Что значит относительно точки
ВИДЫ СИММЕТРИИ
СИММЕТРИЯ ОТНОСИТЕЛЬНО ПРЯМОЙ (ОСЕВАЯ СИММЕТРИЯ)
Одна точка называются симметричной другой относительно прямой, если данная прямая проходит через середину отрезка, соединяющего эти точки, и перпендикулярна к этому отрезку. Каждая точка прямой а считается симметричной самой себе. Прямая называется осью симметрии фигуры если каждая точка фигуры симметрична относительно некоторой точки той же фигуры.
зеркальная симметрия
Геометрическая фигура называется симметричной относительно плоскости S, если для каждой точки этой фигуры может быть найдена другая точка этой же фигуры, так что отрезок, соединяющий эти точки, перпендикулярен плоскости S и делится этой плоскостью пополам. Плоскость S называется плоскостью симметрии.
Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка или ботинок не подходит для правой руки или ноги и наоборот). Они называются зеркально равными.
центральная симметрия
Геометрическая фигура (или тело) называется симметричной относительно центра О, если для каждой точки этой фигуры может быть найдена другая точка этой же фигуры, так что отрезок, соединяющий эти точки, проходит через центр О и делится в этой точке пополам. Точка О называется центром симметрии.
поворотная симметрия (симметрия вращения)
При поворотной симметрии переход частей фигуры в новое положение или преобразование исходной фигуры происходит при повороте фигуры на определенный угол вокруг точки, которая называется центром поворота. Поворотная симметрия может рассматриваться на плоскости и в пространстве.
Тело (фигура) обладает симметрией вращения, если при повороте на угол 360°/n (n – целое число, например, 2, 3, 4 и т.д. до бесконечности) вокруг некоторой прямой (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию.
симметрия подобия
Представляет собой своеобразный аналог предыдущих симметрий с той лишь разницей, что она связана с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрешки.
переносная (трансляционная симметрия)
О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса.
примеры симметрии геометрических фигур
Разными видами симметрии могут обладать и плоские и объемные фигуры. Например, квадрат, прямоугольник, ромб имеют и центр симметрии и оси симметрии.
Окружность и круг имеют центр симметрии и бесконечно много осей симметрии. Объемные фигуры могут иметь центр симметрии, оси симметрии и обладать зеркальной симметрией.
Правильные многогранники своей симметрией с древних времён привлекали к себе внимание учёных, архитекторов, художников. Их по праву называют самыми симметричными из всех многогранников.
Подробно описал свойства правильных многогранников древнегреческий учёный Платон. Поэтому их называют телами Платона. Правильным многогранникам посвящена 13 книга “Начал” Евклида.
Очень симметричной фигурой является, например, куб. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (6), либо через середины противоположных ребер (3).
Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (6), либо через середины противоположных ребер (3).
Осевая и центральная симметрия
Что такое симметрия
Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.
Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.
Центр симметрии — это точка, в которой пересекаются все оси симметрии.
Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.
Рассмотрите фигуры с осевой и центральной симметрией.
Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.
Осевая симметрия
Вот как звучит определение осевой симметрии:
Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.
При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.
Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.
В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.
Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.
Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.
Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!
Центральная симметрия
Теперь поговорим о центральной симметрии — вот ее определение:
Центральной симметрией называется симметрия относительно точки.
Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах на 8 марта.
Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.
Пример 2. Постройте треугольник A1B1C1, симметричный треугольнику ABC, относительно центра (точки О).
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).
Задачи на самопроверку
В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!
Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.
Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:
Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная
Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.
Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.
Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.
Что такое симметрия и асимметрия?
Симметрия ассоциируется с гармонией и порядком. И не зря. Потому что на вопрос, что такое симметрия, есть ответ в виде дословного перевода с древнегреческого. И получается, что она означает соразмерность и неизменность. А что может быть упорядоченней, чем строгое определение местоположения? И что можно назвать более гармоничным, чем то, что строго соответствует размерам?
Что означает симметрия в разных науках?
Биология. В ней важной составляющей симметрии является то, что животные и растения имеют закономерно расположенные части. Причем в этой науке не существует строгой симметрии. Всегда наблюдается некоторая асимметрия. Она допускает то, что части целого не совпадают с абсолютной точностью.
Физика. Система тел и изменения в ней описываются с помощью уравнений. В них оказываются симметричные составляющие, что позволяет упростить все решение. Это выполняется благодаря поиску сохраняющихся величин.
Математика. Именно в ней в основном и дается разъяснение, что такое симметрия. Причем большее значение ей уделяется в геометрии. Здесь симметрия — это способность к отображению у фигур и тел. В узком смысле она сводится просто к зеркальному отображению.
Как определяют симметрию разные словари?
На вопрос, что такое симметрия, словарь Ожегова уже говорит об одинаковости в положении частей относительно точки, прямой или плоскости.
В словаре Ушакова упоминается еще и пропорциональность, а также полное соответствие двух частей целого друг другу.
Когда говорят об асимметрии?
Приставка «а» отрицает смысл основного существительного. Поэтому асимметрия означает то, что расположение элементов не поддается определенной закономерности. В ней отсутствует всякая неизменность.
В живой природе асимметрия играет важную роль. Причем она может быть как полезной, так и вредной. К примеру, сердце помещается в левую половину груди. За счет этого левое легкое существенно меньшего размера. Но это необходимо.
О центральной и осевой симметрии
В математике выделяют такие ее виды:
Что такое ось и центр симметрии? Это точка или прямая, относительно которой любой точке тела найдется другая. Причем такая, чтобы расстояние от исходной до получившейся делилось пополам осью или центром симметрии. Во время движения этих точек они описывают одинаковые траектории.
В ситуациях, когда необходимо найти центр симметрии, нужно поступать следующим образом. Если фигур две, то найти у них одинаковые точки и соединить их отрезком. Потом разделить пополам. Когда фигура одна, то помочь может знание ее свойств. Часто этот центр совпадает с точкой пересечения диагоналей или высот.
Какие фигуры являются симметричными?
Геометрические фигуры могут обладать осевой или центральной симметрией. Но это не обязательное условие, существует множество объектов, которые не обладают ею вовсе. К примеру, параллелограмм обладает центральной, но у него нет осевой. А неравнобедренные трапеции и треугольники не имеют симметрии совсем.
Если рассматривается центральная симметрия, фигур, обладающих ею, оказывается довольно много. Это отрезок и круг, параллелограмм и все правильные многоугольники с числом сторон, которое делится на два.
Центром симметрии отрезка (также круга) является его центр, а у параллелограмма он совпадает с пересечением диагоналей. В то время как у правильных многоугольников эта точка тоже совпадает с центром фигуры.
Если в фигуре можно провести прямую, вдоль которой ее можно сложить, и две половинки совпадут, то она (прямая) будет являться осью симметрии. Интересно то, сколько осей симметрии имеют разные фигуры.
К примеру, острый или тупой угол имеет только одну ось, которой является его биссектриса.
Если нужно найти ось в равнобедренном треугольнике, то нужно провести высоту к его основанию. Линия и будет осью симметрии. И всего одной. А в равностороннем их будет сразу три. К тому же, треугольник обладает еще и центральной симметрией относительно точки пересечения высот.
У круга может быть бесконечное число осей симметрии. Любая прямая, которая проходит через его центр, может исполнить эту роль.
Прямоугольник и ромб обладают двумя осями симметрии. У первого они проходят через середины сторон, а у второго совпадают с диагоналями.
Квадрат же объединяет предыдущие две фигуры и имеет сразу 4 оси симметрии. Они у него такие же, как у ромба и прямоугольника.
Центральная симметрия
Урок 8. Геометрия 11 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Центральная симметрия»
Сегодня на уроке мы вспомним понятия отображения плоскости на себя, движение плоскости, вспомним основные понятия центральной симметрии. Введём понятия отображения пространства и движение пространства, центральной симметрии в пространстве. Определим, будет ли центральная симметрия в пространстве – движением пространства.
Мы уже с вами знакомы с таким понятием, как движение. Давайте вспомним, что мы называли движением.
Движением мы называли любое отображение плоскости, которое сохраняет расстояние между точками.
Отображение плоскости на себя определяли так: если каждой точке плоскости ставится в соответствие какая-то точка этой же плоскости, причём любая точка плоскости оказывается сопоставленной некоторой точке, то говорят, что дано отображение плоскости на себя.
Эти определения мы давали для движения на плоскости. Но в стереометрии мы говорим о пространстве, значит, надо определить, что называется движением пространства.
Но сначала давайте определим, что такое отображение пространства на себя.
Пусть каждой точке пространства поставлена в соответствие некоторая точка
, причем любая точка
пространства оказалась поставленной в соответствие какой-то точке
. Тогда говорят, что задано отображение пространства на себя. При данном отображении точка
переходит (отображается) в точку
.
Под движением пространства понимается отображение пространства на себя, при котором любые две точки пространства и
отображаются в какие-то точки
и
так, что
.
По-другому можно сказать, что движение пространства – это отображение пространства на себя, сохраняющее расстояние между точками.
Теперь давайте вспомним, какие фигуры обладают центральной симметрией.
Фигура называется симметричной относительно точки , если для каждой точки фигуры симметричная ей точка относительно точки
также принадлежит этой фигуре. Точка
называется центром симметрии фигуры.
Примерами центрально симметричных фигур можно назвать некоторые цветы:
В геометрии яркими примерами центрально симметричных фигур являются окружность (центр симметрии – центр окружности) и параллелограмм (центром симметрии является точка пересечения диагоналей).
Ещё мы давали такое определение:
Точки и
называются симметричными относительно точки
, если
– середина отрезка
.
Точка называется центром симметрии.
Точка считается симметричной сама себе.
В курсе планиметрии мы доказывали, что центральная симметрия является движением.
Напомним это доказательство.
Рассмотрим точки М и N и точки М1 и N 1 симметричные точкам М и N относительно точки О.
Рассмотрим треугольники М NО и М1ОN1.
То есть при центральной симметрии сохраняется расстояние между точками. Тогда по определению движения, получим, что и центральная симметрия является движением.
В пространстве центральной симметрией мы назовём отображение пространства на себя, при котором любая точка переходит в симметричную ей точку
относительно данного центра
.
Теперь давайте докажем, что и в пространстве центральная симметрия является движением.
Пусть О – центр симметрии. Введём прямоугольную систему координат Оxyz с началом в точке О. Теперь давайте попробуем установить связь между координатами двух точек М (x, y, z) и М1(x1, y1, z1), симметричных относительно точки О.
Если точка М не совпадает с точкой О, то по определению центральной симметрии О – середина отрезка ММ1. Тогда координаты точки О можно вычислить по формулам координат середины отрезка. С другой стороны, поскольку О – начало координат, значит, точка О имеет координаты 0, 0, 0. То есть получим, что ,
,
.
Если точки М и О совпадают, тогда точка М1 также совпадает с точкой О, потому что точка О – центр симметрии, а, значит, она отображается сама на себя. И в этом случае будут выполнятся равенства,
,
.
Теперь давайте рассмотрим две точки и
.
По только что доказанным формулам для координат симметричных точек получим, что точка . Точка
.
Теперь давайте найдём расстояние . Получим, что расстояние между точками
,
равно:
Теперь давайте найдём расстояние между точками и
.
Очевидно, что оба эти выражения равны, то есть получим, что .
Вывод: расстояние между точками при центральной симметрии в пространстве сохраняется, значит, центральная симметрия в пространстве также является движением, но уже не плоскости, а пространства.
Рассмотрим несколько задач.
Задача: найти координаты точек, в которые переходят точки ,
,
при центральной симметрии относительно начала координат.
Решение: воспользуемся формулами для вычисления координат симметричных точек.
Если точка симметрична точке
то справедливы формулы:
.
Тогда получим, что точка отобразится в точку
.
Точка отобразится в точку
.
Точка отобразится в точку
.
Решим ещё одну задачу.
Задача: доказать, что при центральной симметрии прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую.
Доказательство. Пусть прямая не проходит через центр симметрии О. Построим точки симметричные точкам
и
относительно точки О.
Рассмотрим и
. По определению центральной симметрии точка О – середина отрезков АА1 и ВВ1, то есть
и
.
Углы как вертикальные, то есть треугольники равны по двум сторонам и углу между ними.
Тогда получим, что . Эти углы являются накрестлежащими для прямых
и
при секущей
. Тогда по признаку параллельности прямых получим, что прямые
. Что и требовалось доказать.
Сегодня на уроке мы вспомнили понятия отображения плоскости на себя, движение плоскости, вспомнили основные понятия центральной симметрии. Ввели понятия отображения пространства и движение пространства, центральной симметрии в пространстве. Показали, что и в пространстве центральная симметрия будет примером движения.