Что значит пустое множество
ПУСТОЕ МНОЖЕСТВО
— множество, не содержащее элементов. Обозначения: , Л. Иначе,
=<х: х
х>, при этом вместо х
х в этом определении можно было бы использовать любое всегда ложное утверждение. П. м. является подмножеством любого множества. М. И. Войцеховский.
Смотреть что такое «ПУСТОЕ МНОЖЕСТВО» в других словарях:
пустое множество — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN empty set … Справочник технического переводчика
Пустое множество — Обозначение пустого множества Пустое множество (в математике) множество, не содержащее ни одного элемента. Из аксиомы объёмности следует, что есть только одно множество, обладающее таким свойс … Википедия
пустое множество — понятие теории множеств; пустое множество множество, не содержащее ни одного элемента; обозначается ø или 0. Понятие пустое множество (подобно понятию «нуль») возникает из потребности, чтобы результат всякой операции над множествами был также… … Энциклопедический словарь
пустое множество — tuščioji aibė statusas T sritis automatika atitikmenys: angl. empty set vok. Leerensemble, n rus. пустое множество, n pranc. ensemble vide, m … Automatikos terminų žodynas
Пустое множество — (математическое) «множество», не содержащее ни одного элемента. Понятие «П. м.» (подобно понятию «нуль»; возникает из потребности, чтобы результат всякой операции над множествами был также множеством (см. Множеств теория). Источником… … Большая советская энциклопедия
ПУСТОЕ МНОЖЕСТВО — понятие теории множеств; П. м. множество, не содержащее ни одного элемента; обозначается 0. Понятие П. м. (подобно понятию нуль ) возникает из потребности, чтобы результат всякой операции над множествами был также множеством … Естествознание. Энциклопедический словарь
Множество — У этого термина существуют и другие значения, см. Множество (значения). Запрос «Целое» перенаправляется сюда; о типе данных в программировании см. Целое (тип данных). Множество одно из ключевых понятий математики, в частности, теории… … Википедия
Множество (тип данных) — У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… … Википедия
Множество (математика) — Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия
Пустое множество
Пусто́е мно́жество (в математике) — множество, не содержащее ни одного элемента. Из аксиомы объёмности следует, что есть только одно множество, обладающее таким свойством. Пустое множество является своим (тривиальным) подмножеством, но не является своим элементом.
Пустое множество является конечным множеством и имеет наименьшую мощность среди всех множеств. Пустое множество — единственное множество, для которого класс множеств, равномощных ему, состоит из единственного элемента (самого́ пустого множества). Также, пустое множество — единственное множество, имеющее ровно 1 подмножество (само себя), и единственное множество, равномощное любому своему подмножеству.
Пустое множество тривиальным образом является разрешимым (а значит, перечислимым и арифметическим), транзитивным (англ.) и вполне упорядоченным множеством (для любого отношения порядка). Пустое множество является наименьшим порядковым числом и наименьшим кардинальным числом. В топологии, пустое множество является одновременно замкнутым и открытым множеством.
-цепочка, начинающаяся с произвольного множества, каждый последующий член которой является элементом предыдущего, всегда через конечное число шагов завершается пустым множеством (см. аксиому регулярности). Таким образом, пустое множество является «строительным кирпичиком», из которого строятся все остальные множества.
В некоторых формулировках теории множеств существование пустого множества постулируется (см. аксиому пустого множества), в других — доказывается.
Содержание
Обозначения пустого множества
Обычно пустое множество обозначают одним из следующих символов: ,
и
.
Реже пустое множество обозначают одним из следующих символов: и
.
В Юникоде имеется специальный символ «пустое множество» (U+2205, ∅ ).
Символы и
введены в употребление группой Бурбаки (в частности, Андре Вейлем) в 1939 году.
Свойства пустого множества
См. также
Ссылки
Полезное
Смотреть что такое «Пустое множество» в других словарях:
пустое множество — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN empty set … Справочник технического переводчика
пустое множество — понятие теории множеств; пустое множество множество, не содержащее ни одного элемента; обозначается ø или 0. Понятие пустое множество (подобно понятию «нуль») возникает из потребности, чтобы результат всякой операции над множествами был также… … Энциклопедический словарь
пустое множество — tuščioji aibė statusas T sritis automatika atitikmenys: angl. empty set vok. Leerensemble, n rus. пустое множество, n pranc. ensemble vide, m … Automatikos terminų žodynas
Пустое множество — (математическое) «множество», не содержащее ни одного элемента. Понятие «П. м.» (подобно понятию «нуль»; возникает из потребности, чтобы результат всякой операции над множествами был также множеством (см. Множеств теория). Источником… … Большая советская энциклопедия
ПУСТОЕ МНОЖЕСТВО — понятие теории множеств; П. м. множество, не содержащее ни одного элемента; обозначается 0. Понятие П. м. (подобно понятию нуль ) возникает из потребности, чтобы результат всякой операции над множествами был также множеством … Естествознание. Энциклопедический словарь
Множество — У этого термина существуют и другие значения, см. Множество (значения). Запрос «Целое» перенаправляется сюда; о типе данных в программировании см. Целое (тип данных). Множество одно из ключевых понятий математики, в частности, теории… … Википедия
Множество (тип данных) — У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… … Википедия
Множество (математика) — Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия
Что такое множество в математике?
Понятие множества в математике — одно из фундаментальных понятий. Без его хотя бы поверхностного изучения не стоит начинать и изучение более сложных разделов математики. Теорию множеств на доступном уровне преподают уже в средней школе. Предлагаю Вам их еще раз пройти вместе со мной.
Что такое множество?
Строго говоря, дать определение «множества» нельзя. С точки зрения науки логики такие определения в любом случае противоречивы. Подойдем с другой стороны и будем считать, что мы УЖЕ работаем с множеством произвольной природы, обозначим его X, которое состоит из элементов x (буквы не принципиальны).
x — элемент множества X
В данном случае нам неинтересна природа множеств, нам важен только вопрос включения/не включения отдельного элемента в это множество, т.е. максимально абстрактное представление. Попытаться определить, что такое множество можно следующим образом. Пусть X — известное нам множество, тогда мы можем определить множество Y, состоящее из таких элементов x, принадлежащих X, которые удовлетворяют некоторому свойству.
Да, получается, что мы не можем дать определение множеству, если до этого не согласимся, что имеем с ним дело в другом месте. Классический парадокс Мюнхгаузена.
Приведем простой пример. Я думаю не подвергается сомнению, что существуют натуральные числа: 1,2,3 и т.д., другими словами, имеется множество натуральных чисел (обозначают N). Выделим из него, например, четные числа, обозначим их N2, N4 и т.д.. Теперь мы можем утверждать, что множество четных чисел S (буква не принципиальна) состоит из чиселN2, N4 и т.д, удовлетворяющих свойству четности и принадлежащих N.
n mod 2 — операция, вычисляющая остаток от деления на 2. Например, 5 mod 2 = 1, 4 mod 2 = 0.
Таким образом, мы только что задали множество четных чисел, выделив его из множества натуральных чисел. В теории множеств говорят, что мы выделили подмножество (часть) S в множестве N. Обозначается вот так:
Читается так: S является подмножеством N, что эквивалентно тому, что для любого элемента s его принадлежность множеству S определяет принадлежность к множеству N (или принадлежность к множеству N следует из принадлежности к множеству S).
Знак включения между S и N строгий. Он означает, что множества N и S не равны. Действительно в нашем примере во множестве N есть еще и множество нечетных чисел. Нестрогий знак обозначается так:
Здесь мы определили. что множество S является подмножеством самого себя и содержит те же элементы. Такое свойство называется рефлексивностью.
Понятие пустого множества
На самом деле пустое множество — множество, не содержащее ни одного элемента — одно из самых важных понятий всей теории. Обозначается оно следующим образом:
Чем же примечательно пустое множество? Во-первых, это единственное множество которое является подмножествами любых множеств. Во-вторых, пустое множество является подмножеством себя, но не является своим элементом (вспомните определение). В-третьих, в топологии пустое множество одновременно является открытым и замкнутым (крючок на будущее, пока без пояснения).
Парочка небольших примеров на закрепление:
На этом закончим. В этой статье мы рассмотрели как определяется множество, что такое подмножество и пустое множество, каковы их свойства (но пока не все). Рассмотрели несколько примеров для понимания.
В следующем материале мы рассмотрим основные операции над множествами.
Пустое множество
Смотреть что такое «Пустое множество» в других словарях:
пустое множество — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN empty set … Справочник технического переводчика
Пустое множество — Обозначение пустого множества Пустое множество (в математике) множество, не содержащее ни одного элемента. Из аксиомы объёмности следует, что есть только одно множество, обладающее таким свойс … Википедия
пустое множество — понятие теории множеств; пустое множество множество, не содержащее ни одного элемента; обозначается ø или 0. Понятие пустое множество (подобно понятию «нуль») возникает из потребности, чтобы результат всякой операции над множествами был также… … Энциклопедический словарь
пустое множество — tuščioji aibė statusas T sritis automatika atitikmenys: angl. empty set vok. Leerensemble, n rus. пустое множество, n pranc. ensemble vide, m … Automatikos terminų žodynas
ПУСТОЕ МНОЖЕСТВО — понятие теории множеств; П. м. множество, не содержащее ни одного элемента; обозначается 0. Понятие П. м. (подобно понятию нуль ) возникает из потребности, чтобы результат всякой операции над множествами был также множеством … Естествознание. Энциклопедический словарь
Множество — У этого термина существуют и другие значения, см. Множество (значения). Запрос «Целое» перенаправляется сюда; о типе данных в программировании см. Целое (тип данных). Множество одно из ключевых понятий математики, в частности, теории… … Википедия
Множество (тип данных) — У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… … Википедия
Множество (математика) — Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия
Множество и его элементы. подмножество. пустое множество.
Понятие множества – одно из основных понятий математики. Под множеством понимают совокупность объектов (предметов или понятий), которая рассматривается как единое целое. Например, можно говорить о множестве натуральных чисел, о множестве букв на данной странице, о множестве корней данного уравнения и т. п. Понятие множества принимается как исходное, первичное, т. е. несводимое к другим понятиям. Объекты, входящие в состав множества, называются его элементами. Обычно множества обозначаются большими печатными буквами английского алфавита, например, множество А; а его элементы маленькими прописными буквами, например, элемент а.
Запись означает, что элемент а принадлежит множеству А. Запись
— наоборот, Что элемент а множеству А не принадлежит. Знак
называют знаком принадлежности.
Определение 1. Два множества А и В называются равными и пишут А=В, если множества А и В содержат одни и те же элементы.
Например: <2, 4, 6>= <4, 2, 6>– равные множества.
Определение 2. Множество называется непустым, если содержит хотя бы один элемент.
Определение 3. Множество А является подмножеством множества В, если каждый элемент множества А принадлежит множеству В.
В этом случае пишут , знак
называют знаком включения.
Например: <2, 4,>
Рассмотрим свойства отношения включения.
рефлексивно, т.е любое множество является подмножеством самому себе.
транзитивно, т. е. для любых множеств А, В и С, если множество А является подмножеством множества В и множество В является подмножеством множества С, то из этого следует, что множество А является подмножеством множества С.
антисимметрично, т. е. для любых множеств А и В следует, что, если множество А является подмножеством множества В и в то же время множество В является подмножеством множества А, то множества А и В равны.
Определение 4. Множество, не содержащее ни одного элемента, называется пустыммножеством.
Пустое множество обозначают
Пустое множество является подмножеством любого множества.
Определение 5. Множество всех подмножеств множества A называется множеством-степенью и обозначается P(A).
В дальнейшем будем пользоваться следующим утверждением:
Утверждение 1. Число всех подмножеств конечного множества равно 2n.
Пример. Выделим все подмножества множества А =<2, 4, 6>.
Р(А)=<2, 4, 6>, <2, 4>, <4, 6>, <2, 6>, <2>, <4 >, <6>, — всего 23=8.
Операции над множествами
Объединением множеств А и В называется множество, состоящее из тех элементов, которые принадлежат одному из множеств А или В.
Для обозначения объединения множеств используют знак .
Пример. ,
,
Пересечением множеств А и В называются такое множество, элементы которого принадлежат как множеству А, так и множеству В.
Для обозначения пересечения множеств используют знак .
Пример. ,
,
Разностью множеств А и В называется множество, элементы которого являются элементами множества А, не принадлежащие множеству В.
Для обозначения разности множеств используют знак /.
Пример. ,
,
Перечислим основные свойства операций над множествами:
1) идемпотентность объединения
2) идемпотентность пересечения
3) коммутативность объединения
4) коммутативность пересечения
5) ассоциативность объединения
6) ассоциативность пересечения
7) дистрибутивность объединения относительно пересечения
8) дистрибутивность пересечения относительно объединения
Универсальное множество. Дополнение множества.
Во многих приложениях теории множеств рассматриваются только такие множества, которые содержатся в некотором фиксированном множестве. Например, в геометрии мы имеем дело с множеством точек данного пространства, в арифметике – с множеством целых чисел. Такое фиксированное множество называют универсальным.Для его обозначения используют букву U.
Определение 6. Множество U/А называется дополнением множества А и обозначается (или
).
Дополнение U/ множества
обозначается
Справедливы следующие формулы:
=
— закон инволюции.
Теорема. Если множество А является подмножеством множества В, то дополнение множества А будет являться подмножеством дополнения множества В.
Пусть множество А является подмножеством множества В, , необходимо доказать, что для каждого элемента х из универсального множества U выполняется следующее условие: если элемент х принадлежит множеству
, то он принадлежит и множеству
.
.
Действительно, если х принадлежит множеству , то он не принадлежит множеству В, а т. к. множество А является подмножеством множества В, то элемент х не принадлежит и множеству А, а это означает его принадлежность множеству
.
Теорема. Имеют место следующие тождества
— Законы де Моргана для множеств
Приведем краткое доказательство первого утверждения.
Второе утверждение докажите самостоятельно.
Для графического изображения множеств и их свойств используются так называемые диаграммы Эйлера-Венна.
Объединение множеств Пересечение множеств
Разность множеств Подмножество
Универсальное множество Дополнение
| |