Файл mpeg что это
Формат MPEG — спецификация и возможности
В настоящее время у каждого любителя видео имеется возможность для создания собственной домашней видеостудии на базе персонального компьютера. Известно, что при работе с видеофайлами возникает необходимость обработки и хранения очень больших объемов информации, например одна минута цифрового видеосигнала с разрешением SIF (сопоставимым с VHS) и цветопередачей true color (миллионы цветов), займет (288 x 358) пикселов x 24 бита x 25 кадров/с x 60 c = 442 Мб, то есть на носителях, используемых в современных ПК, таких, как компакт-диск (CD-ROM, около 650Мб) или жеский диск (несколько десятков гигабайт) сохранить полноценное по времени видео, записанное в таком формате не удастся. С помощью MPEG-сжатия объем видеоинформации можно заметно уменьшить без заметной деградации изображения. О том, как работает MPEG и какие еще он имеет применения, и пойдет речь далее.
Слово MPEG является сокращением от Moving Picture Expert Group — названия экспертной группы ISO, действующая в направлении разработки стандартов кодирования и сжатия видео- и аудио- данных. Официальное название группы — ISO/IEC JTC1 SC29 WG11. Часто аббревиатуру MPEG используют для ссылки на стандарты, разработанные этой группой. На сегодняшний день известны следующие:
КАК ПРОИСХОДИТ СЖАТИЕ
Базовым объектом кодирования в стандарте MPEG является кадр телевизионного изображения. Поскольку в большинстве фрагментов фон изображения остается достаточно стабильным, а действие происходит только на переднем плане, сжатие начинается с создания исходного кадра. Исходные (Intra) кадры кодируются только с применением внутрикадрового сжатия по алгоритмам, аналогичным используемым в JPEG. Кадр разбивается на блоки 8×8 пикселов. Над каждым блоком производится дискретно-косинусное преобразование (ДКП) с последующим квантованием полученных коэффициентов. Вследствии высокой пространственной корелляции яркости между соседними пикселами изображения, ДКП приводит к концентрации сигнала в низкочастотной части спектра, который после квантования эффективно сжимается с использованием кодирования кодами переменной длины. Обработка предсказуемых (Predicted) кадров производится с использованием предсказания вперед по предшествующим исходным или предсказуемым кадрам. Кадр разбивается на макроблоки 16×16 пикселов, каждому макроблоку ставится в соответствие наиболее похожий участок изображения из опорного кадра, сдвинутый на вектор перемещения. Эта процедура называется анализом и компенсацией движения. Допустимая степень сжатия для предсказуемых кадров превышает возможную для исходных в 3 раза. В зависимости от характера видеоизображения, кадры двунаправленной интерполяции (Bi-directional Interpolated ) кодируются одним из четырех способов: предсказание вперед; обратное предсказание с компенсацией движения — используется когда в кодируемом кадре появляются новые объекты изображения; двунаправленное предсказание с компенсацией движения; внутрикадровое предсказание — при резкой смене сюжета или при высокой скорости перемещения злементов изображения. С двунаправленными кадрами связано наиболее глубокое сжатие видеоданных, но, поскольку высокая степень сжатия снижает точность восстановления исходного изображения, двунаправленние кадры не используются в качестве опорных. Если бы коэффициенты ДКП передавались точно, восстановленное изображение полностью совпадало бы с исходным. Однако ошибки восстановления коэффициентов ДКП, связванные с квантованием, приводят к искажениям изображения. Чем грубее производится квантование, тем меньший объем занимают коэффициенты и тем сильнее сжатие сигнала, но и тем больше визуальных искажений.
Благодаря тому, что MPEG разрабатывается в такой авторитетной организацией как ISO и является достаточно универсальным методом сжатия (может использоваться в видеозаписи, телевещании, домашнем видеомонтаже, мультимедийных программах (обучающих, игровых) телеконференциях создании видеороликов для презентаций в Интернет) он стал доминирующим стандартом сжатия цифрового видео, избавив от необходимости использования множества существовавших до него несовместимых способов сжатия видео.
Как работает MPEG-видео
Цветное цифровое изображение из сжимаемой последовательности переводится в цветовое пространство YUV (YCbCr). Компонента Y представляет собой интенсивность, а U и V — цветность. Так как человеческий глаз менее восприимчив к цветности, чем к интенсивности, то разрешений цветовых компонент может быть уменьшено в 2 раза по вертикали, или и по вертикали и по горизонтали. К анимации и высококачественному студийному видео уменьшение разрешения не применяется для сохранения качества, а для бытового применения, где потоки более низкие, а аппаратура более дешевая, такое действие не приводит к заметным потерям в визуальном восприятии, сохраняя в то же время драгоценные биты данных.
Основная идея всей схемы — это предсказывать движение от кадра к кадру, а затем применить дискретное косинусное преобразование (ДКП), чтобы перераспределить избыточность в пространстве. ДКП выполняется на блочках 8×8 точек, предсказание движения выполняется на канале интенсивности (Y) на блоках 16×16 точек, или, в зависимости от характеристик исходной последовательности изображении (черезстрочная развертка, содержимое), на блоках 16×8 точек. Другими словами, данный блок 16×16 точек в текущем кадре ищется в соответствующей области большего размера в предыдущих или последующих кадрах. Коэффициенты ДКП (исходных данных или разности этого блока и ему соответствующего) квантуются, то есть делятся на некоторое число, чтобы отбросить несущественные биты. Многие коэффициенты после такой операции оказываются нулями. Коэффициент квантизации может изменяться для каждого «макроблока» (макроблок — блок 16×16 точек из Y-компонент и соответсвующие блоки 8×8 в случае отношения YUV 4:2:0, 16×8 в случае 4:2:2 и 16×16 в случае 4:4:4. Коэффициенты ДКП, параметры квантизации, векторы движения и пр. кодируется по Хаффману с использованием фиксированных таблиц, определенных стандартом. Закодированные данные складываются в пакеты, которые формируют поток согласно синтаксису MPEG.
Соотношение и типы кадров
Существует три типа закодированных кадров. I-фремы — это кадры, закодированные как неподвижные изображения — без ссылок на последующие или предыдущие. Они используются как стартовые. P-фреймы — это кадры, предсказанные из предыдущих I- или P-кадров. Каждый макроблок в P-фрейме может идти с вектором и разностью коэффициентов ДКП от соответствующего блока последнего раскодированного I или P, или может быть закодирован как в I, если не соответствующего блока не нашлось.
И, наконец, существуют B-фреймы, которые предсказаны из двух ближайших I или P-фреймов, одного предыдущего и другого — последующего. Соответсвующие блоки ищутся в этих кадрах и из них выбирается лучший. Ищется прямой вектор, затем обратный и вычисляется среднее между соответствующими макроблоками в прошлом и будущем. Если это не работает, то блок может быть закодирован как в I-фрейме.
Здесь 12 кадров от I до I фрейма. Это основано на требовании произвольного доступа, согласно которому начальная точка должна повторяться каждые 0.4 секунды. Соотношение P и B основано на опыте.
Алгоритм MPEG-компрессии аудио
При сжатии аудио используются хорошо разработанные психоакустические модели, полученные из экспериментов с самыми взыскательными слушателями, чтобы выбросить звуки, которые не слышны человеческому уху. Это то, что называется «маскированием», например, большая составляющая в некоторой частоте не позволяет услышать компоненты с более низким коэффициентом в близлежащих частотах, где соотношение между энергиями частот, которое маскируются, описывается некоторой эмпирической кривой. Существуют похожие временные эффекты маскирования, а также более сложные взаимодействия, когда временной эффект может выделить частоту или наоборот.
Звук разбивается на спектральные блоки с помощью гибридной схемы, которая объединяет синусные и полосные преобразования, и психоакустической модели, описанной на языке этих блоков. Все, что может быть убрано или сокращено, убирается и сокращается, а остаток посылается в выходной поток. В действительности, все выглядит несколько сложнее, поскольку биты должны распределяться между полосами. И, конечно же, все, что посылается, кодируется с сокращением избыточности.
Потоки, частоты и размеры кадров
Как MPEG-1, так и MPEG-2, могут быть применены к широкому классу потоков, частот и размеров кадров. MPEG-1, знакомый большинству людей, позволяет передавать 25 кадров/с с разрешением 352×288 в PAL или 30 кадр/с с разрешением 352×240 в NTSC при величине потока менее 1.86 Мбит/с — комбинация, известная как «Constrained Parameters Bitstreams». Это цифры введены спецификацией White Book для видео на CD ( VideoCD ).
Фактически, синтаксис позволяет кодировать изображения с разрешением до 4095×4095 с потоком до 100 Мбит/с. Эти числа могли бы быть и бесконечными, если бы не ограничение на количество бит в заголовках.
С появлением спецификации MPEG-2, самые популярные комбинации были объединены в уровни и профили. Самые общие из них:
Компенсация движения заменяет макроблоки макроблоками из предыдущих картинок
Предсказания макроблоков формируются из соответсвующих 16×16 блоков точек (16×8 в MPEG-2) из предыдущих восстановленных кадров. Никаких ограничений на положение макроблока в предыдущей картинке, кроме ее границ, не существует.
Исходные кадры — reference — (из которых формируются предсказания) показаны безотносительно своей закодированной формы. Как только кадр раскодирован, он становится не набором блоков, а обычным плоским цифровым изображением из точек.
В MPEG размеры отображаемой картинки и частота кадров может отличаться от закодированного в потоке. Например, перед кодированием некотрое подмножество кадров в исходной последовательности может быть опущено, а затем каждый кадр фильтруется и обрабатывается. При восстановлении интерполированы для восстановления исходного размера и частоты кадров. Фактически, три фундаментальных фазы (исходная частота, кодированная и показываемая) могут отличаться в параметрах. Синтаксис MPEG описывает кодированную и показываемую частоту через заголовки, а исходная частота кадров и размер известен только кодеру. Именно поэтому в заголовки MPEG-2 введены элементы, описывающие размер экрана для показа видеоряда.
В I-фрейме макроблоки должны быть закодированы как внутренние — без ссылок на предыдущие или последующие, если не используются масштабируемые режимы. Однако, макроблоки в P-фрейме могут быть как внутренними, так и ссылаться на предыдущие кадры. Макроблоки в B-фрейме могут быть как внутренними, так и ссылаться на предыдущий кадр, последующий или оба. В заголовке каждого макроблока есть элемент, определяющий его тип.
Без компенсации движения:
С компенсацией движения:
Пропущенные макроблоки в P-фреймах:
Пропущенные макроблоки в B-фреймах:
Последовательность кадров может иметь любую структуру размещения I, P и B фреймов. В промышленной практике принято иметь фиксированную последовательность (вроде IBBPBBPBBPBBPBB), однако, более мощные кодеры могут оптимизировать выбор типа кадра в зависимости от контекста и глобальных характеристик видеоряда.
Каждый тип кадра имеет свои преимущества в зависимости от особенностей изображения (активность движения, временные эффекты маскирования. ).
Например, если последовательность изображений мало меняется от кадра к кадру, есть смысл кодировать больше B-фреймов, чем P. Поскольку B-фреймы не используются в дальнейшем процессе декодирования, они могут быть сжаты сильнее, без влияния на качество видеоряда в целом.
Требования конкретного приложения также влияют на выбор типа кадров: ключевые кадры, переключение каналов, индексирование программ, восстановление от ошибок и т.д.
При сжатии видео используются следующие статистические характеристики:
1. Пространственная корреляция: дискретное косинусное преобразование 8×8 точек.
2.Особенности человеческого зрения — невосприимчивость к высокочастотным составляющим: скалярное квантование коэффициентов ДКП с потерей качества.
3. Большая пространственная корреляция изображения в целом: предсказание первого низкочастотного коэффициента преобразования в блоке 8×8 (среднее значение всего блока).
4. Статистика появления синтаксических элементов в наиболее вероятном кодируемом потоке: оптимальное кодирование векторов движения, коэфициентов ДКП, типов макроблоков и пр.
5. Разряженная матрица квантованных коэффициентов ДКП: кодирование повторяющихся нулевых элементов с обозначением конца блока.
6. Пространственное маскирование: степень квантования макроблока.
7. Кодирование участков с учетом содержания сцены: степень квантования макроблока.
8. Адаптация к локальным характеристикам изображения: кодирование блоков, тип макроблока, адаптивное квантование.
9. Постоянный размер шага при адаптивном квантовании: новая степень квантования устанавливается только специальным типом макроблока и не передается по умолчанию.
10. Временная избыточность: прямые и обратные векторы движения на уровне макроблоков 16×16 точек.
11. Кодирование ошибки предсказаний макроблоков с учетом восприятия: адаптивное квантование и квантование коэффициентов преобразования.
12. Малая ошибка предсказания: для макроблока может быть сигнализированно отсутствие ошибки.
13. Тонкое кодирование ошибки предсказания на уровне макроблоков: каждый из блоков внутри макроблока может быть кодирован или пропущен.
14. Векторы движения — медленное движение фрагмента изображения со сложным рисунком: предсказание векторов движения.
15. Появления и исчезновения: прямое и обратное предсказание в B-фреймах.
16. Точность межкадрового предсказания: билинейно интерполированные (фильтрованные) разности блоков. В реальном мире движения объектов от кадра к кадру редко попадают на границы точек. Интерполяция позволяет выяснить настоящее положение объекта, зачастую увеличивая эффективность сжатия на 1 дБ.
17. Ограниченная активность движения в P-фреймах: пропущенные макроблоки. Когда вектор движения и ошибка предсказания нулевые. Пропущенные макроблоки очень желательны в кодированном потоке, поскольку не занимают битов, кроме как в заголовке следующего макроблока.
18. Компланарное движение в B-фреймах: пропущенные макроблоки. Когда вектор движения тот же, а ошибка предсказания нулевая.
MPEG – Видео-файл MPEG (MPEG Movie)
Расширение MPEG
Чем открыть файл MPEG
В Windows: СomboPlayer, Microsoft Windows Media Player, Apple QuickTime Player, Apple iTunes, Nullsoft Winamp Media Player, Roxio Creator NXT Pro, Adobe Flash Professional CS, CyberLink PowerDirector, CyberLink PowerDVD, CyberLink PowerProducer, Xilisoft Video Converter Ultimate, ALLPlayer, VLC media player, Любой другой видео-плеер
В Mac OS: Apple QuickTime Player, Eltima Elmedia Player, Roxio Toast, Roxio Popcorn, Adobe Flash Professional CS, VLC media player, Любой другой видео-плеер
В Linux: VLC media player, Xine, Totem, MPlayer
В Google Android: VLC media player
В Apple iOS (iPhone, iPad, iPod): OPlayer HD, VLC media player
Описание расширения MPEG
Популярность:
Раздел: Видео
Разработчик: Moving Picture Experts Group
Расширение MPEG – это популярный видео формат, который был стандартизирован Moving Picture Experts Group (MPEG), закодирован при помощи MPEG-1 или MPEG-2 сжатия, часто используется для создания фильмов, которые распространяются через Интернет.
MIME тип: video/mpeg, video/mpg, video/x-mpg, video/mpeg2, application/x-pn-mpg, video/x-mpeg, video/x-mpeg2a, audio/mpeg, audio/x-mpeg, image/mpg
HEX код: 00 00 01
Описание форматов MPEG 1, MPEG 2, MPEG 3
Описание форматов MPEG 1, MPEG 2, MPEG 3
Что из этого получилось.
Работала экспертная группа весьма плодотворно: за десятилетие разработано целое семейство стандартов; более того, почти все они живут и успешно работают. Лучшим свидетельством тому служит тот факт, что аббревиатуры MPEG и МР стали обиходными на бытовом уровне. Даже потребитель соотносит эти «имена» не со стандартными именами или их разработчиками, а с мультимедиа продукцией. Но будем хронологически точны, и проследим наиболее важные этапы становления MPEG.
В результате для фильмов, созданных в стандартах PAL и SECAM, поддерживается разрешение 720х576 при 25 кадрах в секунду при качестве, практически не уступающем вещательному. Собственно, MPEG-фильм нельзя отнести к какой-либо системе цветного телевидения, так как кадры в MPEG являются просто картинками и не имеют прямого отношения к исходной для фильма системе телевидения; речь может идти о соответствии размера и частоты следования кадров.
В части аудио в MPEG2, по сравнению с MPEG1, добавлена поддержка многоканального звука(Dolby Digital 5.1, DTS и т.п.)
Прежде всего, не следует смешивать с широкоизвестным форматом компрессии звука МР3, о котором речь пойдет ниже. Стандарт MPEG3 первоначально разрабатывался для использования в системах телевидения высокой четкости (High Definition Television, HDTV) со скоростью потока данных 20-40 Мбит/с. Но еще в процессе разработки стало ясно, что параметры, требуемые для передачи HDTV, вполне обеспечиваются использованием стандарта MPEG2 при увеличенной скорости цифрового потока. Другими словами, острой нужды в существовании отдельного стандарта для HDTV нет. Таким образом, MPEG3, еще не родившись, стал фактически составной частью стандарта MPEG2 и отдельно теперь даже не упоминается.
а) неподвижные картинки (например, фон);
б) видеообъекты (например, говорящий человек);
в) аудиообъекты (голос, связанный с этим человеком);
г) текст, связанный с этой сценой;
д) синтетические объекты, которых не было изначально в описываемой сцене, но которые туда
добавляются при демонстрации конечному пользователю (например, синтезируется говорящая голова);
е) текст (например, связанный с головой), из которого в конце синтезируется голос.
Такой способ представления данных позволяет изменить результирующую сцену, обеспечивая высокий уровень интерактивности для конечного пользователя и предоставляя ему целый ряд возможностей, например: перемещать и помещать объекты в любое место сцены, трансформировать объекты, изменять их форму и геометрические размеры, собирать из отдельных объектов составной объект и производить над ним какие-либо операции, менять текстуру и цвет объекта, манипулировать им (заставить, к примеру, стол передвигаться в пространстве), менять точку наблюдения за всей сценой.
Музыка: Сыграв несколько нот на клавиатуре, можно получить список музыкальных произведений, которые содержат такую последовательность звуков.
Графика: Нарисовав эскиз на экране, получим набор рисунков, содержащих подобный фрагмент.
Картины: Определив объект (задав его форму и текстуру), получим перечень картин, содержащий таковой.
Видео: Задав соответствующий объект и его движение, получим набор видео или анимационных роликов.
Голос: Задав фрагмент голоса певца, получим набор песен и видеоклипов, в которых он поет.
Первый «слой» (Layer I) был рассчитан на поток скоростью 192 кбит/с на канал. Алгоритм его в целом похож на систему сжатия звука ATRAC, которая реализована на мини-дисках Sony. Разновидность Layer I используется и в устройствах записи цифровых компакт-кассет DCC. Разновидность Layer II, предназначенная для потоков до 128 кбит/с на канал, была разработана как компромисс между качеством звука, величиной потока и сложностью кодера. В нем были, в первую очередь, усовершенствованы гребенчатые фильтры. Этот «слой» весьма сходен с известным аудиостандартом MUSICAM. Наибольшее применение Layer II нашел в сетях цифрового радиовещания DAB (Digital Audio Broadcasting).
wiki.vspu.ru
портал образовательных ресурсов
Содержание
Семейство форматов MPEG:история развития, описание структуры, область использования
Начало
Семейство MPEG
Группа MPEG стандартизовала следующие стандарты сжатия и вспомогательные стандарты:
MPEG-1: Исходный стандарт видео и аудио компрессии. Позднее использовался как \\стандарт для Video CD; включает в себя Layer 2 формат аудио сжатия.
MPEG-2: Транспортные, видео и аудио стандарты для широковещательного телевидения. Используется в цифровом телевидении ATSC, DVB и ISDB, цифровых спутниковых ТВ службах, таких, как Dish Network, цифровом
кабельном телевидении, и (с небольшими изменениями) в DVD.
MPEG-3: Изначально разрабатывался для HDTV, но от него отказались, когда обнаружилось, что MPEG-2
(с расширениями) вполне достаточно для HDTV. (Не следует путать MPEG-3 с MP3, который на самом деле является MPEG-1 Layer 3.)
MPEG-4: Расширяет MPEG-1 для поддержки видео/аудио «объектов», 3D контента, сжатия с низким
битрейтом и DRM. В него включено несколько новых высокоэффективных видео
стандартов (альтернатив MPEG-2), таких, как:
MPEG-4 Part 2 (ASP) и
MPEG-4 Part 10 (или AVC, или H.264). MPEG-4 Part 10 используется в HD DVD и Blu-Ray дисках.
В дополнение к вышеупомянутым существуют стандарты, которые являются не усовершенствованием предыдущих
стандартов сжатия, а определяют различные языки описания:
MPEG-7: Стандарт индексации мультимедиа-содержимого.
MPEG-21: MPEG описывает стандарт как мультимедийная среда разработки.
Moving Picture Experts Group made MPEG
Формат MPEG-1 начал разрабатываться в конце 80-х когда была эпоха 286 и 386 процессоров, 4 Мб оперативной памяти и 250 Мб винчестер считались роскошью, а Windows была примочкой для DOS, а не наоборот, а в качестве легко переносимых носителей информации доминировали 5 дюймовые дискеты и только-только появившиеся 3,5» дискеты от фирмы SONY.
В те времена приличный фильм занимал пространство более гигабайта. В эти годы впервые на платформе PC появился такой новый тип носителей информации как CD-ROM диски, которые смогли обеспечить необходимый объем информации. Первые CD-ROM проигрыватели были односкоростными, максимальная скорость пересылки потока данных (bitstream) в формате MPEG-1 ограничена 150 Кб/сек., что соответствует одной скорости CD-ROM.
MPEG-2
Стандарт MPEG-2 получил распространение в цифровых видеодисках DVD, системах компрессии видеоизображений, цифровом телевидении DVB. В случае использования в цифровом телевидении MPEG-2 активно применяется как стандарт, определяющий структуру транспортных потоков и способы передачи данных.
Стандарт содержит несколько подразделов (parts). Например, MPEG-2 part 1 определяет тип контейнера, например, может использоватся Transport Stream, который позволяет корректировать ошибки оборудования, принимающего сигнал. Part 2 — структуру компрессированного изображения (элементарный поток MPEG-2). Стандарт MPEG-2 намеренно не определяет способы компрессии изображения (звука), он лишь указывает, как должно быть оформлено сжатое изображение (звук). Стандарт не определяет, каким образом должен быть реализован кодер или декодер MPEG-2, он определяет только структуру данных. Это даёт возможность участникам рынка конкурировать друг с другом за создание более качественных устройств и алгоритмов.
Использование стандартов MPEG-2 требует уплаты лицензионных отчислений держателям патентов через MPEG Licensing Association. Тексты стандартов MPEG-2 распространяются свободно, но не бесплатно (см. сайт ISO).
Сжатие видео (упрощённо)
MPEG-2 используется для «общего сжатия движущихся изображений и звука» и определяет формат видеопотока, который может быть представлен как три типа кадра — независимо сжатые кадры (I-кадры), кадры, сжатые с использованием предсказания движения в одном направлении (P-кадры) и кадры, сжатые с использованием предсказания движения в двух направлениях (B-кадры). Соответствующие группы кадров от одного I-кадра до другого образуют GOP — Group Of Pictures — группу кадров.
Обычно используются потоки в 30 или 29,97 кадров в секунду.
В результате для фильмов, созданных в стандартах PAL и SECAM, поддерживается разрешение 720х576 при 25 кадрах в секунду при качестве, практически не уступающем вещательному. Собственно, MPEG-фильм нельзя отнести к какой-либо системе цветного телевидения, так как кадры в MPEG являются просто картинками и не имеют прямого отношения к исходной для фильма системе телевидения; речь может идти о соответствии размера и частоты следования кадров. В части аудио в MPEG2, по сравнению с MPEG1, добавлена поддержка многоканального звука(Dolby Digital 5.1, DTS и т.п.)
MPEG3
Прежде всего, не следует смешивать с широкоизвестным форматом компрессии звука МР3, о котором речь пойдет ниже. Стандарт MPEG3 первоначально разрабатывался для использования в системах телевидения высокой четкости (High Definition Television, HDTV) со скоростью потока данных 20-40 Мбит/с. Но еще в процессе разработки стало ясно, что параметры, требуемые для передачи HDTV, вполне обеспечиваются использованием стандарта MPEG2 при увеличенной скорости цифрового потока. Другими словами, острой нужды в существовании отдельного стандарта для HDTV нет. Таким образом, MPEG3, еще не родившись, стал фактически составной частью стандарта MPEG2 и отдельно теперь даже не упоминается.
MPEG4
а) неподвижные картинки (например, фон); б) видеообъекты (например, говорящий человек); в) аудиообъекты (голос, связанный с этим человеком); г) текст, связанный с этой сценой; д) синтетические объекты, которых не было изначально в описываемой сцене, но которые туда добавляются при демонстрации конечному пользователю (например, синтезируется говорящая голова); е) текст (например, связанный с головой), из которого в конце синтезируется голос.
Такой способ представления данных позволяет изменить результирующую сцену, обеспечивая высокий уровень интерактивности для конечного пользователя и предоставляя ему целый ряд возможностей, например: перемещать и помещать объекты в любое место сцены, трансформировать объекты, изменять их форму и геометрические размеры, собирать из отдельных объектов составной объект и производить над ним какие-либо операции, менять текстуру и цвет объекта, манипулировать им (заставить, к примеру, стол передвигаться в пространстве), менять точку наблюдения за всей сценой.
MPEG 7
MPEG 7 и MPEG 21 – форматы будущего В октябре 1996 года группа MPEG приступила к разработке формата сжатия MPEG 7, призванным определить универсальные механизмы описания аудио и видео информации. Этот формат получил название Multimedia Content Description Interface. В отличие от предыдущих форматов сжатия семейства MPEG, MPEG 7 описывает информацию, представленную в любой форме (в том числе в аналоговой) и не зависит от среды передачи данных. Как и его предшественники, формат сжатия MPEG 7 генерирует масштабируемую информацию в рамках одного описания.
Формат сжатия MPEG 7 использует многоуровневую структуру описания аудио и видео информации.
Такая гибкость в выборе методов сжатия значительно снижает объем информации и ускоряет процесс сжатия. Основное преимущество формата сжатия MPEG 7 над его предшественниками состоит в применении уникальных дескрипторов и схем описания, которые, помимо всего прочего, делают возможным автоматическое выделение информации как по общим, так и по семантическим признакам, связанным с восприятием информации человеком. Процедура занесения в каталог и поиска данных находятся вне сферы рассмотрения этого формата сжатия.
MPEG 21
Звук в MPEG
Первый «слой» (Layer I) был рассчитан на поток скоростью 192 кбит/с на канал. Алгоритм его в целом похож на систему сжатия звука ATRAC, которая реализована на мини-дисках Sony. Разновидность Layer I используется и в устройствах записи цифровых компакт-кассет DCC. Разновидность Layer II, предназначенная для потоков до 128 кбит/с на канал, была разработана как компромисс между качеством звука, величиной потока и сложностью кодера. В нем были, в первую очередь, усовершенствованы гребенчатые фильтры. Этот «слой» весьма сходен с известным аудиостандартом MUSICAM. Наибольшее применение Layer II нашел в сетях цифрового радиовещания DAB (Digital Audio Broadcasting).