Что значит решить уравнение графически
Алгебра. 8 класс
Тема: Решение уравнений графическим способом
Содержание модуля (краткое изложение модуля):
Решим графическим способом уравнение:
Решить уравнение – значит найти такие значения x, при которых выполняется равенство x 2 = −3x
Построим в одной системе координат два графика:
график функции y = x 2 и график функции y = −3x.
Для каждого графика составим таблицы значений
y = x 2 – на рисунке синий график
x | 0 | 1 | 2 | 3 | −1 | −2 | −3 |
y | 0 | 1 | 4 | 9 | 1 | 4 | 9 |
y = −3x – на рисунке красный график
x | 0 | 1 | 2 | 3 | −1 | −2 | −3 |
y | 0 | −3 | −6 | −9 | 3 | 6 | 9 |
Заметим, что графики пересекаются в двух точках: точке с координатами (0 ; 0) и в точке с координатами (–3 ; 9). Это значит, что при x = 0 и при x = –3 функции y = x 2 и y = −3x имеют одинаковые значения.
Таким образом получаем, что при x = 0 и при x = –3 выполняется равенство x 2 = −3x.
Значит значения x = 0 и x = –3 являются корнями уравнения x 2 = −3x.
Корни, найденные графическим способом – приближённые. Чтобы доказать точность значений корней, надо каждый из них подставить в решаемое уравнение и проверить: выполняется ли полученное равенство.
Подставим в уравнение x 2 = −3x значение x = 0.
0 = 0 – верное равенство, значит x = 0 – точный корень уравнения x 2 = −3x.
Подставим в уравнение x 2 = −3x значение x = –3.
9 = 9 – верное равенство, значит x = −3 – точный корень уравнения x 2 = −3x.
Подведём итог.
Чтобы решить уравнение f1(x) = f2(x) графическим способом, необходимо:
1) Построить в одной системе координат графики функций y = f1(x) и y = f2(x). Абсциссы точек пересечения – это приближённые корни уравнения f1(x) = f2(x).
2) Необходимо подставить каждый приближённый корень в уравнение f1(x) = f2(x). Те корни, при которых получается верное равенство будут являться точными корнями уравнения f1(x) = f2(x).
Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.
Решение уравнений и неравенств (с помощью графиков)
Многие задания, которые мы привыкли вычислять чисто алгебраически, можно решить намного легче и быстрее!
С помощью графиков функций!
Ты скажешь: «Как так? Чертить что-то, да и что чертить?» Поверь мне, иногда это удобнее и проще.
Приступим? Начнем с решения уравнений!
Решение уравнений и неравенств с помощью графиков — коротко о главном
Более подробно о построении графиков функций смотри в теме «Функции».
Решение уравнений с помощью графиков
Решение линейных уравнений
Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида.
Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и вуаля! Мы нашли корень.
Сейчас же я покажу тебе, как это сделать графическим способом.
Итак, у тебя есть уравнение: \( \displaystyle 2
Вариант 1, и самый распространенный – перенести неизвестные в одну сторону, а известные в другую, получаем:
Обычно дальше мы делим правую часть на левую, и получаем искомый корень, но мы с тобой попробуем построить левую и правую части как две различные функции в одной системе координат.
Иными словами, у нас будет:
А теперь строим. Что у тебя получилось?
Как ты думаешь, что является корнем нашего уравнения? Правильно, координата \( \displaystyle x\) точки пересечения графиков:
Наш ответ: \( \displaystyle x=6\)
Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число \( \displaystyle 6\)!
Вариант 2
Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:
\( \displaystyle 2
В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так, как они сейчас есть:
Что является решением на этот раз? Все верно. То же самое: координата \( \displaystyle x\) точки пересечения графиков:
И снова наш ответ: \( \displaystyle x=6\).
Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее… Например, графическое решение квадратных уравнений.
Решение квадратных уравнений
Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:
Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при умножении или возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет…
Поэтому давай попробуем немного расслабиться и порисовать, решая данное уравнение.
Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.
Вариант 1. Напрямую
Просто строим параболу по данному уравнению: \( \displaystyle <
Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:
Ты скажешь «Стоп! Формула для \( \displaystyle y\) очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни.
Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!
Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:
Точно такой же ответ? Молодец!
И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, \( \displaystyle 3\).
Ты знаешь, что парабола симметрична относительно своей вершины, например:
Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:
Возвращаемся к нашей параболе.
Мне удобней работать с положительными, поэтому я рассчитаю при \( \displaystyle x=0\) и \( \displaystyle x=2\).
При \( \displaystyle x=0\):
При \( \displaystyle x=2\):
Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:
Как ты думаешь, что является решением уравнения?
Правильно, точки, в которых \( \displaystyle y=0\), то есть \( \displaystyle x=2\) и \( \displaystyle x=-4\). Потому что \( \displaystyle <
И если мы говорим, что \( \displaystyle y=<
Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!
Конечно, ты можешь проверить наш ответ алгебраическим путем – посчитаешь корни через теорему Виета или Дискриминант.
Что у тебя получилось? То же самое?
Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!
Вариант 2. С разбивкой на несколько функций
Возьмем все тоже наше уравнение: \( \displaystyle <
Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.
Построим отдельно две функции:
Построил? Сравним с тем, что вышло у меня:
Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по \( \displaystyle x\), которые получились при пересечении двух графиков: \( \displaystyle <
Соответственно, решением данного уравнения являются:
Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий, и даже легче, чем искать корни через дискриминант!
А если так, попробуй данным способом решить следующее уравнение.
Что у тебя получилось? Сравним наши графики:
По графикам видно, что ответами являются:
Теперь посмотрим уравнения чууууть-чуть посложнее, а именно решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.
Решение смешанных уравнений
Теперь попробуем решить следующее уравнение:
Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы попробуем решить графически, как делали во всех предыдущих случаях.
В этот раз давай построим 2 следующих графика:
Осознал? Теперь займись построением.
Вот что вышло у меня:
Глядя на этот рисунок, скажи, что является корнями нашего уравнения \( \displaystyle \frac<3>
Правильно, \( \displaystyle <
Попробуй подставить наши корни в уравнение. Получилось?
Все верно! Согласись, графически решать подобные уравнения – одно удовольствие!
Попробуй самостоятельно графическим способом решить уравнение:
Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!
Теперь посмотрим, что у тебя вышло:
\( \displaystyle 2<
Как ты уже давно у себя записал, корнем данного уравнения является \( \displaystyle <
Прорешав такое количество примеров, уверена, ты понял, как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.
Решение систем уравнений с помощью графиков
Графическое решение систем, по сути, ничем не отличается от графического решения уравнений.
Мы будем строить два графика, и их точки пересечения будут являться корнями данной системы.
Один график – одно уравнение, второй график – другое уравнение. Все предельно просто!
Начнем с самого простого – решение систем линейных уравнений.
Решение систем линейных уравнений
Допустим, у нас есть следующая система:
Для начала преобразуем ее таким образом, чтобы слева было все, что связано с \( \displaystyle y\), а справа – что связано с \( \displaystyle x\). Иными словами, запишем данные уравнения как функцию в привычном для нас виде:
А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему?
Намекну: мы имеем дело с системой, в системе есть и \( \displaystyle x\), и \( \displaystyle y\)… Смекаешь?
Все верно! Решая систему, мы должны смотреть обе координаты, а не только \( \displaystyle x\), как при решении уравнений!
Записал? Теперь давай все сравним по порядку:
И ответы: \( \displaystyle x=1\) и \( \displaystyle y=-1\). Сделай проверку – подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?
Все сошлось? Идем дальше!
Решение систем нелинейных уравнений
А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:
Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:
А теперь так вообще дело за малым – построил быстренько и вот тебе решение! Строим:
Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!
Все сделал? Сравни с моими записями:
При \( \displaystyle <
При \( \displaystyle <
Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее.
Решите систему уравнений: \( \displaystyle \left\< \begin
Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:
Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.
Итак, поехали! Выдохнул? Теперь начинай строить!
Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:
Так же? Теперь аккуратно запиши все решения нашей системы:
При \( \displaystyle <
При \( \displaystyle <
При \( \displaystyle <
А теперь еще раз посмотри на систему:
Представляешь, что ты решил это за каких-то 15 минут?
Согласись, математика – это все-таки просто, особенно когда, глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!
Решение неравенств с помощью графиков
Решение линейных неравенств
После последнего примера тебе все по плечу! Сейчас выдохни – по сравнению с предыдущими разделами этот будет очень-очень легким!
Начнем мы, как обычно, с графического решения линейного неравенства. Например, вот этого:
Неравенство нестрогое, поэтому \( \displaystyle 4\) — не включается в промежуток, и решением будут являться все точки, которые находятся правее \( \displaystyle 4\), так как \( \displaystyle 5\) больше \( \displaystyle 4\), \( \displaystyle 6\) больше \( \displaystyle 4\) и так далее:
Ответ: \( x\in \left( 4;+\infty \right)\)
Вот и все! Легко? Давай решим простое неравенство с двумя переменными:
Решение неравенства с двумя переменными
\( 2
Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой.
А если было бы больше Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.
Все решения данного неравенства «затушеваны» синим цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты \( \displaystyle x\) и \( \displaystyle y\) любой точки из закрашенной области и есть решения.
Решение квадратных неравенств
Теперь будем разбираться с тем, как графически решать квадратные неравенства.
Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции \( \displaystyle a<
Что показывает нам знак при коэффициенте \( \displaystyle a\)? Верно, куда направлены ветви параболы – вверх или вниз (не помнишь? Почитай теорию «Квадратичная функция»).
А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси \( \displaystyle Ox\) (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).
В любом случае, вот тебе небольшая табличка-напоминалка:
Симметрично отражаем наши точки на другую ветвь параболы:
Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем – «выкалываем».
Согласись, это намного быстрее.
Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.
Вариант 3
Ответ: \( \displaystyle \left[ 2;4 \right]\).
Решение смешанных неравенств
Теперь перейдем к более сложным неравенствам!
\( \displaystyle 4x
У тебя так же? Отлично!
Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть \( \displaystyle <
Смотри, что получилось в итоге:
А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график \( \displaystyle <
Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!
Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике
В следующих вебинарах вы сможете отработать навык решения уравнений, неравенств и систем алгебраическим способом.
Решение линейных уравнений (алгебраически)
Цель урока — научиться решать линейные уравнения любого уровня сложности. Линейные уравнения – основа всей алгебры. Научитесь решать линейные уравнения, и вам будет намного проще осваивать всё остальное.
Приёмы, которые мы узнаем на этом уроке, применяются не только в линейных, но во всех типах уравнений, от квадратных до логарифмических. Все приёмы будем разбирать на конкретных примерах и сразу же отрабатывать.
Мы решим разберём все возможные типы линейных уравнений, решив 65 уравнений.
ЕГЭ №15. Решение уравнений и неравенств методом интервалов
В этом видео мы узнаем (вспомним) метод интервалов, поймём как и почему он работает. Вспомним, как решать квадратные, рациональные неравенства, а также неравенства с модулем и иррациональные.
Что значит решить уравнение графически
Объединяем уравнения в систему с помощью фигурной скобки:
Графический метод
Недаром ответ записывается так же, как координаты какой-нибудь точки.
Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.
Например, построим графики уравнений из предыдущего примера.
Пример 1
Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):
Для того чтобы графически решить систему уравнений с двумя переменными нужно:
1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);
Разберем это задание на примере.
Решить графически систему линейных уравнений.
Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.
Пример 2
Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:
а) иметь единственное решение;
б) не иметь решений;
в) иметь бесконечное множество решений.
2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.
Пример 3
Графическое решение системы
Пример 4
Решить графическим способом систему уравнений.
Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.
Прямую y=x+1 провели через точки (0; 1) и (2; 3).
Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.
Пример 5
Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.
Наши прямые пересеклись в точке В(-2; 5).
ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.