Турбина на тэц для чего

Типы паровых турбин

Паровая турбина — это машина, предназначенная для преобразования тепловой энергии пара в механическую энергию вращения.

По типу паровые турбины делятся на: конденсационные, теплофикационные, теплофикационные с отбором пара на производство, противодавленческие.

В общем можно сказать, что тип турбины зависит от того, сколько и полностью ли пар совершает работу в турбине и куда он ещё идёт «на сторону».

Конденсационные турбины

Вероятно, этот тип турбин самый распространённый (маркировка — К). В комплекте с самой такой турбинной обязательно есть ещё устройство для сбора отработавшего пара — конденсатор. Весь отработавший пар в такой турбине поступает в конденсатор.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

В России такие турбины в советское время производил завод ЛМЗ — Ленинградский металлический завод. В настоящее время он переименован в ОАО «Силовые машины».

Теплофикационные турбины

Турбины типа — Т. Этот вид турбин устанавливают на ТЭЦ, т.е. там, где помимо выработки электричества, ещё нужно получать тепловую энергию — отопление и горячее водоснабжение.

У теплофикационных турбин существуют регулируемые теплофикационные отборы пара. Регулировка осуществляется поворотной диафрагмой. Пар с такого отбора поступает в сетевые подогреватели — теплообменники, где пар передаёт своё тепло сетевой воде.

Теплофикационные турбины, как правило, могут работать и в конденсационном режиме, например, в летнее время. В таком случае пар на сетевые подогреватели не поступает, а весь используется для выработки электричества.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Теплофикационные турбины в России производятся на УТЗ — Уральском турбинном заводе.

Теплофикационные турбины с промышленным отбором пара

Маркировка таких турбин — ПТ.

Промышленный отбор пара означает то, что часть пара с таких турбин уходит на какое-либо стороннее производство (завод, фабрику и т.д.). Пар может возвращаться обратно на электростанцию в виде конденсата, а может и полностью теряться.

Такие турбины в настоящее время практические не устанавливают. В советское время их устанавливали на ТЭЦ вблизи крупных промышленных предприятий — химических комбинатов, деревообрабатывающих заводах и т.д..

Противодавленческие турбины

Противодавленческие турбины имеют маркировку — Р. В составе таких турбин отсутствует конденсатор, а весь отработавший пар идёт с каким-либо небольшим давлением стороннему потребителю.

Этот тип турбин в настоящее время, как и турбины ПТ, не находит применение за редким исключением. После распада Советского Союза многие такие турбины «пылились» без дела, так как отсутствовал внешний потребитель отработавшего пара. Без потребителя пара невозможна и их эксплуатация, а значит и выработка электричества.

Паровая турбина Р-27-8,8/1,35:

Но позже нашли оригинальное решение их модернизации. В пару к таким турбинам начали устанавливать небольшие турбины типа К (конденсационные), рассчитанные на работу с низким давлением пара. Т.е после того, как пар отработал в турбине Р, он не идёт стороннему потребителю, а поступает на вход дополнительно установленной турбины типа К, где завершает свою работу и конденсируется в конденсаторе.

Источник

Принцип работы и устройство тепловой электростанции (ТЭС/ТЭЦ)

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.

Чистое сжигание угля (Clean Coal)

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.

Если на свой дом вы поставите ветряк вас линчуют соседи. В Новосибирске есть фанат альтернативной энергии, на участке собрал все варианты. Вот от ветряка ему пришлось отказаться по выше указанной причине.

Короче,владельцы электростанций хают во всю зеленые технологии.Ведь столько денег которые собирают с населения они не дополучат.Но вместо того чтобы сделать по уму как некоторые когда владельцы электростанций которые вкладывают свои средства в производство этих самых солнечных батарей и тем самым отбывают свои доходы.У нас как обычно все по другому.Что например мешает у нас господину Ахматову чтобы вложить деньги в производство и обслуживание солнечных батарей или ветряков вместо того чтобы употреблять свое влияние на противоположные действия. Ведь иностранное оборудование стоит еще очень дорого,а возвращение экономики ВВП Украины к довоенному уровню прогнозируют только через 3-4 года.И то того не факт.

Стоимость киловатта энергии от солнечной панели в 4-5 раз дороже чем из розетки даже с учетом эксплуатации в течении 15 лет. Поэтому ее экономично использовать на удаленных объектах, так как электроэнергия от дизеля будет еще дороже.

Видел в на некоторых ресурсах что российские чиновники хотят отделить российский интернет от мирового,да и границу прикрыть.Так что возможно вам и не будет с кем спорить.Избавитесь от моей прямоты,которая как луч фонарика светит прямо в глаза.Что бывает неудобно.Короче не будет кому высвечивать,светить.

Интересная особенность природы. Порядка 2% от населения нервно нестабильные люди. Даже если их устранить (вспомните, уничтожение психбольных при Гитлере) очень скоро этот процент восстанавливается. Съежают с катушек еще вчера нормальные люди. Так что, как бы вы не хотели, уважаемый «иксперт» массовых расстрелов не будет, а вот с свободным местом в дурдоме будут проблемы.

,,Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.»
Автор в курсе,сколько углекислого газа выделяется на ТЭС,работающей на угле?По весу это 48/14=3.42 во столько раз больше,чем вес сожжённого угля.Это не большая ТЭС,мощностью 10000 квт будет производить за год около 30 тысяч тонн углекислоты,которую необходимо сжать и захоронить.И сколько ж будет стоить энергия,полученная таким способом?Автор может привести,хоть один пример ТЭС,работающей подобным образом?

Да, совсем забыл упомянуть, в Питере вроде вроде (в новостях показывали) ребята нашли очень дешовый способ перевода тепловой энергии напрямую в электрическую энергию и абсолютно без всякого вреда для экологии. Только, думаю «замылят» эту тему надолго, а не то спекулянты обанкротятся, а люди вдруг станут жить лучше, разве можно такое допустить!)

Вот нашел, совсем свежее решение с высоким КПД, дешево и безопасно. https://media.spbstu.ru/news/research/307/

Жил недалеко от такой ТЭЦ. Давно подозреваю что ТЭЦ работают на ядерных таблетках Уран-235 (обогащение 3,3%). Одна такая эквивалентна 400кг каменного угля. Ни черного дыма в больших количествах от ТЭЦ ни длинных процессий грузовиков или вагонов к|от никогда не наблюдал.

Не надо рассказывать сказки про дороговизну солнечной энергии. да каждый отдельный элемент солнечной электростанции дорог: инвертор контролер аккумулятор и сама панель кстати сами солнечные панели относительно дёшевы да всё враз это стоит дорого но это разовые затраты после установки солнечная станция начинает давать халявное электричество. остаётся лишь менять аккумуляторы но их срок службы несколько лет так что от смены до смены оных мы получаем даровую энергию я у себя дома установил такую да на покупку всего оборудования пришлось расеошелиться особенно на инвертор но теперь она не требует вложений и работает исключетельно на халяву. зелёные не правы только в одном да сами по себе солнечные панели маломощные и без наворотов не способны питать мощные потребители и полностью заменить тэц

когда спорят зелёные и не зелёные на самом деле правы и те и другие:зелёные правы когда говорят что дороговизна солнечноветровой энергии сильно преувеличена они правы что солнце и ветер бесплатные единожды заплатив мы далее начинаем получать даровое электричество но вот наступает долгая зимняя безветренная ночь и вот тут правота зелёных заканчивантся и наступает правота не зелёных ибо поступление энергии от солнца и ветра заканчивается и нагрузка ложится на хрупкие плечи аккумуляторов но это главная загвоздка сохранить энергию до наступления условий когда выработка энергии от солнца и ветра возобновиться что весьма проблематично всилу несовершества современных аккумуляторов☝️ и тут наступет пора тэц☝️так что вывод прост: солнечно ветровая энергетика не может полностью заменить традиционную однако сильно подсобить сократить расходы на горючее и уменьшить вредные выбросы в атмосферу очень даже может. поэтому однозначно солнечно ветровой энергетике БЫТЬ. ☀️

Централизованные системы энергоснабжения до сегодняшнего дня требовались для контроля над денежными потоками и толпой людей!
Современные технологии позволяют контролировать и финансы и людей через автоматизированные системы управления на базе ИИ.
Поэтому в ближайшие 5 лет, после окончательного разрушения старого технологического и финансового укладов, будет разрешено рассекретить все технологии и патенты по альтернативным и портативным источникам энергии.
Не скажу, что будет счастье для всех, но точно перейдем от стим-панка к кибер-панку))

Источник

Паровые турбины

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество.

Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт.

В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.

Теплофикационные паровые турбины

Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин — тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением.

У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.

В турбинах с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.

У турбин с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Схема работы теплофикационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины (3). При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом (4) электрического генератора (5). В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы, и из них пар направляется в подогреватели (6) сетевой воды (7). Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть тепла, полученного в котле используется для подогрева сетевой воды.

Паровые турбины специального назначения

Паровые турбины специального назначения обычно работают на технологическом тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).

Обычно стационарные паровые турбины имеют нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды. Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.

Источник

Блог об энергетике

энергетика простыми словами

Паротурбинные установки тепловых электростанций (ТЭС)

Паровая турбина вместе с относящимися к ней регенеративными подогревателями, конденсатором, насосами, трубопроводами и арматурой образует паротурбинную установку.

Современная паровая турбина состоит из большого числа деталей, тщательно изготовленных и собранных в единый агрегат. Мощности современных энергетических турбоагрегатов постоянно повышаются, и в настоящее время основной прирост мощностей в энергосистемах происходит за счет ввода агрегатов 300, 500, 800 МВт. На Костромской ГРЭС сооружен головной агрегат мощностью 1200 МВт.

Увеличение мощности турбоагрегатов позволяет сооружать ТЭС большой мощности при одновременном удешевлении их строительства и эксплуатации и снижении расходов топлива на выработанный киловатт-час. Наряду с экономичностью современная турбина должна отвечать высоким требованиям безопасности, надежности и маневренности. Требование высокой маневренности предъявляется ко всему энергетическому оборудованию. Турбина должна допускать быстрый пуск, набор и изменение нагрузки и остановку. Эта задача весьма сложна для агрегатов, работающих при высоких начальных параметрах пара (26 МПа, 540-570 °С) и имеющих стенки корпусов и фланцы большой толщины.

При разработке и эксплуатации турбин приходится сталкиваться с весьма сложными проблемами аэродинамики, теории колебаний, теплопередачи, изменения свойств материалов при высоких температурах и вибрации, автоматического регулирования и контроля турбоустановки.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Рис. 1. Схема простейшей турбины

На рис. 1 показана схема простейшей турбины, а на рис. 2 — схема устройства многоступенчатой паровой турбины. Простейшая турбина состоит из соплового аппарата 1, рабочей лопатки 2, вала 3 и диска 4.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Рис. 2. Схема устройства многоступенчатой паровой турбины

1 — вал турбины; 2 — диски; 3 — рабочие решетки; 4 — нижняя половина корпуса; 5 — верхняя половина (крышка) корпуса; 6 — диафрагмы (нижние половины); 7, 8 – сопловые решетки; 9 – уплотнения диафрагмы; 10 – сопловая решетка первой ступени давления; 11 – переднее уплотнение; 12 – заднее уплотнение; 13 – опорные подшипники; 14 – упорный подшипник; 15 — соединительная муфта; 16 — червячная передача; 17 — масляный насос; 18 — фундаментные плиты; 19 — регулятор скорости; 20 — масляный бак; 21 — регулятор безопасности; 22 — камера отбора; 23 — окна для отбора пара; 24, 27 — опорные фланцы корпуса; 25, 26 — фланцы опорных блоков

Турбина состоит из вращающейся части — ротора и неподвижной части — статора. К ротору относятся вал и закрепленные на нем диски с рабочими лопатками. Статор включает в себя паровпускные органы, сопловые решетки, подшипники и др. Корпус турбины делается разъемным в горизонтальной плоскости по центровой линии вала. Нижняя его часть опирается на фундамент, а верхняя часть устанавливается на нижнюю и крепится по фланцам с помощью шпилек и гаек. Через паровпускные органы в сопловую коробку вводится свежий пар. Корпус заканчивается выхлопным патрубком, через который отработавший пар отводится из турбины.

В неподвижных каналах-соплах пар расширяется; при этом его давление и температура снижаются, скорость парового потока возрастает до нескольких сот метров в секунду и соответственно увеличивается его кинетическая энергия.

Она используется в подвижных рабочих лопатках, закрепленных на дисках, насаженных на вал турбины (рис. 2). Между дисками располагаются неподвижные перегородки — диафрагмы с закрепленными в них соплами. Диафрагма и диск с рабочими лопатками образуют ступень турбины.

На каждой ступени турбины лишь часть внутренней энергии пара преобразуется в механическую энергию, передаваемую с вала турбины на вал генератора электрического тока. Увеличение числа ступеней приводит к повышению КПД турбинной установки, так как в этом случае каждая ступень «работает» в более оптимальном режиме. Однако увеличение числа ступеней оправдывает себя лишь до определенного предела, так как с ростом числа ступеней турбина усложняется и становится дороже.

Крупные энергоблоки, работающие при высоком и закритическом давлении пара, выполняются с промежуточным перегревом. Пар высоких параметров, совершая работу в турбине, на последних ее ступенях увлажняется, а это приводит к снижению КПД и эрозионному воздействию капелек влаги на лопатки турбины. При использовании же промежуточного перегрева пара не только понижается его конечная влажность, но и повышаются показатели тепловой экономичности цикла. На рис. 3 дана схема одной из наиболее распространенных в нашей энергетике конденсационных турбин К- 300 — 240 мощностью 300 МВт, работающей при начальном давлении пара 240 атм (23,5 МПа). Температура свежего пара принята 540 — 560 °С, частота вращения 3000 об/мин.

Турбина состоит из трех цилиндров: цилиндра высокого давления (ЦВД), цилиндра среднего давления (ЦСД) и цилиндра низкого давления (ЦНД). В двенадцати ступенях ЦВД пар расширяется от указанных выше начальных параметров до давления 4 МПа, после чего направляется в промежуточный пароперегреватель (ПП), установленный в котле, и далее с давлением 3,5 МПа и температурой 540 — 560 °С поступает в ЦСД. В двенадцати головных ступенях ЦСД пар расширяется до давления 0,2 МПа, затем разделяется на два потока: одна треть проходит пять ступеней низкого давления, расположенных в ЦСД, и поступает в конденсатор, а две трети пара по перепускным трубам подаются в ЦНД, где, разделяясь на два потока, проходят по пяти ступеням низкого давления и направляются также в конденсатор. Давление пара за последними ступенями перед входом в конденсатор равно 0,0035 МПа. Разделение пара в части низкого давления на три потока связано с большими объемами пара в последних ступенях. Выпуск всего объема пара через одну решетку приводил бы к недопустимым по соображениям прочности высотам рабочих лопаток. Даже при разделении пара в последних ступенях на три потока высота лопаток составляет 960 мм, а окружная скорость на их вершинах — 540 м/с. При массе последней лопатки 9,8 кг центробежная сила, действующая на нее, равна

Еще более сложны турбины большей мощности. Так, у турбин мощностью 500 МВт делается 4 выхлопа в конденсатор, а у турбины К-800-240 мощностью 800 МВт — шесть выхлопов в конденсатор. В турбине К-1200-240 мощностью 1200 МВт, установленной на Костромской ГРЭС, лопатки последних ступеней имеют длину 1200 мм, но для уменьшения центробежных сил они выполнены из более легкого титанового сплава.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Рис. 3. Изменение параметров рабочего тела в активной турбине:

1, 9 — камеры свежего и отработанного пара; 2,4,6 — сопла; 3,5,8 — рабочие лопатки; 7 — диафрагма.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Рис. 4. Схема турбины К-300-240 (z — число ступеней)

Теплофикационные турбины, устанавливаемые на ТЭЦ, могут иметь 1 или 2 регулируемых отбора (например, промышленный и теплофикационный). В теплофикационной турбине Т — 250 — 240 имеются 2 отбора пара для подогрева воды в системе теплоснабжения (из них один регулируемый) и, кроме того, может быть осуществлен предварительный нагрев сетевой воды в специальном подогревателе, встроенном в конденсатор.

Отработавший пар конденсационных турбин и турбин с промышленными и теплофикационными отборами поступает в конденсатор, где поддерживается давление значительно ниже атмосферного. В конденсаторе осуществляется отвод тепла от рабочего тела — пара — при возможно более низкой температуре и давлении с превращением пара в конденсат, идущий вновь на питание котлов. Здесь тепло отдается охлаждающей (циркуляционной) воде. Конденсат не должен смешиваться с охлаждающей водой, имеющей большое количество примесей. Поэтому конденсатор представляет собой теплообменник поверхностного типа.

На рисунке 5 приведена схема конденсатора паровой турбины.

Турбина на тэц для чего. Смотреть фото Турбина на тэц для чего. Смотреть картинку Турбина на тэц для чего. Картинка про Турбина на тэц для чего. Фото Турбина на тэц для чего

Рис.5. Схема конденсатора паровой турбины:
1 – патрубок для выхода воды, 2 – крышка водяных камер, 3 — водяные камеры, 4 – трубные решетки, 5 – корпус конденсатора, 6 – пароприемная горловина, 7 — трубки, 8 — сборник конденсата, 9 — патрубок для подвода воды, 10 — патрубок для удаления воздуха.

Для поддержания хороших условий теплообмена и постоянного парциального давления воздуха, а вместе с ним и общего давления в конденсаторе просачивающийся в конденсатор воздух необходимо непрерывно удалять. Для этого устанавливаются воздухоотсасывающие устройства — пароструйные или водоструйные эжекторы.

Конденсат из нижней части конденсатора откачивается конденсатными насосами и подается через подогреватели в котел. Конденсатор устанавливается под турбиной и представляет собой горизонтально расположенный сосуд, сваренный из листовой стали. Внутри корпуса конденсатора на некотором расстоянии от его торцов ввариваются специальные пластины с отверстиями, называемые трубными досками, в которые завальцовываются трубки, образующие поверхности теплообмена. Корпус с торцов закрывается крышками так, что между крышками и трубными досками образуются водяные камеры.

Если в одной из камер установить горизонтальную перегородку, то по-лучим двухходовой конденсатор: охлаждающая вода поступает в нижний (подводящий) патрубок передней камеры, проходит по нижним рядам труб и через заднюю камеру поступает в верхние ряды труб, после чего удаляется из конденсатора.

Для рассмотренной выше турбины К-300-240 Ленинградского металлического завода конденсатор имеет следующие характеристики:

Количество трубок, шт.19600
Длина трубок, м8,9
Диаметр dн, мм28
Диаметр dвн, мм26
Расход пара при номинальной нагрузке турбины, т/ч570
Номинальный расход охлаждающей жидкости, т/ч36000

Источник: Полещук И.З., Цирельман Н.М. Введение в теплоэнергетику: Учебное пособие пособие / Уфимский государственный авиационный технический университет. – Уфа, 2003.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *