Трубка пито в самолете для чего

Скорость полета самолета и трубка Пито

Для сбора и обработки такого рода данных на современных самолетах существуют специальные системы. Одно из названий для них — система воздушных сигналов (СВС).

Работа датчиков такой системы, собирающих данные для определения скорости полета основана на двух уже почтенного возраста изобретениях. Первое — это трубка Пито. Она изобретена в 1732 году французским ученым А.Пито. Он занимался гидравликой, то есть изучал течение жидкости в трубах. Как известно законы гидравлики при определенных условиях вполне применимы для газов, то есть для воздуха. Его мы в дальнейшем и будем иметь ввиду.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Схема классической трубки Пито

Однако здесь надо не забывать еще об одной важной вещи. Все, что находится внутри земной атмосферы, существует в ней под постоянным атмосферным (статическим) давлением. Мы его практически не ощущаем (если, конечно, все в порядке со здоровьем ), но оно есть и так или иначе оказывает влияние практически на все физические процессы, происходящие вокруг нас, то есть на всю нашу жизнь. Прямо как в фильме «ДМБ» :

— И я не вижу… А он – есть!

Если серьезно, то то давление, которое мы получаем при торможении воздушного потока в трубке Пито – это так называемое полное давление. Оно, на самом деле, равно сумме двух других давлений.

Полное давление = динамическое давление (скоростной напор) + статическое давление.

Динамическое давление, его еще называют скоростной напор, это то самое давление, которое и дает нам скорость полета. Статическое давление – это наше незаметное (как суслик ) давление. И при измерении скорости его обязательно надо учитывать, ведь оно в разных точках пространства может иметь различные значения, особенно с изменением высоты полета, и тем самым оказывать влияние на величину измеренной скорости полета.

Скоростной напор выражается такой формулой Р1 = ρV²/2.

В итоге мы имеем такое уравнение: Р = Р0 + Р1 = Р0 + ρV²/2

Из него очень просто получить искомую скорость полета: V = √((2(Р – Р0))/ρ)

Исходя из этого несложного выражения работают все авиационные воздушные (аэродинамические) измерители скорости. Как пример можно привести достаточно простой указатель скорости для малоскоростных самолетов УС-350.

Как видите, нам, чтобы определить скорость полета, нужно измерить полное давление потока и статическое давление. Классическая трубка Пито дает только полное давление. Поэтому статику приходится измерять отдельно. Во избежание этого неудобства трубка Пито была усовершенствована.

Это второе изобретение (а точнее усовершенствование) из тех двух, о которых я говорил выше. Его сделал немецкий ученый-физик Людвиг Прандтль, которого даже иногда называют отцом современной аэродинамики. Он объединил измерение полного давления потока и статического давления в одной трубке. Для этого в ней есть одно отверстие в направлении потока для полного давления и ряд отверстий на поверхности, обычно расположенных по кольцу, для статического давления. Оба эти давления обычно отводятся в герметичные емкости, разделенные чувствительной мембраной и уже ее движение передается на стрелочный указатель скорости полета. Вот и все. Все гениальное просто, как известно … Такое устройство называют трубкой Прандтля или Пито-Прандтля. На рисунке: 1 – трубка Прандтля, 2 – воздуховоды, 3 – шкала указателя скорости (УС), 4 – чувствительная мембрана.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Схема работы трубки Прандтля (ПВД).

Работа указателя скорости неплохо показана в этом небольшом ролике.

На современных летательных аппаратах эти устройства получили новое, более простое и правильное название: приемники воздушного давления (ПВД). Они дают первичные данные в сложный комплекс системы воздушных сигналов. Трубки Пито в чистом виде сейчас практически не применяются. Хотя кое-где в малой авиации они еще встречаются. В комплекте к ним тогда обязательно идут приемники статического давления в виде плиты с рядом отверстий на обшивке летательного аппарата.

Чаще используются так называемые комбинированные ПВД. Они по конструкции представляют собой типичные трубки Прандтля. Эти устройства обязательно снабжаются мощной системой электрического обогрева, так как небольшие отверстия для замера давлений при обледенении самолета вполне могут быть закупорены льдом, что, конечно, может помешать их корректной работе. На стоянках приемники воздушных давлений закрываются специальными заглушками или чехлами для исключения попадания посторонних предметов и грязи в отверстия.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Типичный ПВД современного самолета.

Все данные, выдаваемые ПВД, как я уже говорил, в итоге передаются на стрелки специальных приборов – указателей скорости полета. Они довольно разнообразны, как разнообразны и определения для скоростей полета летательного аппарата. Ведь он передвигается не только относительно земли, но и относительно атмосферы, которая сама по себе среда очень нестабильная.

Итак, скорости летательного аппарата.

Воздушная скорость (самая важная). Она делится на два вида:

Истинная воздушная скорость ( True Airspeed (TAS) ) и Приборная воздушная скорость ( Indicated Airspeed (IAS) )

Приборная скорость – эта та скорость, которую летчик видит в своей кабине на приборе-указателе скорости. Она используется для пилотирования летательного аппарата непосредственно в данный момент времени.

Инструментальные. Возникают из-за несовершенства и особенностей изготовления самого прибора.

Аэродинамические. Это ошибки, возникающие при замере статического давления. Обусловлены конструкцией самолета, местом расположения датчиков и скоростью полета.

Методические. Эти ошибки обусловлены тем, что каждый указатель скорости рассчитывается и тарируется под определенные условия. В физике такие условия называются нормальными. Это когда атмосферное давление равно 760 мм рт.ст., а температура воздуха 15° С. Но на самом деле с подъемом на высоту эти условия меняются. Меняется и плотность воздуха и следовательно скорость, которую показывает прибор, то есть приборная. С подъемом на высоту приборная скорость всегда меньше истинной. Они равны только при нормальных атмосферных условиях. Все эти погрешности учитываются в виде поправок при навигационных расчетах.

Путевая скорость (Ground Speed (GS)). Это скорость летательного аппарата относительно земли. Она рассчитывается на основании истинной скорости с учетом скорости ветра и используется при решении навигационных задач.

Крейсерская скорость. При этой скорости величина отношения потребной тяги к скорости полета минимальна. То есть летательный аппарат на этом режиме максимально экономичен при сохранении скорости, достаточной для выполнения задачи. Крейсерская скорость обычно равна 0,7-0,8 от максимальной. На ней выполняются долговременные полеты по маршрутам.

Вот пока, пожалуй, и все. Однако в завершение скажу об одной важной детали. Говоря в этой статье о воздушных потоках и скоростях, мы имели ввиду скорости до 350-400 км/ч. Дело в том, что начиная с этих скоростей проявляется новый эффект воздушного потока – сжимаемость. Она порождает новую методическую ошибку в измерении скорости, которую тоже надо учитывать. Влияние сжимаемости с ростом высоты и скорости полета растет, переходя в эффекты сверхзвука. Но скорость полета на сверхзвуке, трубка Пито на этом режиме и другие приборы измерения скорости – это уже тема следующей статьи…

Источник

Скорость полета самолета и трубка Пито.

Здравствуйте, друзья!

Но а как же быть с самолетом? Нет ведь в воздухе дорог, по которым можно было бы ехать :-). Единственная среда, с которой летательный аппарат контактирует непосредственно — это воздух. Вот от него-то он большую часть информации о своем движении и получает. Что касается конкретно скорости полета, то вполне понятно, что чем быстрее самолет летит, тем сильнее на него давит встречный воздушный поток (скоростной или динамический напор). Отсюда логично было бы определять скорость полета в зависимости от величины этого давления. Так же как, кстати, и с атмосферным давлением и высотой. Ведь чем выше летит самолет, тем атмосферное давление ниже. О высоте, однако, поговорим в одной из следующих статей, а пока на повестке дня скорость полета.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Схема классической трубки Пито

Трубка Пито представляет собой L — образную трубку, один конец которой помещен в скоростной (воздушный :-)) поток. Этот поток в трубке тормозится, создавая в ней избыточное давление, по величине которого и можно судить о скорости потока, то есть по сути дела скорости полета, если эта трубка установлена на летательном аппарате. Вобщем-то принцип достаточно простой :-).

Однако здесь надо не забывать еще об одной важной вещи. Все, что находится внутри земной атмосферы, существует в ней под постоянным атмосферным (статическим) давлением. Мы его практически не ощущаем (если, конечно, все в порядке со здоровьем :-)), но оно есть и так или иначе оказывает влияние практически на все физические процессы, происходящие вокруг нас, то есть на всю нашу жизнь. Прямо как в фильме «ДМБ» :-):

— Видишь суслика?
— Нет…
— И я не вижу… А он — есть!

Полное давление = динамическое давление (скоростной напор) + статическое давление.

Скоростной напор выражается такой формулой Р1 = ρV²/2.

В итоге мы имеем такое уравнение: Р = Р0 + Р1 = Р0 + ρV²/2

Из него очень просто получить искомую скорость полета: V = √((2(Р — Р0))/ρ)

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Указатель скорости УС-350.

Как видите, нам, чтобы определить скорость полета, нужно измерить полное давление потока и статическое давление. Классическая трубка Пито дает только полное давление. Поэтому статику приходится измерять отдельно. Во избежание этого неудобства трубка Пито была усовершенствована.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Схема работы трубки Прандтля (ПВД).

Работа указателя скорости неплохо показана в этом небольшом ролике.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Трубка Пито под крылом самолета Cessna 172.

Чаще используются так называемые комбинированные ПВД. Они по конструкции представляют собой типичные трубки Прандтля. Эти устройства обязательно снабжаются мощной системой электрического обогрева, так как небольшие отверстия для замера давлений при обледенении самолета вполне могут быть закупорены льдом, что, конечно, может помешать их корректной работе. На стоянках приемники воздушных давлений закрываются специальными заглушками или чехлами для исключения попадания посторонних предметов и грязи в отверстия.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Типичный ПВД современного самолета.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Приемник воздушного давления на СУ-24М (цифры 1 и 2).

Воздушная скорость (самая важная :-)). Она делится на два вида:

Истинная воздушная скорость ( True Airspeed ( TAS ) ) и Приборная воздушная скорость ( Indicated Airspeed ( IAS ) )

Приборная скорость – эта та скорость, которую летчик видит в своей кабине на приборе-указателе скорости. Она используется для пилотирования летательного аппарата непосредственно в данный момент времени.

Истинная скорость – это фактическая скорость полета самолета относительно воздуха. Она используется для навигации. Зная ее, например, рассчитывается время прибытия в конечный пункт маршрута и возможные при этом отклонения. Измерить эту скорость обычно невозможно. Она рассчитывается с использованием приборной скорости, давления воздуха и его температуры. При этом учитываются погрешности указателя приборной скорости. Они всегда есть, как у любого измерительного прибора на нашей земле :-). Эти погрешности (или ошибки) бывают:

Путевая скорость (Ground Speed ( GS )). Это скорость летательного аппарата относительно земли. Она рассчитывается на основании истинной скорости с учетом скорости ветра и используется при решении навигационных задач.

P.S. В заключении предлагаю вам посмотреть дополнительный ролик, рассказывающий о трубках Пито и Прандтля.

74 Комментариев: Скорость полета самолета и трубка Пито.

Полета самолета определяют 5 скоростей. Пилот имеет на борту первую скорость из этой цепочки, а ему нужна пятая по счету.

IAS — получается на борту как разность давления (см. статью). Поскольку прибор как любое механическое устройство имеет свою погрешность (зазоры, трение и пр.), то его показания надо корректировать, и получается IAS*=IAS+dVпр. Однако, механика стала сверхточной, приборы подешевели и доступны всем, от дешевых самолетов до самых дорогих, то в последних нормах лётной годности эта поправка строго нормирована, не более от 2 до 5 км/ч, то все приборы и показывают скорость с этой точностью, и приборную поправку можно больше не учитывать, используя просто IAS. Именно эта скорость записана в РЛЭ, по ней и пилотирует самолет пилот. Но есть особенность — это очень «грязная» скорость. Видя на приборе скорость 500 км/ч, это вовсе не означает, что самолет каждый час пролетаете 500 км. Подробности ниже.

CAS — calibrated airspeed, или индикаторная земная скорость. Любое тело летящее в воздухе создает вокруг себя поле давлений, или по-простому — ударную волну (это если уж со сверхзвуковой скоростью). А у нас есть ПВД и мы им измеряем давление. Для дозвукового самолета искажение поля давления распространяется на 1…2 характерных размера объекта (очень условно и примитивно, но примерно так). Например, у моего самолета хорда крыла 1,3 м, а искажение поля статического давления перед крылом распространяется на 2 м. Штанга же ПВД расположенная в носке крыла имеет длину 0,75 м (а длиннее нельзя — сломается, или делать ее из чугуна). Конечно же статическое давление измеряется с искажениями. К тому форма поля статического давления зависит от положения закрылков и угла атаки (а те в свою очередь — от скорости полета, массы самолета, и понеслись по всему учебнику…). Чтобы это учесть, в лётных испытаниях определяют «вранье ПВД», искажение измерения статического давления, и потом приборную скорость IAS корректируют (калибруют) — добавляют аэродинамическую скоростную поправку ПВД: CAS = IAS + dVа.

EAS — индикаторная скорость. Если самолет летит быстрее 400 км/ч, то воздух начинает проявлять эффект сжимаемости, что тоже влияет на измерения. По спец.таблицам для любой высоты и скорости полета можно посмотреть поправку на сжимаемость и добавить ее: EAS = CAS + dVсж. Если скорость полета меньше 400 км/ч, то сжимаемость не учитывается — EAS = CAS, соответственно. Пересчитывая IAS в CAS или EAS уже можно сравнивать характеристики конкретного самолета на разных режимах полета: даже если IAS будут разные, но CAS/EAS одинаковые, то и аэродинамические характеристики самолета одинаковые. Именно в этих скоростях записаны все нормы летной годности, по которым проектируют самолеты. Например, у самолета определили скорость сваливания, Vs = 113 км/ч, то если повторять режим сваливания на этом самолете с разными приборами и разными ПВД на разных скоростях, то IAS конечно же будет разной, но самолет сваливаться будет на одной и той же CAS/EAS, что и требуется.

TAS — истинная скорость. Скорость в невозмущенном воздухе без ветра (поэтому в русс. есть еще синоним — воздушная, вносящий не мало путаницы. Ведь все приведенные здесь скорости, кроме последней — воздушные). Поскольку самолет летает в реальной атмосфере, на разной высоте и при разной погоде, то температура и давление всегда разное, в разных комбинациях. Но аэродинамики и нормы лётной годности пользуются только стандартной атмосферой МСА, где стат.давление отсчитывается от стандартного, от 760 мм рт.ст. при +15°С. Стало быть, чтобы сравнивать характеристики самолета с нужно пересчитывать IAS в скорость на высоте полета.
Все очень просто — нужно сравнить плотность воздуха на высоте полета Rн (зная температуру и давление на этой высоте) с плотностью стандартной атмосферы у земли Ro (+15/760) и добавить эту поправку к скорости: TAS = EAS (CAS) / SQRT (Rн/Ro). Именно по этой скорости делают расчет самолета аэродинамики, и продувают аэродинамические модели в своих трубах.

А еще эту же скорость TAS используют штурманы в расчетах. Зная скорость и направление ветра U, векторно складывая ее с TAS получают путевую скорость W или GS, скорость движения самолета относительно земли.
GS — путевая скорость, и она единственная во всей цепочке — уже не воздушная. Нанося ее вектор на карту можно рассчитать время полета и проходимое фактическое расстояние на данной высоте и при данном ветре. Что-то изменилось — считай всю цепочку заново. Вот такой длинный путь от цифры на приборе в кабине пилота до линии на карте штурмана. Поэтому то раньше и были штурманы в экипаже!

Сейчас уже заканчивают свою жизнь доплеровские измерители скорости и сноса (ДИСС), зато на каждом самолете стоят GPS/GLONASS, которые сразу же выдают и вектор путевой скорости (ФПУ или TRK) и ее величину (GS). А чтобы следить за безопасной скоростью в полете и не напрягать пилота расчетом или розыском в РЛЭ по таблицам нужной скорости на самолетах ставят вычислители воздушной скорости, в которые уже введены данные о всех поправках ПВД/сжимаемости, текущей массе самолета, получают текущие данные о забортной температуре и давлении, о давлении и температуре на аэродроме посадки, о конфигурации самолета. Вычислитель ежесекундно рассчитывает опасные CAS/EAS для конкретной ситуации, потом переводит в IAS и рисует красный сектор на электронном указателе скорости, за который пилоту и автопилоту заходить нельзя. Пилот же как и раньше продолжает пилотировать самолет глядя на IAS.

Вот так сегодня разорвалась 100-летня цепочка вычислений воздушных скоростей самолета… Но физика процесса — не изменная.

Интересно, а почему нельзя производить корректировку скорости в воздухе, используя сигналы GPS?

Источник

Ан-148, Boeing 757, Airbus A330: какие лайнеры погубила трубка Пито и для чего она нужна

Ровно две недели назад Ан-148 «Саратовских авиалиний» разбился в поле спустя несколько минут после вылета из Домодедово. По предварительным данным, к крушению привело стечение обстоятельств: приборы показывали неверную скорость из-за обледеневших трубок Пито, и действия пилотов по исправлению ситуации не увенчались успехом. Почему самолет взлетал с неработающим обогревом критически важного устройства, пока неизвестно. Это не первая катастрофа, чьей косвенной причиной стал придуманный почти 300 лет назад прибор. Мы вспомнили громкие случаи крушений лайнеров, к которым привели неполадки с трубками Пито.

В свое время французский инженер Анри Пито (1695—1771) озадачился измерением скорости потока воды. Он хотел узнать, насколько быстро течение реки Сены. Так в 1732 году появилась простейшая по конструкции трубка в форме перевернутой буквы Г. Система показывает скорость за счет разницы между статическим и динамическим давлением.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

В дальнейшем трубка Пито была усовершенствована другими изобретателями — в частности, Людвигом Прандтлем. Его решение позволяет определять как скорость, так и высоту полета. Этот прибор в составе системы воздушных сигналов используется во всех самолетах — и военных, и гражданских.

Почему не GPS

Для начала — почему в авиации не используется что-то более современное типа GPS (которая в самолетах тоже есть). Дело в том, что данная технология показывает скорость движения относительно поверхности планеты. Это нужно, например, для расчета времени прибытия в определенную точку. Однако система глобального позиционирования не умеет учитывать скорость ветра.

Отсюда возникает необходимость в других скоростях: воздушной (она же истинная: движение лайнера относительно воздушных потоков) и приборной (разница между статическим и полным воздушным давлением, что называется скоростным напором). Последний показатель необходим уже не для навигации, а как раз для пилотирования. Приборная скорость — характеристика угла атаки крыла. Именно ее показывает прибор полного давления, элементом которого является трубка Пито.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Несмотря на надежность и незаменимость (конструкторы сделали колоссальные шаги в области безопасности самолетов, но ничего лучше этой трубки так и не придумали), систему легко вывести из строя, просто закупорив ее. Если на машине с неисправным спидометром можно ехать «по ощущениям», ориентируясь на остальной трафик и другие параметры, то с самолетом это не работает. Печальное доказательство тому — несколько крупных авиакрушений.

За рулем стажер

Одной из самых громких катастроф, вызванных неверными показаниями скорости, стало падение Airbus A330 авиакомпании Air France в 2009 году. Рейс AF447 направлялся из Рио-де-Жанейро в Париж. Примерно через 3 часа и 45 минут после отрыва он исчез в Атлантическом океане с 228 людьми на борту.

Поиски самолета на такой территории — непростая задача для спасателей. Но в отличие от пропавшего Boeing 777 Malaysia Airlines, в A330 хотя бы работал передатчик. Поэтому вскоре поисковой группе удалось найти обломки. Специалисты пришли к выводу, что самолет разрушился не в воздухе, а от удара о воду. Причем упал он практически плашмя, на брюхо. Это может говорить о сваливании, которое произошло из-за недостаточной подъемной силы.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Проанализировав информацию с самописцев A330, следователи поняли, что у самолета резко упала скорость. Из-за этого отключился автопилот: при резком изменении показателей система в целях безопасности отстраняется от управления, предоставляя контроль людям. Для экипажа такая ситуация стала неожиданностью. Управлявший лайнером пилот-стажер поднял нос воздушного судна, хотя обычно при угрозе сваливания штурвал (джойстик в случае с Airbus) отклоняют от себя.

Для набора скорости двигатели были переведены во взлетный режим — при нем обеспечивается максимальная тяга. Самолет набирал высоту слишком резко, из-за чего снова появилась вероятность сваливания. Лайнер исправно сигнализировал об опасности, но управлявший им стажер допустил фатальную ошибку, удерживая нос A330 поднятым. Вернувшийся в кабину командир заметил это слишком поздно: уже не хватало высоты для спасения самолета.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Экипаж совершил грубые ошибки, но неясным оставался момент начала всех проблем: почему лайнер резко потерял скорость. Следствие пришло к выводу, что трубки Пито обледенели и перестали показывать достоверную информацию о скорости полета — то есть самолет двигался с прежней скоростью, но электроника посчитала, что воздушное судно замедлилось, и отключила автопилот.

На такой случай компания Airbus предусмотрела инструкции для пилотов, однако они не были выполнены. В отчете комиссии по расследованию говорится, что экипаж не был хорошо подготовлен на случай такой внештатной ситуации.

Природа против самолета

Если в Airbus A330 трубки Пито покрылись кристаллами льда и начали показывать неверную информацию, то в случае с упавшим в 1996 году Boeing 757 авиакомпании Birgenair причина неполадок оказалась не столь очевидной. Самолет выполнял рейс ALW301 по длинному маршруту: из доминиканского города Пуэрто-Плата он должен был долететь до Гандера на острове Ньюфаундленд, оттуда взять курс на Берлин, а уже после немецкой столицы лететь во Франкфурт.

Пилоты заметили неладное еще при разбеге по полосе аэропорта Пуэрто-Плата: командир воздушного судна сообщил, что скорость отображается неверно. Тем не менее экипаж не прервал взлет. Показатели скорости у командира и второго пилота различались примерно в два раза — 650 и 370 км/ч соответственно. Экипаж решил, что у второго пилота показания верные: они выглядели более реалистичными для Boeing 757 на текущем этапе полета. Однако вскоре пилоты пришли к выводу, что оба прибора показывают неправильные данные.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Далее последовали противоречивые показатели: электроника сигнализировала о слишком высокой скорости полета, а затем — о чересчур низкой. Самолет поднимался под большим углом, из-за чего работавшие на максимуме двигатели не могли обеспечить достаточную тягу. Это привело к падению скорости, сваливанию и гибели всех 189 человек на борту лайнера.

Следователи установили, что неверные показатели скорости были вызваны проблемой с одной из трубок Пито. Перед своим последним рейсом Boeing 757 около трех недель находился в ангаре тропической Доминиканы. Обычно при длительной стоянке самолета двигатели и трубки Пито закрывают чехлами. В случае с лайнером Birgenair этого сделано не было. Предположительно, в трубке успели построить гнездо мелкие насекомые, чем забили важный прибор. Эта версия указана лишь как наиболее вероятная — источник засорения установить не удалось.

Фатальная халатность

Но еще более нелепая причина крушения была у другого Boeing 757, разбившегося в том же 1996 году. На этот раз самолет потеряла авиакомпания Aeroperu. Рейс PLI603 направлялся из Лимы (Перу) в Сантьяго (Чили). После взлета у лайнера начали сбоить показатели высоты, горизонтальной и вертикальной скоростей. Рейс был ночным, и экипаж не мог визуально определить хотя бы высоту полета. Автопилот не активировался из-за большой разницы в данных приборов. Это накладывало на летчиков дополнительную нагрузку: им требовалось не только сконцентрироваться на решении проблемы, но и вести судно.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Самолет заваливал экипаж сигналами об опасности: то максимальная скорость, то сваливание, то опасное сближение с землей, то сдвиг ветра. Куча предупреждений вселила уверенность, что у лайнера проблемы еще и с органами управления.

Экипаж запрашивал данные о скорости и высоте Boeing 757 у диспетчера, чтобы иметь хоть какую-то информацию. От катастрофы это не уберегло: самолет постепенно снижался, но вокруг была кромешная тьма. Летчики не могли знать, что через несколько секунд лайнер коснется воды.

Самолет зацепил Тихий океан левым крылом. Пилоты мгновенно сориентировались и подняли лайнер, но первый двигатель успел зачерпнуть много воды и отключился. Воздушное судно начало заваливаться на левый бок, перевернулось и упало. Жертвами стали 70 человек, выжить не удалось никому.

Следователи сосредоточились на вероятном источнике первых неполадок — приемнике воздушного давления (ПВД). Как уже известно по другим катастрофам, трубки Пито могут пострадать при обледенении или образовании конденсата. По этой причине на время техобслуживания самолета приемники закрывают, что и сделали во время мойки Boeing 757. Проблема в том, что клейкую ленту потом нужно снять. Но этого никто не сделал.

Трубка пито в самолете для чего. Смотреть фото Трубка пито в самолете для чего. Смотреть картинку Трубка пито в самолете для чего. Картинка про Трубка пито в самолете для чего. Фото Трубка пито в самолете для чего

Механики забыли оторвать изоленту, а проводивший с фонариком осмотр самолета КВС не увидел проблему — серебристая изолента сливалась с цветом лайнера, к тому же была ночь. Таким образом, сигналы о превышении скорости, сваливании и сдвиге ветра оказались ложными — электроника сходила с ума от некорректных показаний ПВД, а экипаж не понимал, на какую информацию ориентироваться.

После каждого инцидента регуляторы выносят рекомендации по предотвращению аналогичных катастроф. Это звучит жутко, но каждое авиакрушение делает перелеты безопаснее — устраняются недочеты конструкции, систем управления, алгоритмов действий экипажа, организации воздушного движения. Падение Ан-148 в Подмосковье, надеемся, тоже приведет к новым стандартам, которые исключат повторение трагедии.

Читайте также:

Наш канал в Telegram. Присоединяйтесь!

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *