Что значит привести подобные математика

6.4.2. Раскрытие скобок. Приведение подобных слагаемых

1. Раскрытие скобок, перед которыми стоит знак «+» или не стоит никакого знака.

Если перед скобками стоит знак «+» или не стоит никакого знака, то убираем скобки, знак «+» и записываем слагаемые, стоявшие в скобках, без изменений.

Примеры. Раскрыть скобки.

1в) 7x+(-a-2b+5c-k) = 7x-a-2b+5c-k.

2. Раскрытие скобок, перед которыми стоит знак «-».

Если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

Примеры. Раскрыть скобки.

Числовой множитель, стоящий перед буквенным множителем, называют коэффициентом. Так, в выражении 5а коэффициент равен 5, а в выражении (-а) коэффициент равен (-1).

Нахождение алгебраической суммы подобных слагаемых называется приведением подобных слагаемых.

Чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

Примеры. Привести подобные слагаемые.

3в) 5,2с-2,8с-6,4с+9с = (5,2-2,8-6,4+9)с = 5с.

4. В алгебраическом выражении могут быть различного вида подобные слагаемые. В этом случае подобные слагаемые подчеркиваются одинаковыми линиями.

Примеры. Привести подобные слагаемые.

5. Для преобразования алгебраических выражений с помощью раскрытия скобок используют распределительное свойство умножения: чтобы сумму чисел умножить на третье число, можно каждое слагаемое умножить на третье число и сложить результаты.

Примеры. Раскрыть скобки.

5а) 2 (4х-5у) = 2 4х+2 (-5) = 8х-10у;

6. Упростить алгебраическое выражение – это значит раскрыть скобки, выполнить указанные действия, привести подобные слагаемые.

Примеры. Упростить выражение.

7. Примеры для самостоятельного решения. Упростить:

Источник

Подобные слагаемые

Урок 42. Математика 6 класс

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Конспект урока «Подобные слагаемые»

Сегодня на уроке мы узнаем, какие слагаемые называют подобными, а также научимся приводить подобные слагаемые или, проще говоря, упрощать выражения.

Для изучения нового материала нам понадобятся понятие «коэффициента» и знание распределительного свойства умножения. Вспомним их.

Коэффициентом называют числовой множитель, который записан перед буквенным (одним или несколькими) множителем.

Распределительное свойство умножения справедливо для любых чисел a, b и c.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Оно позволяет, как раскрывать скобки, так и выносить общий множитель за скобки.

Часто при работе с выражениями сначала их обычно упрощают, т.е. преобразуют в более компактную и удобную для вычислений форму.

Найти значение выражения 5х + 2х – 3х + 7х при х = 3.

Конечно, можно просто подставить вместо х указанное значение и посчитать сумму полученных произведений.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Но такой процесс вычислений займёт немало времени. Вычисления значительно упростятся, если обратить внимание, на то, что все слагаемые имеют один и тот же буквенный множитель х. И вот тут к нам на помощь приходит распределительное свойство умножения. Мы знаем, что на основании распределительного свойства можно выносить общий множитель за скобки. Вынесем в нашем выражении общий буквенный множитель х за скобки.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Смотрите, как мы себе упростили вычисления. Такие преобразования можно выполнять только в тех случаях, когда слагаемые имеют одинаковую буквенную часть.

Такие слагаемые называют подобными, а сами преобразования называют приведением подобных слагаемых.

Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.

Замену суммы подобных слагаемых одним слагаемым называют приведением подобных слагаемых.

Подобные слагаемые могут отличаться только коэффициентами. Кроме того, подобными считают и равные слагаемые, а также числа.

Заметим, что слагаемые, у которых равны коэффициенты, а буквенные множители различны, подобными не являются, хотя и к ним иногда полезно применять распределительное свойство умножения.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Ответим на вопрос: зачем же нужно приводить подобные слагаемые?

Ответ на этот вопрос прост. Приводят подобные слагаемые для того, чтобы сделать суммы более короткими, т.е. преобразовывают их в суммы с меньшим числом слагаемых.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Посмотрите, в нашей начальной сумме было 4 слагаемых, а мы её преобразовали в выражение, состоящее из двух множителей. С более короткими суммами легче выполнять вычисления.

Запишем правило, по которому приводят подобные слагаемые:

Для того чтобы привести подобные слагаемые, надо:

1) сложить коэффициенты подобных слагаемых;

2) результат умножить на общую буквенную часть.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.

Замену суммы подобных слагаемых одним слагаемым называют приведением подобных слагаемых.

Для того чтобы привести подобные слагаемые, надо:

1) сложить коэффициенты подобных слагаемых;

2) результат умножить на общую буквенную часть.

Источник

Урок 42 Бесплатно Подобные слагаемые

В одном из прошлых уроков мы узнали и разобрали одно важное свойство распределительных чисел: распределительное свойство умножения относительно сложения.

Сегодня мы подробно посмотрим, как оно позволяет нам раскрывать скобки и приводить подобные слагаемые, а также в целом упрощать выражение.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Раскрытие скобок

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Распределительное свойство умножения справедливо для любых чисел a, b и c.

Также мы уже упоминали, что это свойство можно обобщить, во-первых, для большего числа слагаемых, во-вторых, в роли общего множителей могут выступать не только числа, но и выражения.

Сейчас подробно посмотрим на примерах.

Пример:

Посмотрим на выражение \(\mathbf<(\frac<15><37>+\frac<19><74>)\cdot74>\)

Мы можем сначала посчитать выражение в скобках, а можем сначала раскрыть скобки, избавившись от дробей, а затем выполнить сложение.

Воспользуемся вторым способом:

В данном случае мы имели выражение, максимально близкое к тому, что мы видим в формулировке распределительного свойства.

Теперь рассмотрим такое выражение: \(\mathbf<(1001-65):13>\)

Тут мы видим вычитание вместо сложения и деление вместо умножения.

Но мы уже умеем заменять вычитание на сложение, заменяя вычитаемое на слагаемое, противоположное вычитаемому:

Также и деление мы умеем заменять на умножение, заменяя делитель на множитель, обратный делителю:

Теперь мы получили выражение, соответствующее формулировке распределительного свойства.

Применим же свойство и найдем значение выражения.

Заметим, что хоть мы и заменяли вычитание на сложение, в конце мы все равно вычитали.

Также несмотря на то, что мы заменяли деление на умножение, в конце мы все равно делили.

Распределительное свойство также работает и в таком виде:

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Также важно понимать, что распределительное свойство может работать не только с двумя числами, но и с любым другим их количеством.

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Три точки обозначают любое количество слагаемых от нуля до бесконечности.

Аналогично предыдущему примеру, слагаемые в скобках могут быть с разными знаками. В таком случае они будут с такими же знаками и в правой части равенства.

Пример:

Раскроем скобки в выражении \(\mathbf<(a+b+c+d)\cdot x>\) :

Также важно понимать, что на месте a, b и других букв в скобках могут стоять любые другие выражения.

Пример:

Также и множитель снаружи скобок может быть не только числом или скобкой, а любым другим выражением, например, как в этом примере ax и bx являются произведениями двух множителей.

Как мы сказали, множитель может быть любым выражением, например, выражением в скобках. Рассмотрим еще такой пример.

Пример:

Раскроем скобки в выражении \(\mathbf<(a+b)(c+d)>\) :

Тут можно действовать в любом порядке: можно считать первую скобку общим множителем, раскрывая вторую, а можно и наоборот.

Мы будем сейчас раскрывать вторую скобку, то есть (\(\mathbf\)) будет общим множителем:

Теперь общими множителями для первой и второй скобок будут с и d соответственно:

Промежуточный шаг можно было пропустить, так как скобки не несли в нем смысла, но оставим его здесь для наглядности.

Пройти тест и получить оценку можно после входа или регистрации

Вынесение общего множителя

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Распределительное свойство умножения относительно сложения помогает нам выносить общий множитель, то есть, смотря на формулировку, мы из правой части переходим в левую.

Сразу скажем, что по аналогии с раскрытием скобок, мы не должны пугаться вычитания и деления, а должны, если сомневаемся, заменять их на сложение и умножение соответственно.

Пример:

Вынесем общий множитель в выражении \(\mathbf\) :

Мы видим, что выражение состоит из трех слагаемых, каждое из которых является произведением.

В каждом из этих произведений есть множитель а.

Его мы и будем выносить.

В данном случае не стояла задача раскрывать скобки. Мы это сделали, чтобы ответ выглядел более законченным

Также можно выносить несколько множителей одновременно.

Пример:

Вынесем общие множители в выражении \(\mathbf\)

В данном случае в выражении три произведения, в каждом из которых есть множитель а и с, вынесем их:

Кстати, всегда можно проверить себя, раскрыв скобки и убедившись в равенстве полученного выражения и исходного.

Как мы уже сказали, в роли множителей могут выступать всевозможные выражения, а не только числа или произведения. Покажем на примере.

Пример:

Вынесем общие множители в выражении \(\mathbf\) :

Мы видим, что общий множитель есть у первых двух слагаемых и у вторых двух соответственно, вынесем их.

Получается, что выражение состоит из двух слагаемых, каждое из которых является произведением, и в каждом из этих произведений есть множитель \(\mathbf<(a+b>\), вынесем его:

Так мы получили ответ.

Пройти тест и получить оценку можно после входа или регистрации

Приведение подобных слагаемых

В заголовке мы упомянули два новых термина, поэтому сначала дадим им определения.

Подобными слагаемыми называют такие слагаемые, которые имеют одинаковую буквенную часть.

Пример:

Посмотрим, какие есть подобные слагаемые в выражении \(\mathbf<12ab+2b+3ab+5\frac<1><2>b+0.2b>\)

У первого и третьего слагаемого буквенная часть равна \(\mathbf\), значит, эти два слагаемых являются подобными.

У второго, четвертого и пятого слагаемого буквенная часть равна \(\mathbf\), эти три слагаемых являются подобными.

Если же мы зададимся вопросом, являются ли подобными первые два слагаемых, то ответ будет отрицательным.

В самом деле, их буквенные части отличаются: \(\mathbf\)

Внимательный читатель заметит, иногда \(\mathbf\), при условии, что \(\mathbf\), но мы не можем на это полагаться, так как не знаем конкретных значений, поэтому такие слагаемые считать подобными не будем.

Нередко для удобства подобные слагаемые подчеркивают, причем каждую группу подобных слагаемых подчеркивают разным типом подчеркиваний:

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Теперь зная, что такое подобные слагаемые, приступим к их сложению (приведению).

Чтобы привести (сложить) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.

Пример:

Возьмем то же выражение и приведем в нем подобные слагаемые.

Как вы видите, процесс очень похож на вынесение общего множителя. В данном случае общим множителем для подобных слагаемых является их одинаковая буквенная часть.

Если мы видим в сумме слагаемое со знаком «минус» перед ним, то и коэффициенты мы будем складывать с этим же знаком.

Пример:

Приведем подобные слагаемые в выражении \(\mathbf<5c+4a-2c+3a>\)

Также достаточно часто встречаются задания вида «раскройте скобки и приведите подобные слагаемые».

Пример:

Раскроем скобки и приведем подобные слагаемые в выражении \(\mathbf<5a(c+3d)-4c(a-d)>\)

В целом, ничего нового в этом задании нет, надо просто аккуратно применить те приемы, которые мы уже освоили.

Пройти тест и получить оценку можно после входа или регистрации

Дополнительная информация

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Мы уже говорили про математику в литературе, но речь была про малоизвестные случаи.

Наш урок имеет порядковый номер 42, а это число является крайне популярным в культуре!

Известно оно стало из-за книги Дугласа Адамса «Автостопом по галактике».

В ней сверхразумная раса существ создала мощный компьютер с названием «Думатель» (Deep Thought) с одной лишь целью: найти «Окончательный Ответ на величайший вопрос Жизни, Вселенной и Всего Такого».

После семи с половиной миллионов лет работы компьютер выдал один ответ: число 42.

Дальше отрывок из книги, как отреагировали существа:

“— Сорок два! — взвизгнул Лунккуоол. — И это всё, что ты можешь сказать после семи с половиной миллионов лет работы?

— Я всё очень тщательно проверил, — сказал компьютер, — и со всей определённостью заявляю, что это и есть ответ. Мне кажется, если уж быть с вами абсолютно честным, то всё дело в том, что вы сами не знали, в чём вопрос.

— Но это же великий вопрос! Окончательный вопрос жизни, Вселенной и всего такого! — почти завыл Лунккуоол.

— Да, — сказал компьютер голосом страдальца, просвещающего круглого дурака. — И что же это за вопрос? “

Книга оказалась крайне популярной и читающее сообщество начало гадать, что могло означать это число, какой смысл вкладывал автор.

Но само число стало частью культуры, и, например, в сообществе программистов, часто можно встретить примеры с именно этим числом.

Заключительный тест

Пройти тест и получить оценку можно после входа или регистрации

Источник

Подобные слагаемые, их приведение, примеры.

Одним из наиболее часто используемых тождественных преобразований является приведение подобных слагаемых. В этой статье мы дадим определение подобных слагаемых, разберемся, что называют приведением подобных слагаемых, рассмотрим правила, по которым выполняется это действие, и приведем примеры приведения подобных слагаемых с подробным описанием решения.

Навигация по странице.

Определение и примеры подобных слагаемых.

Разговор о подобных слагаемых возникает после знакомства с буквенными выражениями, когда возникает необходимость проведения преобразований с ними. По учебникам математики Н. Я. Виленкина определение подобных слагаемых дается в 6 классе, и оно имеет следующую формулировку:

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента, и буквенной части.

Дальше из контекста указанного выше учебника становится видно дополнение к определению подобных слагаемых – слагаемые в буквенном выражении, не имеющие буквенной части, также называют подобными.

Позже расширяется и понятие буквенной части – буквенной частью начинаю считать не только произведение букв, а произвольное буквенное выражение. К примеру, в учебнике алгебры для 8 класса авторов Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова под редакцией С. А. Теляковского приведена сумма вида Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика, и сказано, что составляющие ее слагаемые являются подобными. Общей буквенной частью этих подобных слагаемых является выражение с корнем вида Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика.

Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.

Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.

Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).

Приведение подобных слагаемых, правило, примеры

Приведение подобных слагаемых проводится в три этапа:

Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых: чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).

Для закрепления материала рассмотрим решение еще одного примера.

Источник

Подобные слагаемые. Приведение подобных слагаемых

Подобные слагаемые – это одночлены, у которых одинаковы буквенные множители.

одночлены \(2\)\(x\) и \(5\)\(x\) – подобны, так как и там, и там буквы одинаковы: икс;

одночлены \(x^2y\) и \(-2x^2y\) – подобны, так как и там, и там буквы одинаковы: икс в квадрате, умноженный на игрек. То, что перед вторым одночленом стоит знак минус не играет роли, просто у него отрицателен числовой множитель ( коэффициент );

одночлены \(3xy\) и \(5x\)– не подобны, так как в первом одночлене буквенные множители икс и игрек, а во втором – только икс;

Приведение подобных слагаемых

Подобные слагаемые можно складывать и вычитать, заменяя сложные выражения на более простые. Например, выражение \(2x+5x\) без проблем можно заменить на \(7x\). Логика такой замены понятна из пояснения выше:

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Процесс замены суммы или разности подобных слагаемых одним одночленом называется «приведение подобных слагаемых».

Отметим при этом, что если слагаемые не подобны, то привести их не получится. Например, в сложить \(2x^2\) и \(3x\) – нельзя, они же разные!

Что значит привести подобные математика. Смотреть фото Что значит привести подобные математика. Смотреть картинку Что значит привести подобные математика. Картинка про Что значит привести подобные математика. Фото Что значит привести подобные математика

Пример. Решить уравнение \(7x^2+3x-7x^2-x=6\)

В левой части уравнения есть подобные слагаемые: \(7x^2\) и \((-7x^2)\), а также \(3x\) и \((-x)\). Перепишем уравнение так, чтоб они стояли рядом. Для этого меняем местами слагаемые одночлены, не забывая сохранять знаки.

Каждый раз переписывать уравнение так, чтоб подобные стояли рядом совсем необязательно, можно приводить их сразу. Здесь это было сделано для наглядности дальнейших преобразований.

Хочу задать вопрос

Присоединяйтесь к нашей группе ВКонтакте

Смотрите нас в YouTube

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *