Что выполняет биосинтез белка

Транскрипция и трансляция

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.

Транскрпиция (лат. transcriptio — переписывание)

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Образуется несколько начальных кодонов иРНК.

Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Трансляция (от лат. translatio — перенос, перемещение)

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Общая информация о биосинтезе белка: значение, код ДНК, процесс считывания и передачи информации

Общая информация о биосинтезе белка

Значение биосинтеза белка в клетке

Процесс биосинтез белка — наиболее значимая реакция пластического обмена. Способность синтезировать белок есть у всех клеток живых организмов: сложных и простых, грибов, растений и животных. Клетка содержит несколько тысяч различных белков. При этом, для каждого вида клеток характерны специфические белки.

Способность к синтезу собственных уникальных белков является наследственной и сохраняется на протяжении всей жизни организма. Биосинтез белков происходит наиболее интенсивно, когда клетки активно растут и развиваются.

Что такое биосинтез белка?

Процессом синтеза белка называется — процесс, состоящий из множества стадий, на которых происходит синтез белковой макромолекулы и последующее созревание (формирование) белка, и происходящий в живых организмах.

Фотосинтез связан с большими энергетическими затратами. Благодаря ему происходит обеспечение клеток так называемым строительным материалом, биологическими катализаторами (ферментами), регуляторами и средствами защиты организма.

Каково значение белков в клетке? Значение белков неоценимо. Для этого рассмотрим, что такое биосинтез подробнее.

Код ДНК

Определение места синтеза белковых макромолекул — наивысшее достижение молекулярной биологии. ДНК играет ключевую роль в определении структуры синтезируемого белка. Молекула ДНК содержит информацию о первичной структуре молекулы белка.

Геном — часть молекулы ДНК, содержащая информацию о первичной структуре одного белка.

Генетический код — единая для всех живых организмов система сохранения полной наследственной информации.

Если говорить о структуре, то она представляет собой определенную последовательность нуклеотидов в молекулах нуклеиновых кислот. Эта последовательность задает последовательность введения аминокислотных остатков в полипептидную цепь в ходе ее синтеза.

Согласно исследованиям ученых, каждая аминокислота в полипептидной цепи кодируется последовательностью, которая состоит из 3 нуклеотидов (это триплет нуклеотидов).

Всего выделяют 20 основных аминокислот. Каждая аминокислота имеет способность кодироваться несколькими разными триплетами.

Матрица — молекула ДНК, которая содержит информацию.

Процесс считывания и передачи информации

Расположение молекул ДНК — ядро клетки. Также они могут находиться в пластидах и митохондриях. В определенный момент происходит деспирализация молекулы ДНК и расхождение ее параллельных цепей.

В соответствии с принципом комплементарности, на этих цепях происходит синтез небольших молекул и-РНК (информационной РНК). Это транскрипция или считывание.

Молекула и-РНК, синтезированная таким образом, направляется к месту синтеза белка.

Трансляция — процесс переноса и-РНК из ядра к месту синтеза белка.

Механизм биосинтеза белка

Синтез белковых молекул осуществляется на мембранах ЭПС (эндоплазматическая сеть). Рибосома является органеллой, которая отвечает за синтез белка. Рибосомы, нанизываясь на молекулу и-РНК, формируют полисому. Молекула т-РНК (транспортная РНК), которая несет кислотный остаток, подходит к каждой рибосоме.

т-РНК отличается формой трилистика: верхушка — это триплет нуклеотидов или антикодон. Он формирует комплементарную пару с соответствующим триплетом и-РНК (кодоном).

Рибосома в процессе синтеза белка надвигается на нитевидную молекулу и-РНК, которая оказывается двумя ее субъединицами. Присоединение т-РНК к и-РНК происходит в определенном месте — в месте совпадения кодона и антикодона. Присоединение аминокислотных остатков к синтезируемой цепи происходит при помощи полипептидных связей. Происходит отсоединение т-РНК, после чего она покидает рибосому.

Это продолжается до завершения синтеза нити аминокислотных остатков (белковой молекулы).

Заключительный этап — приобретение синтезированным белком пространственной структуры. Благодаря соответствующим ферментам от него отщепляются лишние аминокислотные остатки, происходит введение небелковых фосфатных, карбоксильных и других групп, присоединение углеводов, липидов и т. д. Белок «созревает». Как только все эти процессы заканчиваются, молекула белка становится полностью функционально активной.

Источник

Что выполняет биосинтез белка

Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены.

Ген — это элементарная единица генетической информации. У человека всего около 25–30 тыс. генов.

Генетический код. Наследственная информация организмов зашифрована в ДНК в ви­ де определенных сочетаний нуклеотидов и их последовательности — генетического кода.

Его свойствами являются: триплетность, специфичность, универсальность и избыточность. Кроме того, в генетическом коде отсутствуют «знаки препинания». 23

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, напри­мер, метионин закодирован триплетом ТАЦ. Каждый триплет кодирует только
одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве проис­ хождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту могут кодировать 2–6 трипле тов и имеется три стоп­кодона, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп­кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Репликация ДНК, а также синтез РНК и белков в клетках осуществляются по принципу матричного синтеза, который заключается в том, что новые молекулы белков и нуклеи­ новых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул нуклеиновых кислот (ДНК или РНК).

Репликация ДНК. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называет­ ся репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской (рис. 42). Ключевым ферментом репликации является ДНК­полимераза. Репликация ДНК является полуконсервативной, так как молекула ДНК расплетается, и на каждой из ее цепей синтезируется новая цепь по принципу комплементарности.

Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расхо­ дятся по двум вновь образующимся дочерним клеткам.

Ошибки в процессе репликации возникают крайне редко, но если они происходят, то устраняются ДНК­полимеразами или ферментами репарации.

Биосинтез белка является сложнейшим клеточным процессом — в нем участвуют до трехсот различных ферментов и других макромолекул. Выделяют два основных этапа синтеза белка: транскрипцию и трансляцию.

Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на соответствующих участках ДНК (рис. 43).

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Синтезированные в процессе транскрипции в ядре молекулы иРНК проходят сложный процесс подготовки к трансляции, после чего они выходят в цитоплазму.

Трансляция (от лат. транс­ ляцио — передача) — это био­ синтез полипептидной цепи на матрице иРНК, при котором происходит перевод генети­ ческой информации в после­ довательность аминокислот полипептидной цепи (рис. 44).

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Трансляция чаще всего происходит в цитоплазме, на­пример на шероховатой ЭПС.
Для синтеза белка необходима предварительная активация аминокислот, в ходе кото­ рой аминокислота присоединяется к соответствующей тРНК. Этот процесс катализируется специальным фер­ментом и требует затраты АТФ.

Для начала трансляции (инициации) к готовой к син­ тезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем к первому кодону (АУГ) иРНК подби­ рается тРНК с комплементарным антикодоном, несущая аминокислоту метионин. Лишь после этого присоединя­ ется большая субъединица рибосомы. В пределах собран­ ной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону под­ бирается вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; пер­ вая из тРНК, освободившаяся от аминокислоты, покидает рибосому, а фрагмент синте­ зирующейся полипептидной цепи удерживается на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, когда рибосома сдвинется на не­ кодирующую последовательность нуклеотидов — стоп­кодон. После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок транспортируется в ту часть клетки, где он будет выполнять свои функции.

Источник

Особенности синтеза белка: биосинтез белка в цитоплазме, аминоацилсинтетазы, инициирующий комплекс

Особенности синтеза белка

Биосинтез белка в цитоплазме

Больше половины сухой массы клетки составляют белки. Соответственно, синтез белков имеет большое значение для обеспечения жизнедеятельности клеточных структур и их функций, а также для роста и специализации клеток.

У эукариот процесс биосинтеза белков начинается в ядре, а продолжается и завершается — в цитоплазме. Процесс биосинтеза состоит из 2 этапов:

Чтобы клетка нормально функционировала, важна регуляция экспрессии генов. Благодаря ей можно легко разобраться в последовательности и механизме функционирования клетки как единого целого.

Что такое биосинтез белка?

Синтез белка — это непростой процесс синтеза и созревания белков, регуляция которого осуществляется при помощи большого количества ферментов.

Биосинтез белка основан на синтезе полипептидных связей из аминокислот, который происходит на рибосомах при участии молекул мРНК и тРНК (трансляция), а также на посттрансляционных модификациях полипептидных цепей. Этот процесс невозможен без участия ионов-активаторов и энергии.

Весь процесс биосинтеза белка условно включает следующие этапы:

Под активацией аминокислот понимают присоединение карбоксильной группы аминокислоты к 3г-концу соответствующей тРНК.

Происходит присоединение аминокислоты к такой тРНК (ее антикодон комплементарен генетическому коду). Процесс основан на затратах энергии.

Аминоацилсинтетазы

Описанная выше реакция катализируется группой ферментов — они называются аминоацилсинтетазы. Каждая аминокислота имеет свой фермент. Образованное соединение получает название по названию соответствующей аминокислоты, к которому добавляется окончание —ил.

К примеру, комплекс между аминокислотой метионином и метиониновой тРНК — это метионил-тРНК. Комплекс между лизином и лизиновой тРНК — это лизил-тРНК и т. п.

Начало синтеза белка обеспечивается инициирующим комплексом. Этот комплекс у эукариотов формируется в цитоплазме либо на поверхности шероховатого эндоплазматического ретикулума. Происходит это в результате соединения в одну систему мРНК, рибосомы и аминоацил-тРНК.

Что касается прокариот, то у них этот комплекс формируется исключительно в цитоплазме.

В инициирующий комплекс входят стартовая аминоацил-тРНК, рибосома и зрелая мРНК. Образование пептидной цепи начинается с первой (стартовой) аминоацил-тРНК. Она присоединяется к стартовой колонне мРНК. Стартовый кодон у прокариот и эукариот не различаются — это AUG. Этот кодон соответствует аминокислоте метионина. При этом, стартовая аминоацил-тРНК, присущая только эукариотам — метионин-тРНК.

У прокариот стартовой аминоацил-тРНК выступает особая формилметионил-тРНК, которая образуется при помощи нестандартной аминокислоты, а именно — формил-метионином.

Рибосомы представляют собой клеточные структуры, которые образуются при помощи большой и малой субъединиц. У них отсутствуют оболочки. Рибосомы состоят из белка и рРНК. Наблюдается схожесть в строении рибосом прокариот и эукариот. У каждой из них есть два специальных участка: А-участок и Р-участок.

Процесс формирования инициирующего комплекса

На примере прокариотической клетки проще всего рассмотреть формирование инициирующего комплекса. Весь процесс — это определенные последовательные действия:

Окончательное формирование инициирующего комплекса дает начало синтезу полипептидной цепи — процессу элонгации.

Следующая аминоацил-тРНК определяется с помощью принципа комплементарности между кодоном и антикодоном. Происходит ее присоединение к А-участку рибосомы.

Пептидная связь между аминогруппой первой аминокислоты и карбоксильной группой второй аминокислоты формируется под влиянием фермента пептидилтрансферазы.

Важно отметить, что у пептидилтрансферазы есть одна важная особенность — фиксация на рибосоме. Другими словами, этот фермент постоянно прикреплен к месту своей работы.

Далее идет процесс транслокации — он происходит в случае правильного присоединения аминоацил-тРНК и образования пептидной связи.

Под транслокацией понимают смещение инициирующего комплекса на 3 нуклеотида вдоль молекулы мРНК.

Различные белки берут начало из разных аминокислот. Такое утверждение выглядит спорным на фоне того, что начальная аминоацил-тРНК всегда формилметионинова или метионинова. Решение заключается в следующем: инициирующая аминоацил-тРНК (формилметионинова) не формирует пептидную связь с последующей аминокислотой. Это говорит о том, что первая транслокация рибосомы осуществляется не в соответствии с правилами. Условно его можно обозначить как «холостой ход».

Считывание информации с мРНК происходит в направлении 5г-3г, а рост полипептидной цепи — в направлении N-C.

Терминация — завершающий процесс биосинтеза. Она осуществляется при наблюдении на мРНК одного из трех стоп-кодонов: UAA, UAG, UGA.

Процессинг — это процесс созревания полипептидной цепи.

Суть его в том, что происходит образование третичной конформации молекулы. В ходе процессинга могут наблюдаться изъятия определенных аминокислотных последовательностей. Процессинг в сложных белках подразумевает присоединение небелковых групп и т. п.

Биосинтез белка — один из самых сложных процессов, происходящих в клетке. Далеко не все детали этого процесса известны и изучены учеными. Больше всего исследован биосинтез белка прокариотических организмов E coli, но тоже не полностью. Поэтому приведенная выше информация является схематичной.

Источник

Генетический код. Биосинтез белка

теория по биологии 🌿 основы генетики

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

В состав РНК входят:

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) — дезоксирибоза. РНК — одноцепочечная, а ДНК — двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Свойства генетического кода

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

pазбирался: Надежда | обсудить разбор | оценить

В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P. Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкасоединит по-новому две нити ДНК (т.е. произойдет рекомбинация). Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp). Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаПри рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT. Предварительное доказательство (лемма) к задаче 9 (5 баллов). 1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаЗатем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами «перевернулась». Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белка2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке). Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаА. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом. Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом: Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаСвечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток. В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом: Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаКлетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP. Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»: Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаВ этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор | оценить

pазбирался: Надежда | обсудить разбор | оценить

Сначала найдём место расщепления плазмиды рестриктазой BglII: Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаТаких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент: Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаОстаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину. Что выполняет биосинтез белка. Смотреть фото Что выполняет биосинтез белка. Смотреть картинку Что выполняет биосинтез белка. Картинка про Что выполняет биосинтез белка. Фото Что выполняет биосинтез белкаПри сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину. Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально. А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578, выросших на ампицилине. Эффективность трансформации представляет долю трансформированных клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12% Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину. В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента). Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно. Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор | оценить

По принципу комплементарности строим

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *