Что значит компланарные векторы
Компланарность векторов. Условия компланарности векторов.
рис. 1 |
Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.
Условия компланарности векторов
Примеры задач на компланарность векторов
Решение: найдем смешанное произведение векторов
Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.
Решение: найдем смешанное произведение векторов
Ответ: вектора компланарны так, как их смешанное произведение равно нулю.
Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования
1 | 1 | 1 | ||
1 | 2 | 0 | ||
0 | -1 | 1 | ||
3 | 3 | 3 |
из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3
к 3-тей строке добавим 2-рую
Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.
Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.
Компланарные векторы
Урок 37. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Компланарные векторы»
Ранее мы ввели понятие вектора в пространстве, понятие равных векторов, правила сложения и вычитания векторов, а также произведение вектора на число.
И все теоретические аспекты векторов в пространства практически совпадают с теорией векторов на плоскости. За исключением правила многоугольника сложения нескольких векторов. Многоугольник сложения в пространстве может быть и пространственным, то есть не все его вершины лежат в одной плоскости.
Сегодня мы с вами познакомимся с существенным и одним из главных отличий векторов на плоскости и векторов в пространстве. Мы введём понятие компланарных векторов.
Определение. Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.
Но в связи с тем, что от любой точки пространства можно отложить вектор равный данному, и притом только один, можно это определение переформулировать так.
Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Понятно, что любые два вектора всегда будут компланарными, ведь через них можно провести прямые, а через две прямые всегда можно провести единственную плоскость.
Если же рассмотреть три вектора, то они могут быть как компланарными, так и некомпланарными.
Компланарными они будут в том случае, когда среди них есть пара коллинеарных векторов.
Тогда через один из коллинеарных векторов и вектор не коллинеарный ему можно провести плоскость. А для второго из коллинеарных векторов легко изобразить равный в этой плоскости.
Так мы получаем, что два вектора всегда будут компланарными, а три вектора будут компланарными, если среди них есть пара коллинеарных векторов.
прямоугольный параллелепипед.
Компланарны ли векторы?
а) ,
,
б) ,
,
Первой рассмотрим тройку .
Через векторы и
проведём плоскость ACC1.
Рассмотрим следующую тройку векторов. .
В этом задании мы, пользуясь определением, выяснили компланарны данные тройки векторов или нет.
Помимо определения компланарных векторов есть ещё и признак компланарности трёх векторов.
Если вектор можно разложить по векторам
и
, то есть представить его в таком виде
, где x и y некоторые числа. То векторы
,
и
компланарны.
Докажем данный признак.
Рассмотрим два неколлинеарных вектора и
, отложим их от некоторой точки О. Далее проведём через них плоскость.
Очевидно, что в этой же плоскости лежат векторы x и y
.
По правилу параллелограмма построим вектор суммы векторов x и y
. Полученный вектор суммы равен вектору
. А по рисунку становится понятно, что векторы
,
и
действительно лежат в одной плоскости, а значит, они компланарны.
Так мы доказали признак компланарности трёх векторов. Но справедливо и обратное утверждение, которое можно считать свойством трёх компланарных векторов.
Если векторы ,
и
компланарны, а векторы
,
не коллинеарны, то вектор
можно разложить по векторам
и
, причём коэффициенты разложения определяются единственным образом.
Итак, воспользуемся тем, векторы компланарны, то есть лежат в одной плоскости. А из курса планиметрии известно, что любой вектор плоскости можно разложить по двум неколлинеарным векторам. Как раз векторы и
являются такими по условию.
Тогда отложим векторы ,
и
от некоторой точки О плоскости.
Вектор равен сумме векторов
и
, каждый из которых коллинеарен векторам
и
соответственно. Опираясь на коллинеарность, можем вектор
представить в виде произведения вектора
и некоторого числа x, а вектор
— в виде произведения вектора
и некоторого числа y.
Отсюда получаем, что вектор равен сумме произведений вектора
на число x и вектора
на число y.
Тем самым мы смогли разложить вектор по векторам
и
.
Что и требовалось доказать.
Для параллелепипеда ABCDA1B1C1D1 среди данных троек векторов найти компланарные.
Первой рассмотрим тройку векторов .
Все эти векторы коллинеарны, так как являются противоположными рёбрами параллелепипеда. А для компланарности трёх векторов достаточно коллинеарности хотя бы двух из них (в начале урока мы рассматривали такой случай). Поэтому можно утверждать, что данные векторы компланарны.
Далее рассмотрим векторы ,
и
.
Векторы и
лежат в одной плоскости, а вектор
пересекает её. Поэтому можно сказать, что данные векторы не компланарны.
Следующей рассмотрим тройку векторов ,
и
.
Среди них есть пара коллинеарных векторов, и
. А значит, векторы данной тройки будут компланарны.
Осталось рассмотреть тройку векторов ,
и
.
В плоскости ABCD лежит вектор . И вектор
, равен вектору
. Но для вектора
в этой плоскости не найдётся равный, так как он пересекает её. Значит, векторы данной тройки не будут являться компланарными.
Так, пользуясь определением, мы нашли две тройки компланарных векторов.
Задача. тетраэдр. Точки
и
— середины сторон
и
. Доказать, что
. Компланарны ли векторы
,
и
?
Итак, сначала проведём доказательство.
Пользуясь правилом многоугольника сложения нескольких векторов в пространстве, можно записать, что . С другой стороны вектор
.
Сложим покомпонентно эти два равенства.
Векторы и
, а также
и
противоположны, ведь их длины равны и они противоположно направлены. А значит, каждая из этих сумм равна нулевому вектору.
Тогда мы получаем, что .
Что и требовалось доказать.
Теперь ответим на вопрос, компланарны ли векторы ,
и
.
Разделим обе его части равенства, доказанного выше, на 2.
Так мы записали разложение вектора по векторам
и
, где оба коэффициента разложения равны
.
Тогда по признаку компланарных векторов, данные векторы компланарны.
Подведём итоги нашего урока.
Сегодня мы ввели понятие компланарных векторов.
Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.
На практике удобнее использовать такую формулировку: векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Так же мы выяснили, что любые два вектора всегда компланарны, а вот три вектора могут быть как компланарными, так и не компланарными.
В связи с этим мы доказали признак компланарности векторов.
Если вектор можно разложить по неколлинеарным векторам
и
, то векторы
,
и
компланарны.
Справедливо также и обратное утверждение.
Если векторы ,
и
компланарны, а векторы
и
не коллинеарны, то вектор
можно разложить по векторам
и
, причём коэффициенты разложения определяются единственным образом.