Что значит проекция в геометрии
Проекция (геометрия)
Проекция (лат. projectio — выбрасывание вперёд)
Содержание
Общее определение
Отображение из пространства в себя называется проекцией если
Проекция из трёхмерного пространства на плоскость
Проекционный метод изображения предметов основан на их зрительном представлении. Если соединить все точки предмета прямыми линиями (проекционными лучами) с постоянной точкой О (центр проекции), в которой предполагается глаз наблюдателя, то на пересечении этих лучей с какой-либо плоскостью получается проекция всех точек предмета. Таким образом получаем на плоскости перспективное изображение предмета или центральную проекцию.
Если центр проекции бесконечно удалён от картинной плоскости, то говорят о параллельной проекции; при этом, если проекционные лучи падают перпендикулярно к плоскости — то об ортогональной проекции, а если наклонно — о косоугольной проекции.
Если плоскость проекции не параллельна ни одной из координатных плоскостей — это аксонометрическая проекция.
Проекция из произвольного пространства на его подпространство
Проекция в этом смысле (упомянутая во введении в пункте 2) — широко применяется в линейной алгебре (подробнее, см.: Проекция (линейная алгебра)), но на практике не только в достаточно абстрактных контекстах, но и при работе с векторами любой природы, размерности и степени абстракции, и даже в элементарной геометрии, а также — очень широко — при использовании прямолинейных координат (как прямоугольных или аффинных).
Отдельно следует упомянуть проекцию точки на прямую и проекцию вектора на прямую (на направление).
Ортогональная проекция на прямую и на направление
Чаще всего используется ортогональная проекция.
Термин проекция в этом смысле употребляется и в отношении самой операция проектирования, и в отношении её результата (при операции проектирования на прямую образы точки, вектора, множества точек называются проекцией точки, вектора, множества точек на эту прямую).
Элементарное описание ортогональной проекции точки на прямую сводится к тому, что из точки на прямую следует опустить перпендикуляр, и его пересечение с прямой даст образ точки (проекцию точки на эту прямую). Это определение работает и на плоскости, и в трёхмерном пространстве, и в пространстве любой размерности.
Элементарное определение проекции вектора на прямую легче всего дать, представив вектор направленным отрезком. Тогда на прямую можно спроектировать его начало и его конец, и направленный отрезок от проекции начала к проекции конца исходного вектора даст его проекцию на прямую.
Проекцией вектора на некоторое направление обычно называют число, совпадающее по абсолютной величине с длиной проекции этого вектора на прямую, определяющую это направление; знак же числа выбирается так, что оно считается положительным, когда направление этой проекции совпадает с данным направлением, и отрицательным, когда направление противоположно.
Неортогональная проекция на прямую и на направление
Неортогональная проекция используется реже, к тому же даже при использовании, особенно в элементарных контекстах, этот термин не всегда используется.
Проще всего неортогональную проекцию на прямую можно задать, задав саму эту прямую и плоскость (в двумерном случае — вместо плоскости другую прямую, в случае n-мерного пространства — гиперплоскость размерности (n-1)), пересекающую прямую. Проекция точки определяется как пересечение плоскости (гиперплоскости), содержащей эту точку и параллельную плоскости, задающей проекцию.
В случае, когда плоскость (гиперплоскость), задающая проекцию, ортогональна прямой, мы получаем ортогональную проекцию (это может быть её альтернативным определением). Поэтому собственно для неортогональной проекции надо потребовать, чтобы эта ортогональность отсутствовала.
Для неортогональной проекции вектора на прямую и на направление определения получаются, исходя из приведённого определения проекции точки, прямо аналогично тому, как это было описано в параграфе об ортогональной проекции.
Тем не менее понятие неортогонального проектирования может быть полезным (по крайней мере, если не бояться терминологической путаницы) для введения косоугольных координат и работы с ними (через них может быть в принципе довольно легко определено понятие координат точки и координат вектора в этом случае).
Проекция (в геометрии)
В черчении широко применяется частный вид параллельного проектирования, когда плоскость П. расположена перпендикулярно (ортогонально) к направлению проектирования. П. в этом случае называется прямоугольной или ортогональной.
Полезное
Смотреть что такое «Проекция (в геометрии)» в других словарях:
ПРОЕКЦИЯ — (от лат. projectio букв. бросание вперед), изображение пространственных фигур на плоскости (или на какой либо другой поверхности). Центральная проекция: из определенной точки О (центра проекции) через все точки данной фигуры проводятся лучи до… … Большой Энциклопедический словарь
ПРОЕКЦИЯ — ПРОЕКЦИЯ, и, жен. (спец.). 1. Изображение пространственных фигур на плоскости. 2. Передача на экран изображений. | прил. проективный, ая, ое (к 1 знач.) и проекционный, ая, ое (ко 2 знач.). Проективная геометрия (раздел геометрии). Проекционный… … Толковый словарь Ожегова
проекция — и; ж. [от лат. projectio бросание вперёд, вдаль] 1. Матем. Изображение пространственных фигур на плоскости. Картографические проекции. Горизонтальная, вертикальная п. П. пирамиды. Вычертить детали по трём проекциям. 2. Спец. Изображение на экране … Энциклопедический словарь
Проекция (геометрия) — У этого термина существуют и другие значения, см. Проекция. Проекции Параллельная Прямоугольная (ортогональная) Аксонометрическая Изометрическая Диметрическая Триметрическая Косоугольная Аксонометрическая Изометрическая Диметрическая… … Википедия
Проекция — I Проекция (от лат. projectio бросание вперёд, выбрасывание) геометрический термин, связанный с операцией проектирования (проецирования), которую можно определить следующим образом (см. рис. 1): выбирают произвольную точку S пространства… … Большая советская энциклопедия
ПРОЕКЦИЯ — (от лат. projectio, букв. выбрасывание вперёд), изображение пространственных фигур на плоскости (или на к. л. другой поверхности). Центральная П.: из определ. точки О (центра П.) через все точки данной фигуры проводятся лучи до пересечения с… … Естествознание. Энциклопедический словарь
СТЕРЕОГРАФИЧЕСКАЯ ПРОЕКЦИЯ — соответствие между точками сферы и плоскости, получаемое следующим образом; из нек рой точки Sна сфере (центра С. п.) другие точки сферы проектируются лучами на плоскость, перпендикулярную радиусу сферы S0 (на рис. эта плоскость экваториальная,… … Математическая энциклопедия
Начертательная геометрия — раздел геометрии, в котором пространственные фигуры изучаются при помощи построения их изображений на плоскости, в частности построения проекционных изображений, а также методы решения и исследования пространственных задач на плоскости.… … Большая советская энциклопедия
Начертательная геометрия — Начертательная геометрия инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов для исследования свойств геометрических объектов. Практически, начертательная геометрия ограничивается исследованием объектов … Википедия
Проекция точки на плоскость, координаты проекции точки на плоскость
В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.
Проецирование, виды проецирования
Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.
Проекция фигуры на плоскость – чертеж пространственной фигуры.
Очевидно, что для построения проекции существует ряд используемых правил.
Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.
Использование тех или иных правил определяет тип проецирования: центральное или параллельное.
Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.
Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.
Проекция точки на плоскость
Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.
Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.
Проекция точки на плоскость – это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.
Нахождение координат проекции точки на плоскость, примеры
Решение очевидным образом следует из данного выше определения проекции точки на плоскость.
Таким образом, для нахождения координат проекции точки на плоскость необходимо:
— получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;
Рассмотрим теорию на практических примерах.
Решение
Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.
Составим систему уравнений:
И решим ее, используя метод Крамера:
Решение
В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:
Далее рассмотрим еще один вариант решения, отличный от того, что мы использовали в первом примере.
Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:
Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой
Для этого в уравнение плоскости подставим:
Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.
Продемонстрируем, как был получен этот результат.
x = x 1 + λ y = y 1 z = z 1
Решение
Проекция
Прое́кция (лат. projectio — бросание вперёд):
Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из другой статьи Википедии, пожалуйста, вернитесь и уточните ссылку так, чтобы она указывала на статью. |
Полезное
Смотреть что такое «Проекция» в других словарях:
проекция — Классическая форма защиты, состоящая в приписывании другому или другим своих собственных ощущений, эмоций, мыслей, проблем (Смотри также: профлексия, дефлексия и ретрофлексия). Краткий толко … Большая психологическая энциклопедия
ПРОЕКЦИЯ — (лат., от projicere выставлять). Изображение предмета на плане, на плоской поверхности, по известным геометрическим законам; набрасывание на бумаге положения и формы предмета. Словарь иностранных слов, вошедших в состав русского языка. Чудинов… … Словарь иностранных слов русского языка
ПРОЕКЦИЯ — (от лат. projectio бросание вперёд, выбрасывание) в психологии, восприятие собств. психич. процессов как свойств внеш. объекта в резуль тате бессознат. перенесения на него своих внутр. импульсов и чувств. П. играет большую роль в процессе … Философская энциклопедия
ПРОЕКЦИЯ — (от лат. projectio букв. бросание вперед), изображение пространственных фигур на плоскости (или на какой либо другой поверхности). Центральная проекция: из определенной точки О (центра проекции) через все точки данной фигуры проводятся лучи до… … Большой Энциклопедический словарь
проекция — вид, отображение Словарь русских синонимов. проекция сущ., кол во синонимов: 6 • звукопроекция (1) • … Словарь синонимов
ПРОЕКЦИЯ — ПРОЕКЦИЯ, проекции, жен. (лат. projectio бросание вперед, вдаль). 1. Геометрическое изображение на плоскости, получаемое при проведении перпендикуляров из всех точек данного тела на эту плоскость (мат.). Параллельные проекции. Прямоугольные… … Толковый словарь Ушакова
ПРОЕКЦИЯ — ПРОЕКЦИЯ, и, жен. (спец.). 1. Изображение пространственных фигур на плоскости. 2. Передача на экран изображений. | прил. проективный, ая, ое (к 1 знач.) и проекционный, ая, ое (ко 2 знач.). Проективная геометрия (раздел геометрии). Проекционный… … Толковый словарь Ожегова
ПРОЕКЦИЯ — англ. projection; нем. Projektion. 1. Механизм психол. защиты индивида, заключающийся в неосознанном наделении др. индивида собственными чертами и свойствами. 2. Восприятие собственных псих, процессов как свойств внешнего объекта в результате… … Энциклопедия социологии
проекция — ПРОЕКЦИЯ. 1. Психологический механизм, заключающийся в бессознательном приписывании субъектом имеющихся у него неосознаваемых мыслей, переживаний, черт и мотивов другим людям. Впервые понятие П. ввел 3. Фрейд, который рассматривал в… … Энциклопедия эпистемологии и философии науки
проекция — проекция. Произносится [проэкция] … Словарь трудностей произношения и ударения в современном русском языке
Лекция 1. Методы проецирования
1.1. Центральное проецирование
Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.
Центральное проецирование заключается в проведении через каждую точку (А, В, С,…) изображаемого объекта и определённым образом выбранный центр проецирования (S) прямой линии (SA, SB, >… — проецирующего луча).
Рисунок 1.1 – Центральное проецирование
Введём следующие обозначения (Рисунок 1.1):
SA, SB – проецирующие прямые (проецирующие лучи).
Примечание: левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.
Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.
Докажем это утверждение.
На рисунке 1.1: точка А1 – центральная проекция точки А на плоскости проекций π1. Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С. Центральная проекция точки С (С1) на плоскости проекций π1 совпадает с проекцией точки А (А1):
Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.
Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым, введём еще одну плоскость проекций (π2) и ещё один центр проецирования (S2) (Рисунок 1.2).
Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств
Построим проекции точки А на плоскости проекций π2. Из всех точек пространства только точка А имеет своими проекциями А1 на плоскость π1 и А2 на π2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В).
Докажем данное свойство.
Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ, задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π1=А1В1, где А1В1 – центральная проекция прямой, заданной отрезком АВ.
Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.
1.2. Параллельное проецирование
Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:
Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P, называется параллельным.
Рисунок 1.3 – Метод параллельного проецирования
Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р. Проецирующий луч проведённый через точку А пересечёт плоскость проекций π1 в точке А1. Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В1. Соединив точки А1 и В1, получим отрезок А1 В1– проекция отрезка АВ на плоскость π1.
1.3. Ортогональное проецирование. Метод Монжа
Четырехугольник АА1В1В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π1 (γ⊥π1). В дальнейшем будем использовать только прямоугольное проецирование.
Рисунок 1.4 – Ортогональное проецирование
Рисунок 1.5- Монж, Гаспар (1746-1818)
Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).
До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.
Гаспар Монж родился 9 мая 1746 года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.
Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.
В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней. Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается. Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive) (стенографическая запись этих лекций была сделана в 1795 году). Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie, 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.
В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.
Метод изображения объектов по Монжу заключается в двух основных моментах:
1. Положение геометрического объекта в пространстве, в данном примере точки А, рассматривается относительно двух взаимно перпендикулярных плоскостей π1 и π2 (Рисунок 1.6).
Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие координатных осей проекций на линию пересечения плоскостей проекций (ось проекций) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.
Рисунок 1.6 – Модель построения проекций точки
π1 – горизонтальная (первая) плоскость проекций
π2 – фронтальная (вторая) плоскость проекций
Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π1 и π2.
Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π1 и π2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций. А1 – горизонтальная (первая) проекция точки А;А2 – фронтальная (вторая) проекция точки А; АА1 и АА2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π1 и π2. Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π1 и π2:
2. Совместим поворотом вокруг оси проекций π2/π1 плоскости проекций в одну плоскость (π1 с π2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным (ортогональным) чертежом (Рисунок 1.7):
Рисунок 1.7 – Ортогональный чертеж
1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа
1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.
2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.
Убедимся в справедливости последнего утверждения, для чего повернём плоскость π1 в исходное положение (когда π1⊥π2). Для того, чтобы построить точку А необходимо из точек А1 и А2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π1и π2, соответственно. Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А. Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).
Рисунок 1.8 – Построение эпюра точки
Введём третью (профильную) плоскость проекций π3 перпендикулярную π1 и π2 (задана осью проекций π2/π3).
Расстояние от профильной проекции точки до вертикальной оси проекций А‘0A3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π2. Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A(XA; YA; ZA) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A1=(XA; YA); A2=(XA; ZA)). На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).
а б
Рисунок 1.9 – Построение эпюра точки по её координатам
По расположению на эпюре проекций точки можно судить о её расположении в пространстве:
Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.
X | Y | Z | |
---|---|---|---|
I | + | + | + |
II | + | — | + |
III | + | — | — |
IV | + | + | — |
Упражнение
Решение задачи: по оси OX отложить значение координаты XA=60, затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX, по которой вверх отложить значение координаты ZA=40, а вниз – значение координаты YA=20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.
Рисунок 1.10 – Решение задачи
1.5. Задачи для самостоятельного решения
1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).
Рисунок 1.11
2. Достройте недостающие ортогональные проекции точек А, В, С на плоскости проекций π1, π2, π3 (Рисунок 1.12).
Рисунок 1.12
3. Постройте проекции точки:
4. Постройте ортогональные проекции точки К, расположенной во втором квадранте и удаленной от плоскостей проекций π1 на 40 мм, от π2 — на 15 мм.