Трибутарный кабель что это
Трибутарный кабель что это
Основным элементом сети SDH является мультиплексор (рис. 11.4). Обычно он оснащен некоторым количеством портов PDH и SDH: например, портами PDH на 2 и 34/45 Мбит/с и портами SDH STM-1 на 155 Мбит/с и STM-4 на 622 Мбит/с. Порты мультиплексора SDH делятся на агрегатные и трибутарные.
Портыввода-вывода | Агрегатныепорты | |
Рис. 11.4. Мультиплексор SDH |
Трибутарные порты часто называют также портами ввода-вывода, а агрегатные — линейными портами. Эта терминология отражает типовые топологии сетей SDH, где имеется ярко выраженная магистраль в виде цепи или кольца, по которой передаются потоки данных, поступающие от пользователей сети через порты ввода-вывода (трибутарные порты), тоесть втекающие в агрегированный поток («tributary» дословно означает «приток»).
Мультиплексоры SDH обычно разделяют на два типа, разница между которыми определяется положением мультиплексора в сети SDH (рис. 11.5).
Терминальный мультиплексор (Terminal Multiplexer, ТМ) завершает агрегатный канал, мультиплексируя в нем большое количество трибутарных каналов, поэтому он оснащен одним агрегатным и большим числом трибутарных портов.
Мультиплексор ввода-вывода (Add-Drop Multiplexer, ADM) занимает промежуточное положение на магистрали (в кольце, цепи или смешанной топологии). Он имеет два агрегатных порта, транзитом передавая агрегатный поток данных. С помощью небольшого количества трибутарных портов такой мультиплексор вводит в агрегатный поток или выводит из агрегатного потока данные трибутарных каналов.
Пользовательское Пользовательскоеоборудование оборудование |
---|
Рис. 11.5. Типы мультиплексоров SDH |
Иногда также выделяют мультиплексоры, которые выполняют операции коммутации над произвольными виртуальными контейнерами — так называемые цифровые кроссконнекторы (Digital Cross-Connect, DXC). В таких мультиплексорах не делается различий между агрегатными и трибутарными портами, так как они предназначены для работы в ячеистой топологии, где выделить агрегатные потоки невозможно.
Помимо мультиплексоров, в состав сети SDH могут входить регенераторы сигналов, необходимые для преодоления ограничений по расстоянию между мультиплексорами. Эти ограничения зависят от мощности оптических передатчиков, чувствительности приемников и затухания волоконно-оптического кабеля. Регенератор преобразует оптический сигнал в электрический и обратно, при этом восстанавливается форма сигнала и его временные характеристики. В настоящее время регенераторы SDH применяются достаточно редко, так как стоимость их ненамного ниже стоимости мультиплексора, а функциональные возможности несоизмеримо беднее.
Стек протоколов SDH состоит из протоколов 4-х уровней. Эти уровни никак не соотносятся с уровнями модели OSI, для которой вся сеть SDH представляется как оборудование физического уровня.
Фотонный уровень имеет дело с кодированием битов информации путем модуляции света. Для кодирования оптического сигнала применяется потенциальный код NRZ, обладающий свойствами самосинхронизации.
Уровень секции поддерживает физическую целостность сети. Регенераторной секцией в технологии SDH называется каждый непрерывный отрезок волоконно-оптического кабеля, который соединяет между собой такие, например, пары устройств SONET/SDH, как мультиплексор и регенератор, регенератор и регенератор, но не два мультиплексора. Компоненты регенераторной секции поддерживают протокол, который имеет дело с определенной частью заголовка кадра, называемой заголовком регенераторной секции (Regenerator Section OverHead, RSOH), и который на основе служебной информации может проводить тестирование секции и выполнять операции административного контроля.
Уровень линии отвечает за передачу данных по линии между двумя мультиплексорами сети, поэтому линию также часто называют мультиплексной секцией. Протокол этого уровня работает с кадрами уровней STS-N для выполнения различных операций мультиплексирования и демультиплексирования, а также вставки и удаления пользовательских данных. Кроме того, протокол линии ответственен за реконфигурирование линии в случае отказа какого-либо ее элемента — оптического волокна, порта или соседнего мультиплексора. Служебная информация мультиплексной секции располагается в части заголовка кадра, называемой заголовком мультиплексной секции (Multiplex Section OverHead, MSOH).
Уровень тракта отвечает за доставку данных между двумя конечными пользователями сети. Тракт — это составное виртуальное соединение между пользователями. Протокол тракта должен принять данные, поступающие в пользовательском формате, например формате Т-1, и преобразовать их в синхронные кадры STM-N.
DWDM-линии между дата-центрами: как меняется подход, если речь про банки и ответственные объекты
Это 8 Тбит/с (при использовании 80 длин волн с пропускной способностью 100G).
С 2006 года я сдал в эксплуатацию коммутационное оборудование полутора дюжинам банков. И ещё ряду объектов, которые не могу упоминать. Это те самые каналы, где в скорость синхронной репликации нагло и подло вмешивается скорость распространения света в оптоволокне.
Ниже я рассказываю о нескольких типовых случаях архитектуры, где очень легко поймать ошибку масштабирования или неверного резервирования. И про магию «работает – не трогай».
Что это вообще такое
По мультиплексору-демультиплексору на каждой стороне, оптика в середине. По сравнению с тёмной оптикой для передачи сорока каналов 10G потребовалось бы 40 оптических пар, когда при использовании технологии DWDM потребуется только одно оптическое волокно.
Система WDM кроме решения задач по передаче трафика может решать задачи по резервированию. В ряде случаев достаточно установки всего нескольких дополнительных плат — и мы получаем систему с резервированием «по линии». На приёмной и передающей стороне устанавливаются устройства, которые передают весь трафик по одной паре оптических волокон основного направления. При обрыве в течение не более 50 мс (среднее время в нашей практике – 23 мс) они переключается на резервное направление.
Очень важный момент: если изначально закладывать систему как транспортную сеть с возможностью коммутации оптических линков при помощи ROADM, а не нагромождать существующее оборудование «тёмной оптикой», можно было бы в будущем избежать множество проблем, с которыми сейчас сталкиваются наши заказчики. Это я к вопросу правильного планирования масштабирования.
Обычная ситуация — крупная компания объявляет тендер или конкурс на построение инфраструктуры между своими дата-центрами (или своими ЦОДами и ЦОДами партнёра, либо критичными узлами входа в магистраль). А дальше начинается лютая история с непониманием, как нужно делать. На тендер проходит 5-6 компаний, из которых 2-3 стабильно предлагают цены на порядок ниже. С ними достаточно просто – скорее всего, их проект или не будет работать по спецификации, или же попросту не будет соответствовать требованиям заказчика после приёмки. Эти грабли опытные IT-руководители обходят, но сразу после встают перед другой дилеммой: а как выбрать из трёх оставшихся предложений?
Здесь можно только глубоко копаться в параметрах проекта. К примеру, для банков каждый такой случай – это баланс между бюджетом, надёжностью и производительностью системы. Вопрос в том, насколько грамотно всё спроектировано и насколько правильно подобрано оборудование. Объяснить на пальцах очень и очень сложно, но я попробую привести примеры.
Типовая ситуация
При соединении двух точек просто закладывается два независимых канала. Что будет, если приедет экскаватор и намотает один из каналов на ковш? Среагирует ли оборудование за миллисекунды для построения нового маршрута? Что будет с уже отправленными данными (застрявшими «прямо в ковше»)? Что случится при выходе из строя мультиплексора? Допустим, затопило полностью всю площадку или пожар на площадке. Система должна в автоматическом режиме, с минимальным временем переключить имеющиеся у нее каналы таким образом, чтобы связь не пропала. И время там совершенно не такое, как у человеческой реакции – счёт в тех же банковских транзакциях идёт на миллисекунды.
Экскаваторщик ещё не понял, что сделал, а данные уже делают крюк в 200 километров, обходя нашего героя.
Проекты
За последний год резко выросло количество проектов с распределёнными ЦОДами. Растёт инфраструктура, растёт количество данных, дата-центры увеличиваются в масштабах. Именно один ЦОД, в котором сконцентрированы все бизнес-критичные данные плюс процессы обработки информации, это как-то не очень разумно. Фактически – единая точка отказа, благо примеров даже в банковской сфере было уже достаточно.
И вот в этот момент, когда принимается решение о строительстве распределённого ЦОДа, возникает вопрос со связью. Как делать связки внутри ЦОДа всем понятно – если это Ethernet, вообще не вопрос, если FC — в целом, тоже, Infiniband используется пока редко (это самая молодая технология сейчас, но в перспективе весьма востребованная). А вот то, как правильно построить инфраструктуру для объединения ЦОДов – здесь начинаются грабли.
Простой пример: тёмная оптика и WDM
Моя команда в КРОКе создаёт сложную катострофоустойчивую DWDM систему. Планируется связать три дата центра и тестовую площадку заказчика. В целях отказоустойчивости было принято решение о создании двух независимых колец.
Топологическая схема DWDM c использованием двух независимых колец
Изначально заказчик думал о тёмной оптике, поскольку решение получалось достаточно простым архитектурно и, казалось, что дешевым. Тем не менее, для передачи нужного количества трафика пришлось бы задействовать порядка 30 оптических пар на каждое кольцо. Почти все участки колец проходили бы в одном кабеле, и по этому потребовалось бы около 60 пар оптики. Так же расстояние, которое требовалось бы преодолеть по «тёмной оптике» было около восьмидесяти километров, что не позволило бы преодолеть без усиления сигнала. Тогда пришлось бы добавлять два дополнительных сайта которые выполняли роль исключительно ретранслятора.
Топологическая схема без использования DWDM
Таким образом, грамотная постановка задачи (точнее – понимание архитектуры) сделала очевидным, для заказчика, вопрос выбора технологии.
Чуть посложнее: выбор оборудования узла
Решается вопрос выбора оборудования и архитектурного решения сети DWDM. Изначально непонятно какой конкретно и в каких объёмах трафик будет передаваться. Также до конца не была понятна топология сети (она развивалась). Требования заказчика порой менялись в течение двух недель по мере поступления новых аналитических данных и новых планов на развитие. Естественно, заложить в проект систему, которая изначально перекрывала бы все возможные требования заказчика — безумно дорого.
Заказчик активно масштабировался, но не мог предсказывать дальше двух лет. Мы сошлись на том, что сеть строится с узлами, которые имеют резерв в горизонте планирования. Далее при росте трафика сеть могла быть расширена в полтора раза без замены шасси, без применения новых технологий и без принципиального изменения архитектуры. В линию между площадками суммарно передавалось более 200 Гб/с трафика.
Архитектура — 3 плоских кольца, 5 мультиплексоров, линейное резервирование. Нечётное количество мультиплексоров объясняется тем, что один мультиплексор принимал две линии, и исполнял функцию 2 устройств. Такая архитектура позволила не использовать матрицу кросс-коммутации для организации резервирования и обойтись более дешёвыми Optical Line Protection модулями. При этом система только выиграла от такого решения, поскольку по бэкплейну не передавалось никакого трафика.
Если говорить проще, мы умышленно сделали функционал мультиплексоров менее гибким, но при этом увеличили надёжность и снизили стоимость узлов. Разумеется, для точного просчёта нужно было проверять сотни параметров и не один десяток раз пересчитывать проект с инженерной командой.
Третий пример: надёжности не бывает много
Изначально, при построении системы DWDM, основным критерием была отказоустойчивость. Может показаться, что резервирование излишнее, но это не так. Была выбрана система полного резервирования 1+1 и дополнительно заложено резервирование по линии. Для чего это было сделано? Дело в том, что при полном резервировании 1+1 и обрыве оптического кабеля, пропадает трафик в одной из систем до восстановления оптического кабеля. При комбинированном резервировании при обрыве кабеля трафик в одной из систем пропадает только на 50 мс и менее (в нашем случае) после чего происходит переключение, и обе системы работают на полную мощность, что позволяет заказчику передавать экстра трафик через одну из систем. Так же такая система позволяет пережить как однократный обрыв кабеля, так и одновременный выход из строя любого из узлов в случае того же пожара.
Пример одного особо крупного банка
Мы делали связку для трёх ЦОДов банка и двух своих, где у них есть ряд критичных сервисов. Мы, фактически, увязывали две инфраструктуры — собственную инфраструктуру и инфраструктуру заказчика. Связь – оптика с DWDM. Изыскивался оптимальный набор оборудования, отвечающий именно конкретной топологии и именно конкретным задачам. Далее проектировались и настраивались алгоритмы работы данной сетевой структуры (по факту – кольца с двумя рассечками). На каждой точке есть полный каталог сценариев выхода из строя площадок полностью, каждого отдельного узла, канала, физической линии и комбинаций этих факторов – своего рода большие таблицы типовых реакций. Разрабатывался даже сценарий «а если, например, одновременно выходит из строя работа мультиплексора и при этом на совершенно другом участке рвется линия». В теории это маловероятно, но я знаю как минимум два случая у оператора и банка, когда такое происходило с разницей в часы. Законы Мэрфи в магистральной сфере работают как нигде. Ну и злой умысел в сценариях тоже не исключался.
Вот карточка проекта другого банка, всё ещё крупного, но уже не такого крупного:
• Оборудование MSTP 15454E Cisco Systems
• Три площадки (основной ЦОД, резервный ЦОД, операторская), расстояние 5-20 км
• Топология сети – полноценное кольцо
• Клиентские интерфейсы между ЦОДами – 10GE – 8 шт., FC-800 – 8 шт., FC-400 – 4 шт., GE – 16 шт.
• Клиентские интерфейсы от каждого ЦОД до операторской площадки – FE/GE – 8 шт.
• Используется защита клиентского сигнала — в случае одиночного разрыва кольца сигнал переключается на другое направление в течение 50 мс
• Используются мультиплексоры на 40 каналов (длин волн)
• Используются транспондерные платы — клиенты подключаются многомодовой оптикой или медью
• Используется питание 220 В от двух блоков питания
• Площадки ЦОД использовали 5 шасси конструктива M6 (6 слотов под линейные карты), операторская площадка – 2 шасси.
• Типовой комплект оборудования ЦОД занимает 34 RU стоечного пространства
• Работы по развертыванию и запуску системы выполнены силами двух человек в течение месяца
• Оптика под нужды DWDM выделялась поэтапно по мере переноса функционала существующей сети на уже запущенные участки новой транспортной сети
Вот ещё один похожий пример:
Вот так выглядит само железо:
Интерфейс управления (один из вариантов):
Результат
Как правило, на входе у нас есть банк или другой подобный заказчик с собственной оптической линией, которому требуется новая система передачи данных (точнее, глубокая модернизация старой). Специфика таких каналов в России такова, что пока работает – лучше не трогать. Модернизация происходит тогда и только тогда, когда заказчику требуется расширение по скоростям, а не по факту выхода новых технологий.
В ходе проекта мы строим надёжную DWDM-сеть. Монтаж DWDM открывает возможности для роста без замены оптики.
Резюме
За 9 лет наша команда получила очень интересный опыт работы с бывшим Нортелом ныне — Сиеной, Циской, Хуавеем, MRV, Х-террой и другими вендорами. Были и внедрения отечественных производителей. В итоге появилось точное понимание специфики оборудования (повторюсь, в задаче магистрали для оператора специалисты круче на голову есть в самих операторах) — но вот именно в плане построения надёжных сетей, думаю, почти все возможные грабли мы знаем. Если вам вдруг интересно разобрать какой-то нюанс или понять, как правильно проектировать-считать – спрашивайте в комментариях или по почте AFrolov@croc.ru.
И, пользуясь случаем, передаю пламенный привет всем тем, кто копает в городской черте без разрешений на строительство.
Как устроена сеть SDH
Оборудование, формат кадров, топология.
Oсновным элементом сети SDH является мультиплексор (см. Рисунок 1). Обычно он оснащен некоторым количеством портов PDH и SDH: например, портами PDH на 2 и 34/45 Мбит/с и портами SDH STM-1 на 155 Мбит/c и STM-4 на 622 Мбит/c. Порты мультиплексора SDH делятся на агрегатные и трибутарные. Трибутарные порты часто называют также портами ввода/вывода, а агрегатные — линейными. Эта терминология отражает типовые топологии сетей SDH, где имеется ярко выраженная магистраль в виде цепи или кольца, по которой передаются потоки данных, поступающие от пользователей сети через порты ввода/вывода (т. е. втекающие в агрегированный поток: tributary дословно означает «приток»).
Мультиплексоры SDH обычно делят на терминальные (Terminal Multiplexor, TM) и ввода/вывода (Add-Drop Multiplexor, ADM). Разница между ними состоит не в составе портов, а в положении мультиплексора в сети SDH. Терминальное устройство завершает агрегатные каналы, мультиплексируя в них большое количество каналов ввода/вывода (трибутарных). Мультиплексор ввода/вывода транзитом передает агрегатные каналы, занимая промежуточное положение на магистрали (в кольце, цепи или смешанной топологии). При этом данные трибутарных каналов вводятся в агрегатный канал или выводятся из него. Агрегатные порты мультиплексора поддерживают максимальный для данной модели уровень скорости STM-N, значение которой служит для характеристики мультиплексора в целом, например мультиплексор STM-4 или STM-64.
Иногда различают так называемые кросс-коннекторы (Digital Cross-Connect, DXC) — в отличие от мультиплексоров ввода/вывода, они выполняют коммутацию произвольных виртуальных контейнеров, а не только контейнера из агрегатного потока с соответствующим контейнером трибутарного потока. Чаще всего кросс-коннекторы реализуют соединения между трибутарными портами (точнее — виртуальными контейнерами, формируемыми из данных трибутарных портов), но могут применяться кросс-коннекторы и агрегатных портов, т. е. контейнеров VC-4 и их групп. Последний вид мультиплексоров пока встречается реже, чем остальные, так как его применение оправдано при большом количестве агрегатных портов и ячеистой топологии сети, а это существенно увеличивает стоимость как мультиплексора, так и сети в целом.
Большинство производителей выпускает универсальные мультиплексоры, которые могут использоваться в качестве терминальных, ввода/вывода и кросс-коннекторов — в зависимости от набора установленных модулей с агрегатными и трибутарными портами. Однако возможности использования таких мультиплексоров в качестве кросс-коннекторов весьма ограничен, поскольку производители часто выпускают модели мультиплексоров с возможностью установки только одной агрегатной карты с двумя портами. Конфигурация с двумя агрегатными портами является минимальной, обеспечивающей работу в сети с топологией кольцо или цепь. Такая конструкция мультиплексора не слишком дорога, но способна усложнить проектирование сети, если требуется реализовать ячеистую топологию на максимальной для мультиплексора скорости.
Кроме мультиплексоров в состав сети SDH могут входить регенераторы, они необходимы для преодоления ограничений по расстоянию между мультиплексорами, зависящих от мощности оптических передатчиков, чувствительности приемников и затухания волоконно-оптического кабеля. Регенератор преобразует оптический сигнал в электрический и обратно, восстанавливая при этом форму сигнала и его временные параметры. В настоящее время регенераторы SDH применяются достаточно редко, так как стоимость их ненамного меньше стоимости мультиплексора, а функциональные возможности несоизмеримы.
Стек протоколов SDH состоит из протоколов четырех уровней.
На Рисунке 2 показано распределение протоколов SDH по типам оборудования SDH.
КАДРЫ STM-N
На Рисунке 3 приведены основные элементы кадра STM-1. Кадр обычно представляют в виде матрицы, состоящей из 270 столбцов и девяти строк. Первые 9 байт каждой строки отводятся под служебные данные заголовков, а из последующих 261 байт 260 заняты полезной нагрузкой (данные таких структур, как AUG, AU, TUG, TU и VC — см. статью В. Олифера «Технология синхронной цифровой иерархии» в предыдущем номере), а один байт каждой строки содержит заголовок тракта, что позволяет контролировать соединение «из конца в конец».
Заголовок регенераторной секции RSOH содержит:
Указатели H1, H2, H3 задают положение начала виртуального контейнера VC-4 или трех виртуальных контейнеров VC-3 относительно поля указателей.
В заголовке протокола мультиплексной секции содержатся:
Остальные байты заголовка MSOH либо зарезервированы национальными операторами связи, либо не используются.
Механизм работы указателя H1-H2-H3 рассмотрим на примере кадра STM-1 с контейнером VC-4. Указатель занимает 9 байт четвертого ряда кадра, причем под каждое из полей H1, H2 и H3 в этом случае отводится по 3 байт. Разрешенные значения указателя находятся в диапазоне 0-782; указатель отмечает начало контейнера VC-4 в трехбайтовых единицах. Например, если указатель имеет значение 27, то первый байт VC-4 находится на расстоянии 27 x 3 = 81 байт от последнего байта поля указателей, т. е. является 90-м байтом (нумерация начинается с единицы) в четвертой строке кадра STM-1. Фиксированное значение указателя позволяет учесть сдвиг фазы между конкретным мультиплексором и источником данных, в качестве которого может выступать мультиплексор PDH, оборудование пользователя с интерфейсом PDH или другой мультиплексор SDH. В результате виртуальный контейнер передается в двух последовательных кадрах STM-1.
Указатель может задавать не только фиксированный сдвиг, но и учитывать рассогласование тактовой частоты мультиплексора с тактовой частотой устройства, от которого поступают пользовательские данные. Для компенсации этого эффекта значение указателя периодически наращивается или уменьшается на единицу.
Если скорость поступления данных контейнера VC-4 меньше, чем скорость отправки STM-1, то у мультиплексора периодически (этот период зависит от величины рассогласования частоты синхронизации) возникает нехватка пользовательских данных для заполнения соответствующих полей виртуального контейнера. Поэтому мультиплексор вставляет три «холостых» (незначащих) байта в данные виртуального контейнера, после чего продолжает заполнение VC-4 «подоспевшими» за время паузы данными. Указатель наращивается на единицу, что отражает запаздывание начала очередного контейнера VC-4 на 3 байт. Эта операция над указателем называется положительным выравниванием. В итоге средняя скорость отправляемых пользовательских данных становится равной скорости их поступления, причем без вставки дополнительных бит в стиле PDH.
Если же скорость поступления данных VC-4 выше, чем скорость отправки кадра STM-1, то у мультиплексора периодически возникает потребность вставки в кадр «лишних», т. е. преждевременно пришедших байт, для которых в поле VC-4 нет места. Их размещение происходит при помощи трех младших байтов указателя, т. е. поля H3 (само значение указателя умещается в байты полей H1 и H2). Указатель при этом уменьшается на единицу, поэтому такая операция носит название отрицательного выравнивания.
То, что выравнивание контейнера VC-4 происходит с дискретностью в 3 байт, объясняется достаточно просто. В кадре STM-1 может переноситься или один контейнер VC-4, или три контейнера VC-3. Каждый из контейнеров VC-3 имеет в общем случае независимое значение фазы относительно начала кадра, а также собственную величину рассогласования частоты. Указатель VC-3, в отличие от указателя VC-4, состоит уже не из 9, а из 3 байт: H1, H2, H3 (каждое из этих полей — длиной 1 байт). Последние помещаются в те же байты, что и указатель VC-4, но по схеме с чередованием байт (byte interleaving), т. е. в порядке H1-1, H1-2, H1-3, H2-1, H2-2, H2-3, H3-1, H3-2, H3-3 (второй индекс — это принадлежность определенному VC-3). Значения указателей VC-3 интерпретируются в байтах, а не трехбайтовых единицах. При отрицательном выравнивании контейнера VC-3 лишний байт помещается в соответствующий байт H3-1, H3-2 или H3-3 — в зависимости от того, над каким из контейнеров VC-3 проводится эта операция.
Вот мы и дошли до объяснения выбора размера смещения для контейнеров VC4 — он был выбран для унификации этих операций над контейнерами любого типа, размещаемыми непосредственно в AUG кадра STM-1. Выравнивание контейнеров более низкого уровня всегда происходит с шагом в 1 байт.
При объединении блоков TU и AU в группы выполняется их последовательное побайтное расслоение, так что период следования пользовательских данных в кадре STM-N совпадает с периодом их следования в трибутарных портах, что исключает необходимость в их временной буферизации — поэтому говорят, что мультиплексоры SDH передают данные в реальном масштабе времени.
ТИПОВЫЕ ТОПОЛОГИИ
В сетях SDH применяются различные топологии связей. Наиболее употребительны кольцо и шина; однако все чаще встречается ячеистая топология, близкая к полносвязной.
Кольцо SDH строится из мультиплексоров ввода/вывода, имеющих по крайней мере по два агрегатных порта (см. Рисунок 4а). Пользовательские потоки вводятся и выводятся из кольца через трибутарные порты, образуя соединения «точка-точка» (на рисунке показаны в качестве примера два таких соединения). Кольцо является классической регулярной топологией, обладающей потенциальной отказоустойчивостью — при однократном обрыве кабеля или выходе из строя мультиплексора соединение сохранится, если его направить в противоположном направлении. Кольцо обычно строится на основе кабеля с двумя оптическими волокнами, но иногда для повышения надежности и пропускной способности применяют четыре волокна.
Шина (см. Рисунок 4б) — линейная последовательность мультиплексоров, из которых два оконечных играют роль терминальных, а остальные — мультиплексоров ввода/вывода. Обычно сеть с шинной топологией применяется в тех случаях, когда узлы имеют соответствующее географическое расположение, например вдоль магистрали железной дороги или трубопровода. Правда, тогда подходит и плоское кольцо (см. Рисунок 4в), поскольку оно обеспечивает более высокий уровень отказоустойчивости за счет использования двух дополнительных волокон в магистральном кабеле и по одному дополнительному агрегатному порту у терминальных мультиплексоров.
Эти базовые топологии могут комбинироваться при построении сложной и разветвленной сети SDH, образуя участки с радиально-кольцевой топологией, соединениями «кольцо-кольцо» и т. п. Наиболее общим случаем является ячеистая топология сети (см. Рисунок 4г), при которой мультиплексоры имеют большое количество взаимных связей, а сеть может достичь очень высокой производительности и надежности.