Что значит насыщенный воздух
НАСЫЩЕННЫЙ ВОЗДУХ
Смотреть что такое «НАСЫЩЕННЫЙ ВОЗДУХ» в других словарях:
насыщенный воздух — Влажный воздух, в котором упругость водяного пара соответствует стадии насыщения, его относительная влажность равна 100% … Словарь по географии
насыщенный воздух — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN saturated air … Справочник технического переводчика
насыщенный воздух — sotusis oras statusas T sritis fizika atitikmenys: angl. saturated air vok. gesättigte Luft, f rus. насыщенный воздух, m pranc. air saturé, m … Fizikos terminų žodynas
насыщенный кислородом воздух — Воздух, содержащий кислород в концентрации более 21 % по объему. [ГОСТ Р 12.4.233 2007] Тематики средства индивидуальной защиты EN oxygen enriched air … Справочник технического переводчика
воздух, сильно насыщенный макрочастицами — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high efficiency particulate airHEPA … Справочник технического переводчика
воздух — ароматный (Белоусов, Ратгауз, Чехов); бальзамический (Елисеев); бессонный (Куприн); бестрепетный (Муйжель); благоуханный (Черноговец); благовонный (Полежаев); бледный (Бальмонт); бледнозеркальный (Зайцев); бодрый (Башкин, Андреев); бодрящий… … Словарь эпитетов
насыщенный кислородом воздух — 26 насыщенный кислородом воздух: Воздух, содержащий кислород в концентрации более 21 % по объему. Источник: ГОСТ Р 12.4.233 2007: Система стандартов безопасности труда. Средств … Словарь-справочник терминов нормативно-технической документации
Воздух — I (атмосферный В. см. Атмосфера) невидимая, газообразная оболочка земли; присутствием своим обусловливает животную и растительную жизнь, изменения погоды, распространение звука, выветривание горных пород и т. д. Хотя земля представляет не… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Воздух — I (атмосферный В. см. Атмосфера) невидимая, газообразная оболочка земли; присутствием своим обусловливает животную и растительную жизнь, изменения погоды, распространение звука, выветривание горных пород и т. д. Хотя земля представляет не… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
насыщенный — 1. прич.; кр.ф. насы/щен, насы/щена, щено, щены. Воздух, насыщенный углекислым газом, опасен для здоровья. Жидкость насыщена солями. 2. прил.; кр.ф. насы/щен, насы/щенна, щенно, щенны; насы/щеннее. Жизнь этого художника чрезвычайно интересна и… … Орфографический словарь русского языка
насыщенный воздух
Смотреть что такое «насыщенный воздух» в других словарях:
НАСЫЩЕННЫЙ ВОЗДУХ — воздух, содержащий в единице объема максимально возможное при данной температуре количество водяного пара. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь
насыщенный воздух — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN saturated air … Справочник технического переводчика
насыщенный воздух — sotusis oras statusas T sritis fizika atitikmenys: angl. saturated air vok. gesättigte Luft, f rus. насыщенный воздух, m pranc. air saturé, m … Fizikos terminų žodynas
насыщенный кислородом воздух — Воздух, содержащий кислород в концентрации более 21 % по объему. [ГОСТ Р 12.4.233 2007] Тематики средства индивидуальной защиты EN oxygen enriched air … Справочник технического переводчика
воздух, сильно насыщенный макрочастицами — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high efficiency particulate airHEPA … Справочник технического переводчика
воздух — ароматный (Белоусов, Ратгауз, Чехов); бальзамический (Елисеев); бессонный (Куприн); бестрепетный (Муйжель); благоуханный (Черноговец); благовонный (Полежаев); бледный (Бальмонт); бледнозеркальный (Зайцев); бодрый (Башкин, Андреев); бодрящий… … Словарь эпитетов
насыщенный кислородом воздух — 26 насыщенный кислородом воздух: Воздух, содержащий кислород в концентрации более 21 % по объему. Источник: ГОСТ Р 12.4.233 2007: Система стандартов безопасности труда. Средств … Словарь-справочник терминов нормативно-технической документации
Воздух — I (атмосферный В. см. Атмосфера) невидимая, газообразная оболочка земли; присутствием своим обусловливает животную и растительную жизнь, изменения погоды, распространение звука, выветривание горных пород и т. д. Хотя земля представляет не… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Воздух — I (атмосферный В. см. Атмосфера) невидимая, газообразная оболочка земли; присутствием своим обусловливает животную и растительную жизнь, изменения погоды, распространение звука, выветривание горных пород и т. д. Хотя земля представляет не… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
насыщенный — 1. прич.; кр.ф. насы/щен, насы/щена, щено, щены. Воздух, насыщенный углекислым газом, опасен для здоровья. Жидкость насыщена солями. 2. прил.; кр.ф. насы/щен, насы/щенна, щенно, щенны; насы/щеннее. Жизнь этого художника чрезвычайно интересна и… … Орфографический словарь русского языка
География
Влага в атмосфере (1). Как различаются насыщенный и ненасыщенный воздух?
У них разная относительна влажность.
Насыщенным воздухом называют воздух, который не может вместить больше водяного пара, чем он уже содержит.
Воздух, находящийся над теплой, но сухой поверхностью, например, в пустыне, с которой почти нечему испаряться, содержит водяного пара меньше, чем мог бы содержать. Такой воздух называют ненасыщенным.
Ещё по теме
Есть ли озёра в вашей местности? Как они называются? Какая в них вода — пресная, солоноватая или солёная?
Как люди открывали землю (2). Какие материки были известны европейцам до эпохи Великих географических открытий? В какой последовательности открывались остальные? Какой по счёту была Австралия?
Что называют полезными ископаемыми?
Какими способами добывают из земной коры полезные ископаемые?
Где больше водяного пара — в воздухе вблизи морей и океанов или вдали от них?
Мировой океан (1). Что называется морем, заливом, проливом?
Реки — артерии земли (1). Прочитайте два описания реки Енисей в рубрике «Стоп-кадр». Сравните оба текста. Чем они различаются? Какие мысли и чувства вызывает тот и другой текст? Какой из них (или оба) вы выберете для: а) ответа на уроке; б) подготовки к экзамену; в) составления устного сообщения; г) написания доклада; д) подготовки путешествия во время каникул?
Какие особенности строения нашей планеты отличают её от других планет Солнечной системы?
С помощью рисунков 69 и 71 определите, в каком направлении относительно друг друга движутся Африка и Южная Америка.
Одинаковую ли длину имеет параллели и меридианы?
Насыщенный пар
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.
Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?
Испарение и конденсация
При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.
На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.
Рис. 1. Распределение молекул по скоростям
Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.
Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).
Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.
Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.
Динамическое равновесие
А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.
Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».
Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.
Свойства насыщенного пара
Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:
Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.
1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.
Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.
Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.
2. Давление насыщенного пара не зависит от его объёма.
Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.
3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.
Действительно, при увеличении температуры возрастает скорость испарения жидкости.
Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.
Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.
Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.
4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.
В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.
Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2 ). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.
Рис. 2. Зависимость давления пара от температуры
В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).
Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.
Влажность воздуха
Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.
Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.
Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:
Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.
Воздух и атмосфера
Состав сухого воздуха у земной поверхности
Атмосфера состоит из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твердые частички. Общая масса последних незначительна в сравнении со всей массой атмосферы.
Атмосферный воздух у земной поверхности, как правило, является влажным. Это значит, что в его состав, вместе с другими газами, входит водяной пар, т.е. вода в газообразном состоянии. Содержание водяного пара в воздухе меняется в значительных пределах, в отличие от других составных частей воздуха: у земной поверхности оно колеблется между сотыми долями процента и несколькими процентами. Это объясняется тем, что при существующих в атмосфере условиях водяной пар может переходить в жидкое и твердое состояние и, наоборот, может поступать в атмосферу заново вследствие испарения с земной поверхности.
Воздух без водяного пара называют сухим воздухом. У земной поверхности сухой воздух на 99% состоит из азота (78% по объему или 76% по массе) и кислорода (21% по объему или 23% по массе). Оба эти газа входят в состав воздуха у земной поверхности в виде двухатомных молекул (N2 и О2).
Все перечисленные выше газы всегда сохраняют газообразное состояние при наблюдающихся в атмосфере температурах и давлениях не только у земной поверхности, но и в высоких слоях.
Процентный состав сухого воздуха у земной поверхности очень постоянен и практически одинаков повсюду. Существенно меняться может только содержание углекислого газа. В результате процессов дыхания и горения его объемное содержание в воздухе закрытых, плохо вентилируемых помещений, а также промышленных центров может возрастать в несколько раз — до 0,1—0,2%. Совершенно незначительно меняется процентное содержание азота и кислорода.
Водяной пар в воздухе
Процентное содержание водяного пара во влажном воздухе у земной поверхности составляет в среднем от 0,2% в полярных широтах до 2,5% у экватора, а в отдельных случаях колеблется почти от нуля до 4%. В связи с этим становится переменным и процентное соотношение других газов во влажном воздухе. Чем больше в воздухе водяного пара, тем меньшая часть его объема приходится на постоянные газы при тех же условиях давления и температуры.
Водяной пар непрерывно поступает в атмосферу путем испарения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями переносится из одних мест Земли в другие.
В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, предельно возможном при данной температуре. Водяной пар при этом называют насыщающим, а воздух, содержащий его, насыщенным.
Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара становится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов. Облака могут снова испаряться; в других случаях капельки и кристаллики облаков, укрупняясь, могут выпадать на земную поверхность в виде осадков. Вследствие всего этого содержание водяного пара в каждом участке атмосферы непрерывно меняется.
С водяным паром в воздухе и с его переходами из газообразного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности. Водяной пар сильно поглощает длинноволновую инфракрасную радиацию, которую излучает земная поверхность. В свою очередь и сам он излучает инфракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверхности и тем самым также нижних слоев воздуха. На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конденсации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности. Осадки, выпадающие из облаков, являются важнейшим элементом погоды и климата. Наконец, наличие водяного пара в атмосфере имеет важное значение для физиологических процессов.
Упругость водяного пара и относительная влажность
Водяной пар, как всякий газ, обладает упругостью (давлением). Упругость водяного пара е пропорциональна его плотности (содержанию в единице объема) и его абсолютной температуре. Она выражается в тех же единицах, что и давление воздуха, т. е. либо в миллиметрах ртутного столба, либо в миллибарах.
Упругость водяного пара в состоянии насыщения называют упругостью насыщения. Это максимальная упругость водяного пара, возможная при данной температуре. Например, при температуре 0° упругость насыщения равна 6,1 мб. На каждые 10° температуры упругость насыщения увеличивается примерно вдвое.
Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность. Так называют отношение фактической упругости е водяного пара, находящегося в воздухе, к упругости насыщения Е при той же температуре, выраженное в процентах, т. е. r = e/E * 100%
Например, при температуре 20° упругость насыщения равна 23,4 мб. Если при этом фактическая упругость пара в воздухе будет 11,7 мб, то относительная влажность воздуха равна (11,7/23,4)*100 = 50%. Упругость водяного пара у земной поверхности меняется от сотых долей миллибара (при очень низких температурах зимой в Антарктиде и в Якутии) до 35 мб и более (у экватора). Чем теплее воздух, тем больше водяного пара может он содержать без насыщения и, стало быть, тем больше может быть в нем упругость водяного пара.
Относительная влажность воздуха может принимать все значения от нуля для вполне сухого воздуха (е = 0) до 100% для состояния насыщения (е=Е).
Изменение состава воздуха с высотой
Процентное содержание составных частей сухого воздуха в нескольких нижних десятках километров (до 100-120 км) с высотой почти не меняется. Воздух, находящийся в постоянном движении, хорошо перемешивается по вертикали, и атмосферные газы не расслаиваются по плотности, как это было бы в условиях спокойной атмосферы (где доля более легких газов должна была бы возрастать с высотой).
Процентное содержание водяного пара в воздухе меняется с высотой. Водяной пар постоянно поступает в атмосферу снизу, а распространяясь вверх конденсируется, сгущается. Поэтому упругость и плотность водяного пара убывают с высотой быстрее, чем упругость и плотность остальных газов воздуха.
Распределение озона в атмосфере
Изменение с высотой содержания озона в воздухе особенно интересно. У земной поверхности озон содержится в ничтожных количествах. С высотой содержание его возрастает, причем не только в процентном отношении, но и по абсолютным значениям. Максимальное содержание озона наблюдается на высотах 25-30 км; выше оно убывает и на высотах около 60 км сходит на нет.
Процесс образования озона из кислорода происходит в слоях от 60 до 15 км при поглощении кислородом ультрафиолетовой солнечной радиации. Часть двухатомных молекул кислорода разлагается на атомы, а атомы присоединяются к сохранившимся молекулам, образуя трехатомные молекулы озона. Одновременно происходит обратный процесс превращения озона в кислород. В слои ниже 15 км озон заносится из вышележащих слоев при перемешивании воздуха.
Жидкие и твердые примеси к атмосферному воздуху
Кроме перечисленных выше атмосферных газов, в воздух местами могут проникать другие газы, особенно соединения, возникающие при сгорании топлива (окислы серы, углерода, фосфора и др.). Наиболее заражается такими примесями воздух больших городов и промышленных районов.
Небольшую часть перечисленных примесей составляет крупная пыль, с частичками радиусом более 5 мк. Почти 95% частичек имеет радиусы менее 5 мк. Вследствие такой малости они могут длительное время удерживаться в атмосфере во взвешенном состоянии. Удаляются из атмосферы они главным образом при выпадении осадков, присоединяясь к капелькам и снежинкам.
С высотой число взвешенных частичек быстро убывает; на высотах 5-10 км их всего десятки на кубический сантиметр.
Бактерии в центральных частях океанов встречаются в количестве нескольких единиц на кубический метр воздуха; в больших городах их уже тысячи и десятки тысяч в том же объеме.
От количества и рода аэрозольных примесей зависят явления поглощения и рассеяния радиации в атмосфере, т. е. ее большая или меньшая прозрачность для радиации. Наличие взвешенных частичек создает в атмосфере также ряд оптических явлений, свойственных коллоидным растворам.
Наиболее крупные аэрозольные частички, обладающие гигроскопическими свойствами, играют в атмосфере роль ядер конденсации, т. е. центров, к которым присоединяются молекулы водяного пара, образуя водяные капельки.
Аэрозольные примеси к воздуху могут легко переноситься воздушными течениями на большие расстояния. Песчаная пыль, попадающая в воздух над пустынями Африки и Передней Азии, неоднократно выпадала в больших количествах на территории Южной и Средней Европы. Дым и пепел больших вулканических извержений неоднократно распространялись в высоких слоях атмосферы на огромные расстояния, окутывая весь Земной шар. Помутнение воздуха и аномально красная окраска зорь наблюдались в течение многих месяцев после извержений.
Дымка, облака, туманы
Нередко облакоподобные скопления капелек и кристаллов начинаются от самой земной поверхности; в этих случаях они называются туманами.
Ионы в атмосфере
Молекулы воздуха заряжаются вследствие потери электрона или присоединения свободного электрона. К заряженной молекуле присоединяются другие молекулы, в которых происходит путем индукции разделение зарядов. Так возникает электрически заряженный комплекс молекул, называемый легким ионом. Заряженные молекулы могут также присоединяться к ядрам конденсации или пылинкам, взвешенным в воздухе, вследствие чего возникают более крупные тяжелые ионы с массами в тысячи раз большими, чем у легких ионов.
Капельки и кристаллы облаков и осадков, возникая на ионах как на ядрах конденсации, присоединяя их в дальнейшем, а также, получая электрические заряды другими способами, также могут стать носителями электрических зарядов. Заряды капелек и кристаллов гораздо больше, чем заряды ионов: они могут достигать многих миллионов элементарных зарядов (зарядов электрона).
С высотою содержание ионов увеличивается, особенно в слоях выше 80-100 км. Как говорилось выше, ионы являются здесь в основном заряженными атомами кислорода, гелия и водорода и окиси азота. Кроме того, значительная часть ионов в высоких слоях представляет собой свободные электроны.
Электрическое поле атмосферы
В грозовых облаках происходит сильная электризация облачных элементов и разделение положительных и отрицательных зарядов по отдельным частям облака. Вследствие этого в облаках, а также между облаками и землей возникают огромные разности потенциалов, при которых напряженность поля доходит до десятков тысяч вольт на метр. При этом в атмосфере возникают не только положительные, но и отрицательные заряды, индуцирующие положительный заряд на земной поверхности. В связи с указанными огромными разностями потенциалов в атмосфере возникают искровые электрические разряды, молнии, как в облаках, так и между облаками и землей. При напряженности поля, направленной вверх, молнии могут переносить к земной поверхности очень большие отрицательные заряды, которые и компенсируют потерю отрицательного заряда земной поверхностью в спокойную погоду.
Уравнение состояния газов
Основными характеристиками физического состояния газа являются его давление, температура и плотность. Эти три характеристики не независимы одна от другой. Газы сжимаемы; поэтому плотность их меняется в широких пределах в зависимости от давления и, кроме того, зависит от температуры. Связь между давлением, температурой и плотностью для идеальных газов дается уравнением состояния газов, известным из физики. Оно пишется
Уравнение состояния газов с достаточным приближением применимо и к сухому воздуху, и к водяному пару, и к влажному воздуху. В каждом случае будет своя величина газовой постоянной R. Для влажного воздуха R меняется в зависимости от упругости водяного пара, содержащегося в воздухе.
Атмосферное давление
Всякий газ производит давление на ограничивающие его стенки, т. е. действует на эти стенки с какой-то силой давления, направленной перпендикулярно (нормально) к стенке. Числовую величину этой силы давления, отнесенную к единице площади, и называют давлением. Давление газа объясняется движениями его молекул, той «бомбардировкой», которой они подвергают стенки. При возрастании температуры и при сохранении объема газа скорости молекулярных движений увеличиваются и, следовательно, давление растет.
В каждой точке атмосферы имеется определенная величина атмосферного давления, или давления воздуха.
Атмосферное давление можно выразить, например, в граммах или килограммах веса на один квадратный сантиметр или метр. На уровне моря оно близко к одному килограмму на квадратный сантиметр. В метеорологии его выражают, однако, в других единицах.
С давних пор принято выражать атмосферное давление в миллиметрах ртутного столба. Это значит, что давление атмосферы сравнивают с эквивалентным ему давлением столба ртути. Когда говорят, например, что атмосферное давление на земной поверхности в данном месте равно 750 мм, это значит, что столб ртути высотою 750 мм давил бы на земную поверхность так же, как давит воздух.
В отдельных случаях давление может меняться на уровне моря в пределах 150 мм рт. ст. С высотой атмосферное давление быстро убывает.
Температура воздуха
С высотою температура воздуха меняется в разных слоях и в разных случаях по-разному. В среднем она сначала понижается до высоты 10-15 км, затем растет до 50-60 км, потом снова падает и т. д.
Кроме того, в теоретической метеорологии применяется абсолютная шкала температуры (шкала Кельвина, К).
Плотность воздуха
Влажный воздух несколько менее плотен, чем сухой воздух при тех же значениях давления и температуры. Это объясняется тем, что водяной пар менее плотен, чем сухой воздух.
Если бы плотность воздуха не менялась с высотой, а оставалась на всех уровнях такой же, как у земной поверхности, то высота атмосферы получилась бы около 8000 м. Указанная высота (8000 м) называется высотой однородной атмосферы. В действительности плотность воздуха с высотой убывает, и потому истинная высота атмосферы равняется многим тысячам километров.
Основное уравнение статики атмосферы
Теперь поставим вопрос: по какому закону меняется атмосферное давление с высотой?
Отсюда следует, что при положительном dz имеем отрицательное dp, т. е. что с высотой атмосферное давление падает. При этом разность давлений на нижней и верхней границах рассматриваемого элементарного объема равна весу воздуха в этом объеме.
Уравнение (1) носит название основного уравнения статики атмосферы. Это дифференциальное уравнение говорит о том, как меняется давление при бесконечно малом приросте высоты.
Величина -dp/dz падение давления на единицу прироста высоты, т. е. вертикальный барический градиент (вертикальный градиент давления). Это равнодействующая сил давления, направленных сверху и снизу на единицу нашего объема.
Разделив ее на плотность ρ, мы получим силу вертикального барического градиента, отнесенную к единице массы и направленную вверх.
Выше было показано, что бесконечно малая разность давлений равна весу элементарного объема воздуха с толщиной dz. Следовательно, и конечная разность давлений между нижним и верхним уровнем равна весу воздушного столба между этими уровнями. Если за верхний уровень принять верхнюю границу атмосферы, на которой давление практически равно нулю, то очевидно, что давление на любом уровне равно весу всего столба атмосферы, простирающегося над данным уровнем.
Применения барометрической формулы
С помощью барометрической формулы можно решить три задачи:
1) зная давление на одном уровне и среднюю температуру столба воздуха, найти давление на другом уровне;
2) зная давление на обоих уровнях и среднюю температуру столба воздуха, найти разность уровней (барометрическое нивелирование);
3) зная разность уровней и величины давления на них, найти среднюю температуру столба воздуха.
Средний вертикальный градиент температуры в тропосфере принимается равным 0,6° на 100 м. Следовательно, если станция имеет высоту 200 м и температура на ней +16°, то для уровня моря принимается температура +17,2°, а средняя температура столба между станцией и уровнем моря +16,6°. После этого по давлению на станции и по полученной средней температуре определяется давление на уровне моря. Для этого составляют особые таблицы для каждой станции.
Приведение давления к уровню моря является очень важной операцией. На приземные синоптические карты всегда наносится давление, приведенное к уровню моря. Этим исключается влияние различий в высотах станций на величины давления и становится возможным выяснить горизонтальное распределение давления.
Среднее распределение атмосферного давления с высотой
Давление меняется не только с высотой. На одном и том же уровне оно не везде одинаково. Кроме того, в каждой точке атмосферы давление непрерывно меняется с течением времени; стало быть, непрерывно меняется и распределение его во всей атмосфере. Ясно, что изменения давления в любой точке связаны с изменениями всей массы воздуха над этой точкой. А изменения массы воздуха в свою очередь обусловлены движением воздуха.
Общая масса атмосферы
Знание атмосферного давления позволяет рассчитать общую массу атмосферы. Среднее атмосферное давление на уровне моря эквивалентно весу столба ртути высотой 760 мм. Масса ртутного столба высотой 760 мм над одним квадратным сантиметром земной поверхности составляет 1033,2 г. Таков же, очевидно, будет и средний вес столба атмосферы над одним квадратным сантиметром поверхности на уровне моря. Зная площадь земной поверхности и превышение материков над уровнем моря, можно вычислить общий вес всей атмосферы. Пренебрегая изменениями силы тяжести с высотой, можно считать этот вес численно равным массе атмосферы.
Общая масса атмосферы составляет немного больше 5*10 21 г, или 5*10 15 т. Это примерно в миллион раз меньше, чем масса самого Земного шара.
Адиабатические изменения состояния в атмосфере
Очень важную роль в атмосферных процессах играет то обстоятельство, что температура воздуха может изменяться и часто действительно изменяется адиабатически, т. е. без теплообмена с окружающей средой (с окружающей атмосферой, земной поверхностью и мировым пространством). Вполне строго адиабатических процессов в атмосфере не бывает: никакая масса воздуха не может быть полностью изолирована от теплового влияния окружающей среды. Однако если атмосферный процесс протекает быстро и теплообмен за это время мал, то изменение состояния можно с достаточным приближением считать адиабатическим.
Если некоторая масса воздуха в атмосфере адиабатически расширяется, то давление в ней падает, а вместе с ним падает и температура. Напротив, при адиабатическом сжатии массы воздуха давление и температура в ней растут. Эти изменения температуры, не связанные с теплообменом, происходят вследствие преобразования внутренней энергии газа (энергии положения и движения молекул) в работу или работы во внутреннюю энергию. При расширении массы воздуха производится работа против внешних сил давления, так называемая работа расширения, на которую затрачивается внутренняя энергия воздуха. Но внутренняя энергия газа пропорциональна его абсолютной температуре; поэтому температура воздуха при расширении падает. Напротив, при сжатии массы воздуха производится работа сжатия. Внутренняя энергия рассматриваемой массы воздуха вследствие этого возрастает, т. е. скорость молекулярных движений увеличивается. Следовательно, растет и температура воздуха.
Сухоадиабатические изменения температуры при вертикальных движениях
Нетрудно подсчитать, на сколько метров должен подняться или опуститься воздух, чтобы температура в нем понизилась или повысилась на один градус. При адиабатическом подъеме сухого или ненасыщенного воздуха температура на каждые 100 м подъема падает почти точно на один градус, а при адиабатическом опускании на 100 м температура растет на ту же величину. Эта величина 1°/100 м называется сухоадиабатическим градиентом. Еще раз напомним, что речь идет об изменении температуры с высотой в вертикально движущейся индивидуальной частице воздуха. Не следует смешивать термин «градиент» в этом значении с вертикальным градиентом.
Влажноадиабатические изменения температуры
С адиабатическим подъемом влажного ненасыщенного воздуха связано такое важное изменение, как приближение его к состоянию насыщения. Температура воздуха при его подъеме понижается; поэтому на какой-то высоте достигается насыщение. Эта высота называется уровнем конденсации.
При очень низких температурах, которые получает воздух при подъеме в высокие слои атмосферы, водяного пара в нем остается немного и выделение теплоты конденсации поэтому также мало. Падение температуры при подъеме в таком воздухе приближается к падению в сухом воздухе. Иначе говоря, влажноадиабатический градиент при низких, температурах приближается по величине к сухоадиабатическому. При опускании насыщенного воздуха процесс может происходить по-разному в зависимости от того, содержит ли воздух жидкие продукты конденсации (капельки и кристаллы), или они уже целиком выпали из воздуха в виде осадков.
Псевдоадиабатический процесс
Рассматриваемая масса воздуха совершила необратимый процесс. Хотя она вернулась на прежний уровень, под прежнее давление, она не вернулась в исходное состояние: ее конечная температура оказалась выше, чем была начальная. Такой процесс называется псевдоадиабатическим.
Потенциальная температура
Пусть на какой-то высоте в атмосфере имеется воздух с давлением р и температурой Т. Если бы этот воздух сухоадиабатически опустился на уровень, где существует стандартное давление р0, то температура его тоже изменилась бы по уравнению Пуассона.
Назовем эту температуру, которую воздух получил бы при стандартном давлении (1000 мб), его потенциальной температурой. Фактическую температуру воздуха, в отличие от потенциальной, будем называть молекулярной температурой. Очевидно, что потенциальная температура равна молекулярной температуре при стандартном давлении.
Потенциальную температуру можно с достаточным приближением определить, если известно, на какой высоте воздух находится. Пусть, например, эта высота равна 3000 м. Допустим, что на уровне моря давление стандартное, т. е. равно 1000 мб. Тогда потенциальная температура воздуха, т. е. температура, с которой он пришел бы на уровень моря, равна его начальной температуре плюс 30°, так как на каждые 100 м спуска температура воздуха должна возрастать на один градус.
С помощью потенциальной температуры можно сравнивать тепловое состояние масс воздуха, находящихся на разных высотах над уровнем моря, т. е. при разных давлениях. Вычисляя потенциальную температуру этих масс, мы как бы опускаем их на один уровень.
При изменении состояния воздуха по сухоадиабатическому закону потенциальная температура воздуха не меняется. Только когда начинается конденсация и выделяется скрытая теплота, потенциальная температура возрастает.
Вертикальное распределение температуры
Выше было указано, как меняется температура в определенной массе воздуха, которая адиабатически поднимается или опускается. Ни в коем случае не следует смешивать эти индивидуальные изменения с вертикальным распределением температуры в атмосфере.
Температура в атмосферном столбе может распределяться по высоте различным образом. Это распределение не подчинено никакой простой закономерности. Представление о распределении температуры с высотой дает вертикальный градиент температуры -dT/dz, т. е. изменение температуры в атмосфере на единицу высоты, обычно на 100 м. Так как перед производной ставится знак минус, то в обычном случае падения температуры с высотой, градиент имеет положительную величину.
Вертикальный градиент температуры может меняться в довольно широких пределах. В нижних 10 км в умеренных широтах и в нижних 15 км в тропиках он в среднем равен 0,6°/100 м. В нижних сотнях метров над нагретой подстилающей поверхностью он может повышаться до 1°/100 м или немного больше. Бывают и такие случаи, когда температура воздуха с высотой не падает, а растет. Такое распределение температуры называют инверсией температуры, а вертикальный градиент температуры будет при этом, очевидно, отрицательным. Инверсии особенно часты по ночам в приземном слое, но встречаются на разных высотах и в свободной атмосфере. Если температура в воздушном слое не меняется с высотой, т. е. вертикальный градиент ее равен нулю, то такое состояние слоя называют изотермией.
Ветер и турбулентность
В зависимости от распределения атмосферного давления воздух постоянно перемещается в горизонтальном направлении. Это горизонтальное перемещение называется ветром. Скорость и направление ветра все время меняются. Средние скорости ветра у земной поверхности близки к 5-10 м/сек. Но иногда, в сильных атмосферных вихрях, скорости ветра у земной поверхности могут достигать и превышать 50 м/сек. В высоких слоях атмосферы, в так называемых струйных течениях, регулярно наблюдаются скорости ветра до 100 м/сек и более.
К горизонтальному переносу воздуха присоединяются и вертикальные составляющие. Они обычно малы по сравнению с горизонтальным переносом, порядка сантиметров или десятых долей сантиметра в секунду. Только в особых условиях, при так называемой конвекции, в небольших участках атмосферы вертикальные составляющие скорости движения воздуха могут достигать нескольких метров в секунду.
Ветер всегда обладает турбулентностью. Это значит, что отдельные количества воздуха в потоке ветра перемещаются не по параллельным путям. В воздухе возникают многочисленные беспорядочно движущиеся вихри и струи разных размеров.
Турбулентность возникает вследствие различия скоростей ветра в смежных слоях воздуха. Особенно велика она в нижних слоях атмосферы, где скорость ветра быстро растет с высотой. Отдельные количества воздуха поднимаются вверх, если их температура выше, а, стало быть, плотность меньше, чем температура и плотность окружающего воздуха. Напротив, количества воздуха более холодные и плотные, чем окружающий воздух, опускаются вниз. Такое перемешивание воздуха за счет различий плотности происходит тем интенсивнее, чем быстрее падает температура с высотой, т. е. чем больше вертикальный градиент температуры. Поэтому можно условно говорить о динамической турбулентности, возникающей независимо от температурных условий, и о термической турбулентности, определяемой температурными условиями.
Турбулентный обмен
Турбулентность, включая и упорядоченную конвекцию, приводит к сильному перемешиванию воздуха, особенно в вертикальном направлении. Перемешивание это в тысячи и десятки тысяч раз сильнее, чем могло бы происходить только молекулярным путем, вследствие молекулярной диффузии.
В процессе вертикального турбулентного обмена каждая переносимая субстанция (примесь к воздуху или его свойство) распространяется в том направлении, в котором она убывает, т. е. в направлении своего вертикального градиента. Содержание водяного пара и пыли, как правило, убывает кверху. Поэтому турбулентный перенос этих субстанций обычно направлен вверх.
Более сложен вопрос о турбулентном переносе тепла. Вследствие сжимаемости воздуха и адиабатических изменений температуры при вертикальных движениях о направлении переноса тепла нельзя судить по направлению градиента молекулярной температуры. Сохраняющейся характеристикой состояния воздуха (при сухоадиабатическом процессе) является его потенциальная температура. Передача тепла вверх начинается при вертикальных градиентах температуры меньше 1°/100 м.
Конечно, в разное время дня и года и над разной земной поверхностью перенос тепла может происходить в разных направлениях. Но в общем итоге передача тепла от земной поверхности в атмосферу перевешивает.