NASA: как звучит Марс
Al Jazeera: есть ли жизнь на Марсе? Ответ скрывается глубоко в недрах Красной планеты
При сравнении двух планет возникает множество интересных вопросов. Например, почему у Земли есть магнитное поле, а у Марса оно, по всей видимости, исчезло? Почему на Земле так много вулканов, и они очень сильно разбросаны, а на Марсе вулканы больше по размерам и сильнее сконцентрированы? (Имея диаметр 602 километра и высоту почти 26 километров, гора Олимп является самым большим из известных вулканов Солнечной системы.) Формирование Марса наверняка сопровождалось многочисленным катаклизмами, но сейчас на его поверхности все спокойно. И в отличие от Земли, там мало вулканической активности. (Однако в мае ученые представили доказательства такой недавней активности.) Только заглянув глубже под поверхность, исследователи смогут лучше понять такие странности Марса, а заодно и особенности похожей на него Земли.
Но прежде чем окунуться в лавину этой научной литературы, нам нужно пройти краткий курс по устройству Марса и исследующего его аппарата «Инсайт». В сравнении с Землей Красная планета в геологическом плане довольно спокойна. Поскольку у нашей планеты имеются тектонические плиты, представляющие собой огромные куски земли, которые перемещаются над лежащей ниже мантией, ее поверхность буквально взрывается от активности, такой как вулканы и катастрофические землетрясения. На Марсе нет тектонических плит, потому что его ядро сформировалось и быстро остыло в самом начале существования Красной планеты. Сегодня Марс сотрясают небольшие толчки, вероятно, вызванные сокращением продолжающей остывать планеты.
Задача спускаемого аппарата «Инсайт» состоит в обнаружении таких марсотрясений при помощи сейсмометра, чем он и занимается с февраля 2019 года. Этот прибор обеспечивает ученых исключительно богатым разнообразием сейсмических данных, особенно по двум явлениям — Р-волнам (волны сжатия) и S-волнам (волны сдвига), которые возникают в результате марсотрясений. «Р-волны — это продольные сейсмоволны, как звук в воздухе, и это самые быстрые волны из числа распространяющихся в планетарных телах, — рассказывает сейсмолог из Кёльнского университета Бриджит Кнапмайер-Эндрун (Brigitte Knapmeyer-Endrun), ставшая ведущим автором исследования по моделированию марсианской коры. — А еще у нас есть вторичные волны, S-волны, или поперечные сдвиговые волны. Такое движение больше похоже на дрожание гитарных струн».
Что крайне важно, S-волны медленнее Р-волн. Поэтому, когда происходит марсотрясение, сейсмометр зонда «Инсайт» регистрирует их чуть позднее. «Разница между появлением S-волн и Р-волн дает нам представление о месте сейсмической активности, насколько далеко оно находится от нашей станции», — говорит Кнапмайер-Эндрун. Эти волны различаются также в зависимости от среды, через которую они проходят, и от которой они отражаются. Р-волны проходят через твердые породы, жидкости и газы, а S-волны только через твердые породы.
Анализируя волны, достигающие сейсмометра «Инсайт», ученые могут получить представление о внутреннем составе Марса. Поскольку S-волны не могут проникнуть через жидкое ядро, вся их энергия целиком отражается от границы между ядром и мантией. Представьте это в виде двоичного кода для компьютеров. Только два элемента — единицы и нули могут сочетаться, создавая исключительно сложное программирование. Точно так же два типа волн в своем сочетании позволяют нарисовать сложную картину марсианских внутренностей. «Мы также смотрим на разницу во времени прихода, что позволяет нам определить толщину того или иного слоя», — говорит Кнапмайер-Эндрун.
Мультимедиа
«Миссия на Марс» в Тироле
28 месяцев на Марсе
Используя такие методы, она вместе с коллегами сумела определить толщину коры. Прежде ученым приходилось использовать летающие по орбите спутники для измерения разницы в силе притяжения и в топографических свойствах по всей планете. Таким способом они пытались определить толщину коры, придя в итоге к выводу, что в среднем она составляет 110 километров «Сейчас, когда измерения проводятся изнутри, мы можем сказать, что это было явное преувеличение», — говорит Кнапмайер-Эндрун. Теперь ученые полагают, что среднее значение толщины коры максимально составляет 72 километра.
Исследователи полагают, что эта кора состоит из двух или трех слоев. Есть самый верхний слой толщиной 10 километров, который, согласно измерениям «Инсайт», оказался неожиданно легким. Наверное, это объясняется тем, что он состоит из раздробленной породы, оставшейся от воздействия метеоритов. Слой ниже опускается в глубину примерно на 20 километров. «К сожалению, мы не уверены, что там дальше, сразу мантия или еще и третий слой коры. Есть некая неопределенность на сей счет, и разрешить ее нам пока не удалось, — говорит Кнапмайер-Эндрун. — Мы можем уверенно сказать, что кора не такая толстая, как считали ранее, и что плотность у нее меньше».
Планетарный сейсмолог Саймон Штелер (Simon Stähler) из Швейцарской высшей технической школы Цюриха возглавил работу по изучению самой раскаленной внутренней части Марса — его ядра. Хотя у коллектива Штелера нет возможности заглянуть внутрь центральной части планеты, исследователи сумели добыть некоторую информацию, проанализировав S-волны, отражающиеся от границы между ядром и мантией. Эти колебания, не имея возможности проникнуть в жидкое марсианское ядро, возвращаются на поверхность, и там их улавливают приемники «Инсайт». «На это уходит целых 10 минут», — говорит Штелер, имея в виду время от марсотрясения до улавливания отраженного ядром сигнала. Измерив этот временной промежуток, его команда определила глубину проникновения волн, а исходя из этого, измерила и глубину залегания самого ядра. Оказалось, что оно начинается примерно в 1 550 километрах от поверхности.
Ученые выяснили, что плотность ядра удивительно низкая, составляя всего 6 граммов на кубический сантиметр. Это гораздо меньше, чем они ждали от марсианского центра с высоким содержание железа. «Для нас это до сих пор некая загадка, почему ядро такое легкое», — говорит Штелер. Там наверняка должны присутствовать и более легкие элементы, хотя непонятно, какие именно. Он со своим коллективом надеется со временем зафиксировать Р-волны, образующиеся в результате марсотрясения на противоположной стороне планеты непосредственно напротив того места, где стоит «Инсайт». Поскольку эти волны могут проникнуть через границу между ядром и мантией, они дадут приемнику спускаемого аппарата информацию о составе марсианского ядра. Но чтобы это получилось, объясняет Штелер, «Марс должен пойти нам навстречу и устроить такое марсотрясение на другой стороне планеты».
В своей научной работе коллектив Штелера сообщает, что радиус ядра равен 1 830 километрам. Другая команда, которую возглавил геофизик из Швейцарской высшей технической школы Цюриха Амир Хан (Amir Khan), выяснила, что этот размер настолько велик, что места для мантии, как внутри Земли, остается очень мало. Этот слой, окружающий ядро, выполняет задачу по теплоулавливанию. Земная мантия разделена на две части, а между ними имеется так называемая переходная зона. Верхний и нижний слой состоят из разных минералов. «Мантия Марса — я скажу об этом несколько непочтительно — является упрощенной версией земной мантии, если судить по ее минералогическому составу», — говорит Хан, ставший ведущим автором работы по описанию марсианской мантии.
Предыдущие оценки радиуса ядра делались с использованием геохимических и геофизических данных, и они указывали на отсутствие нижнего слоя мантии. Но чтобы подтвердить это, ученым понадобились сейсмологические данные «Инсайт». Они стали ключом к пониманию эволюции Красной планеты, в частности, почему она лишилась своего магнитного поля, которое защитило бы атмосферу и возможную жизнь от суровых солнечных ветров. Для возникновения магнитного поля нужен перепад температур между внешней и внутренней частью ядра. Он должен быть достаточно велик, чтобы создавать циркулирующие течения, которые перемешивают жидкость ядра и способствуют образованию магнитного поля. Но ядро Марса остыло так быстро, что эти конвекционные потоки затухли.
Анализ Хана также показывает, что у Марса толстая литосфера, как называют твердую и холодную часть мантии. Это может дать ответ на вопрос о том, почему у Красной планеты нет тектонических плит, которые провоцируют мощную вулканическую активность на Земле. «Если имеется очень толстая литосфера, ее чрезвычайно трудно сломать, чтобы создать некое подобие земных тектонических плит, — поясняет Хан. — Может, на раннем этапе они и были на Марсе, но сейчас они определенно сомкнулись».
Если «Инсайт» «подслушивает» внутренние вибрации Марса, то «Персеверанс», катаясь по его пыльной поверхности, ищет признаки древней жизни в горных породах, определяет места сбора образцов поверхностного слоя и изучает геологическую историю Езеро. «Исследования — это не бег на короткую дистанцию, это марафон, — сказал заместитель руководителя НАСА по научной работе Томас Цурбухен (Thomas Zurbuchen), открывая в среду пресс-конференцию, посвященную первым успехам марсохода за время работы на Красной планете. — «Персеверанс» — это лишь один шаг в долгом и тщательно спланированном путешествии по изучению Марса, в котором в предстоящие годы будут объединены усилия робота и человека».
Статьи по теме
Science: сенсационное возвращение американцев на Венеру
IllVet: пять миссий, которые должны раскрыть загадку Венеры
Американские читатели о «русской планете» Венере: но Солнце, чур, наше
На пресс-конференции ученые рассказали, чем занимается «Персеверанс» во время своих странствований. «Проблема в том, чтобы точно понять, в каком направлении мы хотим пойти, и как мы будем встраивать все в наш график», — рассказала Вивиан Сунь (Vivian Sun) из Лаборатории реактивного движения НАСА, работающая там инженером по системам. По ее словам, ученые решили направить «Персеверанс» примерно на километр на юг от места посадки с целью сбора первых образцов пород. Храниться собранные образцы будут в корпусе марсохода, а затем он уложит их на поверхность планеты для последующей переправки на Землю обратным рейсом.
«Персеверанс» оснащен двухметровой роботизированной рукой с набором новых устройств, среди которых есть технологический демонстратор под названием MOXIE для проверки возможности выработки кислорода из атмосферы Марса. Он уже продемонстрировал свою способность преобразовывать в кислород небольшие объемы атмосферного углекислого газа. Там также имеются датчики для оценки нынешнего климата и камеры высокого разрешения, позволяющие снимать то, что находится вокруг марсохода. «Нас просто истязают пылевые дьяволы», — сказал геохимик из Калифорнийского технологического института Кен Фарли (Ken Farley). Это действительно дьявольские порывы ветра, очень похожие, как он говорит, на земные.
Некоторые породы на фотографиях напоминают затвердевший озерный ил. Это указывает на то, что именно там следует искать следы былой жизни в виде окаменелых биологических признаков. Ученые также хотят понять, имеют породы в кратере осадочное или вулканическое происхождение. Если этот остатки вулканических выбросов, то при помощи радиометрии можно определить их возраст. Это позволит лучше понять геологическую историю материалов, собираемых «Персеверанс». Фарли говорит, что самым неожиданным открытием на сегодня являются признаки внезапных наводнений и изменений уровня воды. Это говорит о том, что кратер пережил несколько этапов высыхания и заполнения водой в жидком состоянии.
Вооружившись новым программным обеспечением на основе искусственного интеллекта, «Персеверанс» также побил рекорд самостоятельного перемещения марсоходов по поверхности планеты, причем сделал он это уже на второй день автономного движения. «Автономное движение сегодня осуществляется почти с такой же скоростью, как и движение под управлением человека», — сказал инженер-робототехник из Лаборатории реактивного движения Оливер Тупе (Olivier Toupet). Человек может дистанционно управлять марсоходом, перемещая его примерно на 30 метров в день. Он совершает тщательно выверенные маневры, обходя препятствия, а искусственный интеллект позволяет повысить быстроту действия аппарата. Программное обеспечение создает трехмерную карту поверхности, по которой перемещается вездеход, а это позволяет оптимизировать и обновлять его маршрут в режиме реального времени. По словам Тупе, максимальное расстояние, пройденное на Марсе в автономном режиме, составляет около 107 метров. Ученые рассчитывают, что «Персеверанс» в предстоящие несколько недель увеличит этот показатель в четыре раза.
Завершив обходной маневр в южном направлении, «Персеверанс» направится на северо-запад к дельте древней реки, которая когда-то несла свои воды в кратер Езеро. Затем он начнет в полной мере использовать имеющиеся на борту приборы для определения химического и минералогического состава тамошних марсианских пород, а также их формы и текстуры. Эта информация поможет ученым больше узнать о древнем водном потоке данного бассейна.
А находящийся в нескольких тысячах километрах «Инсайт» продолжит регистрировать подповерхностные толчки и раскрывать внутреннее устройство этой каменистой планеты, которую ученые сумели охарактеризовать при помощи сейсмологии. «Это очень молодая область исследований для человечества, — говорит Коттар. — На звезды мы смотрим гораздо дольше, чем себе под ноги».
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.