Что выделяет пластик при разложении

Поставки полимеров пластиковой и выдувной тары

Разложение пластика

Разложение пластика стала одной из актуальнейших проблем современности, так как над планетой нависла вполне реальная опасность полностью «утонуть» в горах пластиковых бутылок и полиэтиленовых пакетов.

В Тихом океане неподалёку от Индонезии уже образовался целый материк из пластиковых бутылок и других отходов, превышающий по своим размерам самый большой остров — Гренландию. А производство изделий из пластика и пластиковой тары всё растёт и растёт — только за последние 10 лет в России объёмы его производства увеличились в 10 раз.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Классификация добавок, ускоряющих разложение пластика

Сколько разлагаются разные виды пластика без добавок?

Разложение пластика проходит с разной скоростью в зависимости от его состава. Быстрее всего разлагаются полиэтиленовые пакеты — около 100 лет в почве. Гораздо дольше разлагаются изделия из полипропилена и других видов пищевого и непищевого пластика. Срок их полного разложения в почве составляет не менее 500 лет. Для сравнения — срок разложения алюминиевых канистр составляет 500 лет, консервных банок — 100 лет, костей — от 10 лет. Срок разложения пластика в воде увеличивается во много раз и даже точно неизвестен. Полиэтиленовые пакеты, плавающие в воде, вызывают массовую гибель рыб и птиц. Но это ещё не всё. Во время разложения из пластика в окружающую среду выделяются токсические вещества, отравляющие почву и воду (стирол, формальдегид, фенол, хлорпрен, уретан и т. д.).

Какие ещё предлагаются варианты решения проблемы?

Источник

Сколько разлагается пластик и эффективна ли его переработка

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

«Не горит. Не тает». Это подпись на обложке журнала TIME 1924 года с фотографией Лео Бакеланда — человека, который изобрел первый пластик.

Лео Бакеланд — успешный ученый-химик из Бельгии. Ему принадлежит два крупных изобретения — фотобумага (1893) и бакелит (1907). Изготовленный из фенола, обычного дезинфицирующего средства и формальдегида, бакелит изначально задумывался как синтетический заменитель шеллака, используемого в электронной изоляции.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Но прочность, легкость в применении и низкая стоимость материала сделали его идеальным для производства. В 1909 году бакелит был представлен широкой публике, и интерес к пластику возник сразу. Бакелит начал использоваться повсеместно: телефонные трубки, бижутерия, детали автомобилей, компоненты стиральных машин.

Сейчас в мире ежегодно производится более 380 млн т пластика. Пластик стал популярен благодаря тому, что он рассчитан на длительный срок службы. Не горит. Не тает. И не разлагается?

Сколько разлагается пластик?

Рассчитать со 100%-й точностью скорость разложения пластика очень сложно, на процесс влияет множество факторов: тип материала, температура, влажность, попадание солнечных лучей. Вот примерная скорость разложения некоторых видов пластика:

Во всем мире ежегодно используется свыше 500 млрд пластиковых пакетов — это около 1 млн в минуту. Это самый распространенный вид пластика и символ пластикового загрязнения. Пакету и многих другим видам пластика можно найти многоразовые альтернативы — сумки-шопперы, многоразовые стаканчики для кофе и бутылки для воды, натуральные аналоги чистящим средствам, продукты на развес и отказ от некоторых бессмысленных предметов, таких как пластиковая трубочка.

При этом полный отказ от пластика невозможен и нерационален. Пластиковая упаковка лучше сохраняет продукты, тем самым сокращая объем пищевых отходов на 75%.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Куда попадает пластик после использования?

На свалки

За последние 30 лет производство пластика во всем мире увеличилось более чем на 70%. Пластиковые пакеты, бутылки и упаковка — основной объем производства пластика и пластиковых отходов. По оценкам, 55% уже было отправлено на свалки за последние полвека.

Органические отходы подвергаются разложению, биоразложению или компостированию. Пластиковых изделий это не касается. Все три процесса сильно зависят от способности микроорганизмов потреблять и расщеплять органические отходы на более простые органические вещества. Пластик же — синтетический химический материал, который бактерии не могут потреблять.

На свалках пластик разлагается в процессе фотодеградации — ультрафиолетовое излучение солнца разрушает химическую структуру пластика и со временем разбивает большой предмет на более мелкие части. Это происходит при условии, что на пластик попадает солнечный свет и может занять годы.

Свалки устроены таким образом, что каждый день покрываются слоем почвы сверху и уплотняются, чтобы освободить место для новых отходов. Это приводит к тому, что солнечный свет перестает попадать на более старый слой отходов. В таких условиях пластик будет сохраняться намного дольше.

В океан

Не все пластиковые отходы оказываются на свалках — около 3% пластика ежегодно попадает в Мировой океан. В теплой океанской воде пластик быстрее подвергается фоторазложению и наносит серьезных ущерб окружающей среде. В океане он распадается на мелкие частички — микропластик. Водные обитатели и птицы часто принимаются его за пищу.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Разложение пластика в океане создает дополнительный выброс потенциально токсичных химических веществ, таких как бисфенол А (BPA). Дальше это вещество попадает в источники питьевой воды и организмы животных, потреблявших пластик. Исследования показывают, что BPA и связанные с ним химические компоненты пластмасс могут нарушить нормальную гормональную функцию и нанести вред репродуктивной системе человека и диких животных.

Эффективна ли переработка пластика?

Экологические движения по всему миру продвигают сокращение потребления, разумное использование ресурсов и переработку отходов. Однако исследование, проведенное в 2015 году, показало, что только 20% пластиковых отходов в мире перерабатывается.

Несмотря на все усилия потребителей, некоторые пластиковые предметы, предназначенные для вторичной переработки, в конечном итоге все равно направляются на свалку. Чаще всего это связано с загрязнением пластика пищевыми отходами, недостаточным спросом на продукцию из вторсырья и качеством вторичного пластика.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Загрязнение пищевыми отходами

Загрязнение технологической цепочки переработки пищевыми отходами и предметами, не подлежащими переработке, приводит к тому, что часть всего пластика, предназначенного для переработки, выбрасывается на предприятиях по переработке отходов. Отделение плохо отсортированного и загрязненного пластика трудозатратно и экономически невыгодно переработчикам.

Недостаточный спрос на продукцию вторичной переработки

Есть общепринятая маркировка пластика — от 1 до 7. Она определяет, к какому типу пластика относится изделие. Однако маркировка не всегда означает, что данные предмет подлежит переработке. Например, прозрачная пищевая упаковка (поливинилхлорид; ПВХ), пакеты для заморозки продуктов (полиэтилен низкой плотности; LDPE) и одноразовые подгузники (полипропилен; PP) переработать нельзя.

До 2018 года Китай был крупнейшим импортером пластика в мире и принимал на переработку более половины мировых отходов пластикового производства. Это прекратилось из-за проблем, связанных с загрязненными материалами. В результате крупные экспортеры вторичного пластика, такие как США и Австралия, не могут удовлетворить спрос на переработку. Многие предприятия по переработке не принимают смешанные пластмассы или просто отправляют их на свалки и мусоросжигательные заводы.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Качество переработанного пластика

Большинство пластиковых отходов пригодны только для одного цикла переработки. Процесс переработки ухудшает общую целостность пластика. Так, большая часть переработанного пластика в конечном итоге все равно попадает на свалку или мусоросжигательный завод независимо от того, подвергается ли он еще одному циклу использования или нет.

Источник

Загрязнение пластиком: как полностью уничтожить полимер, из которого делают буквально все

Суша и океаны Земли со стремительно наполняются пластиковым мусором: до сих пор не определен единый способ избавления Земли от него. Ученые регулярно изобретают новые способы бесследно уничтожить самый популярный полимер, рассказываем о них подробнее.

Читайте «Хайтек» в

Как разлагается пластик

Среднее время разложения пластмассовых изделий, созданных по разным технологиям, колеблется от 400 до 700 лет. Полиэтиленовые пакеты, которые повседневно используются людьми, в природе разлагаются от 100 до 200 лет. Это обратная сторона прочности и долговечности пластиковых изделий.

Основные опасения связаны с тем, что пластмассы, попадая в землю, распадаются на мелкие частицы и могут выбрасывать в окружающую среду химические вещества, добавленные в них при производстве. Это может быть хлор, различные химикаты, например, токсичные или канцерогенные антивоспламенители. Эти химические вещества могут просочиться в грунтовые воды или другие ближайшие источники, что может нанести серьезный вред тем, кто пьет эту воду.

При попадании на полигоны пластик не представляет потенциально никакой угрозы, так как полигон — специальное инженерное сооружение, которое создается для защиты окружающей среды и здоровья человека и препятствует загрязнению в том числе почвы и подземных вод.

Большинство вреда наносит именно тот пластик, который выбрасывает сам человек в непредусмотренных для этого местах или который оказывается на стихийных свалках.

Также компании сегодня разрабатывают новые способы ускорить процесс разложения пластика и придумывают новые виды биоразлагаемых пластиков, которые распадаются за три-шесть месяцев.

Такие материалы делаются не из нефтепродуктов, как обычные, а из крахмала, жиров, кукурузы или других биомасс. Но для увеличения производства этих материалов придется расширять посевные земли за счет сокращения лесов и других природных зон.

Виды переработки пластика

Среди физических методов самым распространенным является механический рециклинг. Способ состоит в измельчении, дроблении и перетирании пластиковых материалов для получения рециклата — полимерного материала, впоследствии используемого для изготовления других пластмассовых изделий.

На первом этапе отходы сортируют по типу пластика, состоянию материала и степени загрязненности. Затем материал проходит этап предварительного дробления. Впоследствии пластмассу заново сортируют, моют и высушивают, а затем обрабатывают в термических установках для получения расплава однородной консистенции — рециклата.

Впоследствии уже расплавленный материал отправляют в экструдер для формирования промежуточных гранул либо напрямую вторичной продукции. Для осуществления процесса используются дробилки и грануляционные установки

В результате этого метода из пластмасс формируются новые материалы. Химический рециклинг используется для переработки полимерных молекул, в результате которого образуются новые структуры, впоследствии используемые в качестве сырья для производства новых продуктов.

Многие крупные международные компании, такие как Adidas, Unilever, P&G, Danone and Interface, активно инвестируют в развитие этого направления. В его основе лежит процесс деполимеризации или химического разрушения полимерного связующего.

В результате процесса образуется готовое вторсырье, такое как новый пластик (полимеры), мономеры для изготовления нового пластика, нафта для производства нового пластика и химических веществ, основные химикаты, такие как метанол, транспортное топливо для авиации и автомобилей, воски для свечей и мелков, а также синтетическую сырую нефть.

Преимуществом химического метода является возможность перерабатывать пластик, когда его разделение для механического рециклинга либо экономически неэффективно, либо технически невозможно. Чаще всего метод используется для переработки загрязненного материала.

Гидролиз и гликолиз

При гидролизе пластик взаимодействует с водой в кислой, щелочной или нейтральной среде. В результате происходит деполимеризация материала и расщепление на мономеры.

Сольволиз является наиболее часто используемым методом химического рециклинга и реализуется с использованием широкого диапазона растворителей, температур, давлений и катализаторов, таких как сверхкритическая вода и спирты.

В роли катализатора выступают соли щелочных металлов. По сравнению с пиролизом для процесса сольволиза необходимы более низкие температуры. В процессе образуются восстановленное волокно и химическое вещество, которое впоследствии может быть использовано для коммерческих целей.

В основе метода лежит расщепление пластмассы при помощи метанола в резервуарах с высокими температурами. В процессе используются катализаторы, такие как ацетат магния, ацетат кобальта и диоксид свинца.

В России был разработан процесс утилизации пластика в компоненты жидкого топлива с использованием катализатора разового действия на основе шламов некоторых металлургических производств. Изначально пластмассовые отходы измельчаются, а затем с добавлением катализатора поступают в реактор, где смесь нагревается свыше 400 °C.

Полученная в результате реакции смесь углеводородов подается на сжигание как готовое котельное топливо, которое также может работать в качестве пластификатора некоторых компонентов дорожного покрытия. Впоследствии продукт может быть переработан с целью получения бензина, дизеля и мазута.

Преимуществом метода является низкое энергопотребление, а из недостатков выделяется сложность контроля процесса и технологического оборудования по причине необходимости вести процесс при высоком давлении.

Механизмы термической деструкции полимеров классифицируются по содержанию кислорода на несколько видов: пиролиз, метанолиз, газификация, сжигание.

Пиролиз является одним из самых эффективных, но при этом дорогостоящих способов переработки пластика. При использовании метода пиролиза отходы обрабатываются под воздействием высоких температур в специально оборудованных камерах без доступа кислорода. В результате химического процесса образуются газ, тепловая энергия и мазут.

При расщеплении пластиковых отходов методом пиролиза получают бензиновую фракцию, которая может достигать до 80% от массы исходного сырья.

Процесс подразумевает термическое разложение пластиковых отходов при различных температурах (300–900° C) в условиях отсутствия кислорода, в результате чего происходит термическое разложение и высвобождение содержащихся в пластике частиц водорода. Образуется ряд углеводородов, которые можно использовать в качестве основ топливных веществ.

Пиролиз разрушает 99% вредных сложносоставных веществ, которые входят в состав пластика, что делает его одним из самых экологичных вариантов переработки отходов, однако требует большого количества энергии.

При газификации из несортированного грязного материала образуют синтетический газ, который впоследствии может быть использован как для постройки новых полимеров, так и для вырабатывания тепловой и электрической энергии, метанола, электричества, кормовых белков и различной биомассы.

Отходы обрабатываются потоком плазмы при температуре 1 200 °C, благодаря чему разрушаются токсичные вещества и не образуется смолы. Впоследствии мусор превращается в пепел, который часто прессуют в брикеты и закладывают в фундамент зданий. Метод газификации приобрел особую популярность в Японии.

Главным достоинством метода является возможность перерабатывать пластик без сортировки. Среди недостатков отмечается высокая вероятность выброса вредных газов в атмосферу.

Экспериментальные методы

Термическая деполимеризация является одним из экспериментальных физико-химических способов. Он построен на процессе пиролиза с использованием воды. В результате термической деполимеризации получают как смесь углеводородов, пригодных для создания синтетического топлива, так и новые пластиковые материалы.

В процессе деполимеризации монопластик вроде ПЭТ-бутылок расщепляется обратно в мономеры, которые могут быть переработаны в новые ПЭТ-материалы. Термическая деполимеризация позволяет перерабатывать смешанные виды пластиков, однако создает потенциально опасные побочные продукты.

Радиационный метод основан на использовании высокоэнергетического излучения для разрушения полимерной матрицы, при этом физические характеристики наполнителя остаются неизменными. Предполагается, что в будущем этот все еще экспериментальный метод ставит основным способом утилизации армированного пластика.

Среди недостатков процесса выделяют повышенную радиационную нагрузку на человека и окружающую среду. Более того, утилизации подвергаются только тонкослойные пластики.

Исследователи из Австрии обнаружили, что бактерии из рубца коровы, одного из четырех отделов ее желудка, могут разрушать пластик.

Ученые предполагали, что такие бактерии могут быть полезны, поскольку в рационе коров есть натуральные растительные полиэфиры: они схожи по структуре с пластиком.

Авторы работы рассмотрели три вида полимеров: ПЭТ, PBAT и полиэтиленфураноат. В результате выяснилось, что все три пластмассы можно разрушить микроорганизмами из желудков коров, причем пластиковые порошки разрушаются быстрее, чем пластиковая пленка.

Проблема загрязнения пластмассами может быть решена с помощью жуков, широко распространенных в Корее. Личинки жуков из отряда жесткокрылых (Plesiophthophthalmus davidis) могут разлагать полистирол. Кишечная флора насекомого может окислять и изменять поверхностные свойства полистирольной пленки.

В виде монтажной пены

Новозеландские ученые разработали метод превращения биоразлагаемых пластиковых ножей, ложек и вилок в пену, которую можно использовать в качестве изоляции стен или во флотационных устройствах.

В качестве эксперимента ученые поместили столовые приборы в специальную камеру, заполненную углекислым газом. Изменяя уровень давления, исследователи наблюдали, как диоксид углерода расширился внутри пластика, создавая пену, в дальнейшем ученые получили и пенопласт.

Каждый раз, когда пластик перерабатывается, он немного теряет свою прочность. Но для пенопласта это неважно: во многих областях применения от него не требуется прочности. Этот материал используют в качестве изоляции для стен или во флотационных устройствах.

Шотландские ученые разработали уникальный способ переработки пластиковых отходов. С помощью генномодифицированных бактерий его превратили в ароматизатор ванилин.

Два исследователя из Эдинбургского университета в Шотландии с помощью генной инженерии создали бактерии для преобразования терефталевой кислоты в ванилин. Дело в том, что оба вещества отличаются похожим химическим составом. В итоге бактериям нужно лишь внести незначительные изменения в количество атомов водорода и кислорода, связанных с одним и тем же углеродным «скелетом».

В виде топлива и смазочных материалов

Ученые из США придумали способ переработки пластика в полезные материалы. Их сразу можно использовать в качестве реактивного или дизельного топлива и смазочных материалов.

Исследователи из Центра инноваций в области пластика при Делавэрском университете (CPI) в США разработали прямой метод преобразования одноразовой пластиковой упаковки (пакеты, упаковки из-под йогурта, пластиковые бутылки, крышки от бутылок и другие) для использования в качестве реактивного или дизельного топлива и смазочных материалов.

Исследователи использовали новый катализатор и уникальный процесс для быстрого разрушения трудно перерабатываемых пластмасс — полиолефинов. На их долю приходится 60–70% всех производимых сегодня пластмасс.

Проблемы переработки пластика

Самая большая трудность переработки пластиковых отходов заключается в высокой стоимости сбора и переработки материалов — пластики редко представлены в «чистом» виде и чаще всего представляют собой комбинацию из полимеров различных типов.

Вместе с загрязненностью поступающего материала это делает процесс сортировки и очистки трудоемким и затратным. Более того, система организованного сбора и переработки мусора осуществляется только в ограниченном количестве стран.

Таким образом, большинство пластиковых отходов не подвергается рециклингу и выбрасывается в окружающую среду или при более организованном подходе — сжигается.

Источник

Очистить океаны: разложение пластика за счет солнечного света

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении

Одним из самых значимых для современного общества изобретений является пластмасса, т.е. синтетические полимеры. Дешевизна, легкость изготовления и вариативность внешнего вида и физических свойств позволили пластику распространиться по всему миру с невероятной скоростью. Видов пластика много, но все они в той или иной степени присутствуют в нашей жизни ежесекундно, хотим мы того или нет: канцелярия, детали авто, бытовая техника, медицинское оборудование, игрушки, упаковка продуктовых и хозяйственных товаров и т.д. Естественно, столь широкое распространение данного чудо-материала приводит к образованию огромного объема пластикового мусора, который не спешит разлагаться, приводя к экологической катастрофе как на суше, так и на воде. Дабы решить эту проблему, ученые из Корнеллского университета (США) на протяжении последних 15 лет разрабатывали новый тип пластика, который будет соответствовать всем коммерческим требованиям, но при длительном воздействии ультрафиолета будет достаточно быстро разлагаться. Из чего состоит новый полимер, как уф-излучение его разлагает, и сможет ли это изобретение спасти Мировой океан от пластмассового удушья? Ответы на эти вопросы ждут нас в докладе ученых. Поехали.

Основа исследования

Мы с вами уже обсуждали исследование, в котором ученые подсчитали объемы пластмассового мусора в Мировом океане, основываясь на данных об удаленных и необитаемых островах.

Принцип «чисто там, где не мусорят» пока еще нельзя назвать определяющей чертой нашего вида. Посему ученые решили создать материал, мусор из которого будет существовать не так долго, как из обычного пластика (обычный полиэтиленовый пакет разлагается в почве около 100 лет).

Исследователи отмечают, что примерно 52% мусора в океанах это пластиковые рыболовные сети и другие снасти (данные от 2015 года). Эти предметы не только вносят свою лепту в увеличение накопления мусора, но и приводят к гибели морских обитателей.

Переубедить рыболовную промышленность использовать что-то более безопасное, нежели пластик, задача невыполнимая. Пластиковые сети дешевые, их не жалко потерять в океане (с экономической точки зрения), их можно легко и быстро изготавливать, а значит пластик будут использовать и дальше.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Схема №1: идеальный путь разложения пластика.

Если нельзя переубедить, то можно модифицировать имеющийся материал, чтобы он был такой же прочный и практичный, но при этом разлагался гораздо быстрее (схема выше).

Лидером среди полимеров в рыболовной промышленности является изотактический полипропилен (iPP от isotactic polypropylene), полиэтилен высокой плотности (HDPE от high-density polyethylene) и полиамиды.

Изотактический полипропилен является одним из типов полипропилена по молекулярной структуре (другие два — синдиотактический и атактический). Изотактический обладает большой плотностью (910 кг/м 3 ), высокой температурой плавления (до 170 °C) и высокой стойкость к воздействию различных химических реагентов. Другими словами, данный вид пластика очень стойкий, что для экологии плохая новость.

Одним из методов ускорения разложения пластиков является внедрение в их состав каких-либо допантов (добавок). Однако минусом такой методики является высокая вероятность начала инициации, т.е. цепочки вторичных нежелательных химических реакций.

Ускорить разложения пластика за счет увеличения его восприимчивости к ультрафиолету не является новой идеей. Подобные разработки ведутся еще с 50-ых годов прошлого века. Результатом стал пластик (этилен-монооксидный сополимер), используемый в производстве упаковок для напитков. Однако такой материал не отличается высокой прочностью, необходимой в рыболовных снастях. Тем не менее, сама идея использовать УФ имеет большой потенциал.

Ученые пришли к выводу, что изотактический поли(пропиленоксид) или iPPO может идеально подойти на роль основы нового пластика, поскольку структурно он крайне похож на обычный iPP. Более высокий уровень тактичности (идентичность повторяющихся стереохимических цепей) в iPP увеличивает его кристалличность, что приводит к повышению механической прочности.

Следовательно, в PPO также можно достичь высокой тактичности, увеличив прочность. При этом наличие эфирных связей будет обеспечивать чувствительность к фотохимической деградации за счет УФ-излучения.

Коммерческое производство aPPO использует двойные металлоцианидные катализаторы в сочетании со спиртовыми агентами переноса цепи (CTA) для получения низкомолекулярных полимеров с малой дисперсностью (Đ). Однако сохранение подобного контроля над структурой и одновременное получение высокой тактичности является проблемным для синтеза iPPO.

Потому ученые решили применить энантиоселективные катализаторы, которые селективно полимеризуют один энантиомер, одновременно растворяя менее реакционноспособный эпоксид. В результате было получено несколько вариантов стереоселективных катализаторов Co и Cr с высокими уровнями стереоселективности* (до > 99%).

Стереоселективность* — когда в течение химической реакции образование одного стереоизомера преобладает над другим.

Высокоизотактический поли(пропиленоксид) может быть синтезирован из энантиомерного* пропиленоксида путем полимеризации с переносом цепи (A на схеме 2).

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Схема №2: синтез iPPO.

Энантиомеры* — пара стереоизомеров, представляющих собой зеркальные отражения друг друга, не совмещаемые в пространстве.

Стереоизомеры — химические соединения, имеющие одинаковое строение, но отличающиеся пространственным расположением атомов.

Для такого варианта синтеза потребуется катализатор, обеспечивающий взаимное обогащение, а также энантиомономер, что делает его практически невозможным для производства в крупных масштабах.

Энантиоселективная полимеризация с переносом цепи может также привести к получению высокоизотактического полимера, где тактичность определяется исключительно селективностью катализатора (В на схеме 2).

Изоселективная полимеризация цепи обеспечивает уникальную полимерную архитектуру, в которой оба мономера (С на схеме 2) включены в конфигурацию стереоблока* (SB, т.е. стереорегулярный блок-полимер).

Стереорегулярные полимеры* — полимеры, в макромолекулах которых присутствует асимметричный атом углерода.

Несмотря на разнообразие вариантов синтеза iPPO, о механических свойствах этого материала мало что известно. Потому ученые решили выполнить синтез разных вариантов высокоизотактических iPPO и исследовать его механическую прочность и фотодеградацию.

Результаты исследования

В его энантиомерной и рацемической форме комплекс 1 использовался для полимеризации энантиомерного и рацемического PO для создания каждой стереорегулярной конфигурации iPPO (таблица 1).

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Таблица №1: синтез различных стереорегулярных конфигураций высокоизотактического iPPO с помощью 1 и 1,6-гександиола.

Энантиообогащенный (S)-iPPO был получен из (S)-1 и (rac)-PO в присутствии 1,6-гександиола (1,6-HD) в виде CTA. Его энантиомерная форма была синтезирована из (S)-PO с помощью (rac)-1 в аналогичных условиях реакции. Энантиомерный ®-iPPO был получен таким же образом с использованием ®-PO. Наконец, смешивание равных количеств энантиомерных (S)- и ®-iPPO в растворе дало высокоизотактический (rac)-iPPO. Как и предполагалось, все синтезированные формы iPPO имеют сходные значения Mn (молекулярной массы) и Đ (дисперсность).

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Изображение №1

Каждая стереорегулярная форма iPPO была подвергнута одноосному удлинению, после чего следовало удаление нереагирующего PO и диметоксиэтана (DME).

Каждый материал проявлял упругую реакцию до резкого пика текучести, за которым следовала плоская область, а затем увеличение напряжения до разрушения.

Как и ожидалось, энантиомерные (S) — и ®-iPPO имеют одинаковый профиль растяжения с модулем упругости

290 МПа, пределом текучести

12 МПа и пределом прочности при растяжении (UTS) — 75 МПа ().

Несмотря на то, что энантиомерно обогащенный (с более, чем одним энантиомером) (S)-iPPO имеет незначительные ошибки из-за незначительного включения ®-PO, его упругий отклик сопоставим с энантиомерно чистым (только один энантиомер) (S)-iPPO при большой деформации (1B). Он имеет несколько сниженный модуль упругости и предел текучести 248 и 11 МПа соответственно. Варианты (rac)-iPPO и (SB)-iPPO продемонстрировали самые низкие показатели снижения прочности (4 и 10 МПа, соответственно) при растяжении ().

Более низкая прочность (SB)-iPPO может быть связана с его низкой изотактичностью. Однако структура его изотактических триад (мм) аналогична таковой у энантиомерно обогащенного (S)-iPPO, демонстрирующего такую же прочность при растяжении, что и энантиомерно чистый iPPO.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Изотактическая триада (мм) молекулы полипропилена. Массовая доля изотактических (мм) триад является общей количественной мерой оценки тактичности.

Более низкое содержание мм-триад, наблюдаемое в (SB)-iPPO, свойственно его блочной микроструктуре. А вот для энантиомерно обогащенного (S)-iPPO это обусловлено случайным включением менее предпочтительного энантиомера.

(SB)-iPPO поддерживает приблизительный предел текучести всех других форм iPPO, однако его поведение при растяжении расходится во время деформационного упрочнения. При непрерывном одноосном удлинении полукристаллические полимерные цепи часто перестраиваются после необратимой деформации, что приводит к кристаллизации, иначе называемой механическим упрочнением. Было установлено, что именно этот процесс приводит к снижению прочности на растяжение у (SB)-iPPO.

Ученые отмечают, что во многих полимерах наблюдаются колебания напряжения (деформационного), что обычно присуще металлам. Ранее установить причину проявления таких колебаний было достаточно сложно, однако есть теория, что это связано с образованием микро-трещин и полостей в структуре полимера.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Изображение №2

Ранее проведенные исследования колебаний напряжения показали их зависимость от температуры, скорости деформации и природы материала. Тем не менее, из-за относительно низкой температуры плавления iPPO (68 °C) температурная зависимость колебаний в данном труде не исследовалась. Вместо этого, зависимость скорости деформации колебаний исследовалась в диапазоне деформаций от 0.10% до 1000% (график выше).

Увеличение скорости деформации выше 100% привело к затуханию и исчезновению зубчатого ответа (выделено пунктиром), но и к снижению предела прочности.

Для определения верхнего значения предела прочности iPPO были синтезированы различные варианты энантиомерно обогащенного (S)-iPPO. Полимеры были синтезированы со значениями молекулярной массы в диапазоне от 49 до 206 кДа. Каждый образец демонстрировал одинаковую приблизительную тактичность и предел текучести (около 12 МПа).

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Изображение №3

Повышение молекулярной массы выше 100 кДа привело к незначительному улучшению при растяжении. Также было обнаружено возникновение потери прочности на разрыв, когда молекулярная масса снижалась ниже 104 кДа.

Определив граничное значение предела прочности для iPPO, ученные провели сравнительный анализ данного полимера с коммерчески доступными пластиками (iPP, HDPE и нейлон-6,6).

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Изображение №4

iPPO показал относительно низкий предел текучести, однако предел прочности был выше, чем у коммерческих полимеров (график выше).

Исследуемый iPPO достаточно прочный, что крайне важно для рыболовной промышленности. Осталось проверить насколько он восприимчив к солнечному свету. Естественно, интенсивность света варьируется в зависимости от сезона, погодных условий и времени суток, но в экспериментальных целях было решено использовать постоянное излучение, но менее интенсивное, чем это было бы в природных условиях.

Что выделяет пластик при разложении. Смотреть фото Что выделяет пластик при разложении. Смотреть картинку Что выделяет пластик при разложении. Картинка про Что выделяет пластик при разложении. Фото Что выделяет пластик при разложении
Изображение №5

Образец начал разлагаться уже спустя 3 дня, о чем свидетельствовало падение молекулярной массы на 9 кДа (график выше, синие маркеры). Спустя 15 дней молекулярная масса потеряла уже 29 кДа. Конечный результат опыта (после 30 дней) показал, что молекулярная масса полимера снизился с 93 кДа до 21 кДа.

Параллельно проводилась оценка разложения того же полимера, но без УФ-излучения (график выше, красные маркеры). Как и ожидалось, после полных 30 дней молекулярная масса не изменилась, что говорит об отсутствии деградации материала.

Основным механизмом разложения в данном случае можно считать автоокисление. Низкомолекулярные антиоксиданты часто используются в качестве стабилизаторов радикалов в коммерческих полиэфирах и полиуретанах. Манипуляции с этими добавками позволят контролировать срок службы полимера.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог

В данном труде ученые смогли разработать новый полимер, который демонстрирует сопоставимые с коммерческими полимерами характеристики, но способен разлагаться под действием солнечного света. Конечно, в дальнейшем планируется провести еще несколько исследований для того, чтобы получить полный контроль над процессом разложения, ведь никому не нужны рыболовные сети, которые разлагаются с первого же дня использования.

Объем используемого пластика можно уменьшить, но это может привести к появлению других проблем, как в экономике, так и в экологии. Ученые считают, что проблему необходимо рассматривать под другим углом — если нельзя отказаться от пластика, значит нужно его изменить так, чтобы использование пластика не наносило вреда окружающей среде.

Однако, стоит отметить, что наличие подобного рода исследований не означает, что можно быть беспечным в вопросе пластикового мусора, его сортировки и т.д. Полагаться на ученых, думая, что они все «разрулят», нельзя. Ведь до создания нового супер-пластика еще далеко, а мусорные острова в мировом океане по-прежнему плавают. Посему каждый человек должен по мере возможностей вносить свою лепту в общее дело сохранения окружающей среды. Если уж мы не способны исправить экологический вред, нанесенный прежними поколениями, то хотя бы не стоит его усугублять.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂

Немного рекламы 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *