scr что это в электронике
Симметричный тринистор (TRIAC, триак)
SCR тиристоры являются однонаправленными (односторонними) относительно тока устройствами, что делает их полезными для управления только постоянным током. Если объединить два SCR тиристора параллельно друг другу, но в противоположных направлениях, как были объединены два динистора (диода Шокли), чтобы сформировать симметричный динистор (DIAC), мы получим новое устройство, известное как симметричный тринистор, TRIAC (триак) (рисунок ниже).
Симметричный тринистор (TRIAC, триак)
Эквивалентная схема на базе SCR тиристоров и условное обозначение симметричного тринистора (TRIAC тиристора)
Поскольку отдельные SCR тиристоры более гибки для использования в современных системах управления, они чаще встречаются в схемах, таких как драйверы двигателей; симметричные тринисторы (TRIAC) обычно встречаются в простых, маломощных приложениях, таких как бытовые диммерные коммутаторы. На рисунке ниже показана простая схема регулировки яркости лампы вместе с фазосдвигающей резисторно-конденсаторной цепью, необходимой для срабатывания после пика.
Управление питанием с использованием фазы на основе симметричного тринистора (TRIAC)
Симметричные тринисторы (TRIAC) известны тем, что они отпираются несимметрично. Это означает, что они обычно не срабатывают при одном и том же уровне напряжения управляющего электрода как для одной полярности, так и для другой. Вообще говоря, это нежелательно, так как несимметричное срабатывание приводит к формированию формы сигнала тока с множеством гармонических частот. Формы сигналов, симметричные выше и ниже их средних осевых линий, состоят только из гармоник с нечетными номерами. С другой стороны, несимметричные формы сигналов содержат четные гармоники (которые могут сопровождаться или нет гармониками с нечетными номерами).
В интересах уменьшения общего содержания гармоник в системах питания, чем меньше и менее разнообразны гармоники, тем лучше, – еще одна причина, почему для сложных, высокомощных схемах управления предпочитают отдельные SCR тиристоры, а не симметричные тринисторы (TRIAC). Одним из способов получения симметричной формы сигнала тока через TRIAC является использование устройства, внешнего по отношению к симметричному тринистору, для выбора момента выдачи переключающего импульса. Симметричный динистор, помещенный последовательно с управляющим электродом, прекрасно справляется с этой задачей (рисунок ниже).
Симметричный динистор (DIAC) улучшает симметричность управления
Напряжения переключения симметричного динистора (DIAC) имеют тенденцию быть гораздо более симметричными (для одной полярности такое же, как для другой), чем пороги напряжения переключения симметричного тринистора (TRIAC). Поскольку симметричный динистор (DIAC) предотвращает любой ток управляющего электрода до тех пор, пока переключающее напряжение не достигнет определенного, повторяемого уровня в любом направлении, точка отпирания симметричного тринистора (TRIAC) в одном полупериоде и в следующем имеет тенденцию быть более постоянной, а форма сигнала – более симметричной выше и ниже относительно его осевой линии.
Практически все характеристики и параметры SCR тиристоров одинаково применимы и симметричным тринисторам (TRIAC), за исключением того, что TRIAC, конечно, является двунаправленным (может проводить ток в обоих направлениях). Об этом устройстве больше нечего рассказывать, кроме важной оговорки относительно обозначений его выводов.
Из эквивалентной схемы, показанной ранее, можно подумать, что основные выводы 1 и 2 являются взаимозаменяемыми. Это не так! Хотя полезно представлять, что симметричный тринистор TRIAC состоит из двух тринисторов (SCR тиристоров), соединенных вместе, он фактически построен из одного куска полупроводникового материала, легированного и разделенного на слои соответствующим образом. Фактические рабочие характеристики могут несколько отличаться от характеристик эквивалентной модели.
Это становится наиболее очевидным, противопоставляя две простые схемы, из которых одна работает, а другая – нет. Следующие две схемы представляют собой варианты схемы диммера лампы, показанной ранее, в которой для упрощения удалены фазосдвигающий конденсатор и симметричный динистор (DIAC). Хотя в результирующей схеме отсутствует возможность тонкой настройки управления ее более сложной версии (с конденсатором и DIAC), она работает (рисунок ниже).
Схема с соединенными управляющим электродом и основным выводом 2 работает
Предположим, мы должны были поменять местами два основных вывода симметричного тринистора (TRIAC). Согласно эквивалентной принципиальной схеме, показанной в этой статье ранее, обмен местами не должен иметь никакого значения. Эта схема должна работать (рисунок ниже).
Схема с соединенными управляющим электродом и основным выводом 1 не работает
Однако если эта схема будет собрана, выяснится, что она не работает! На нагрузку не будет подаваться питание, симметричный тринистор TRIAC не будет отпираться вообще, независимо от того, насколько низкое или высокое значение сопротивления установлено на резисторе управления. Ключом к успешному запуску симметричного тринистора TRIAC является то, что управляющий электрод получает свой переключающий ток со стороны основного вывода 2 (основной вывод на противоположной стороне условного обозначения TRIAC от вывода управляющего электрода) в схеме. Идентификация выводов ОВ1 и ОВ2 должна выполняться по модели детали через техническое описание или справочник.
Особенности регуляторов мощности SCR
Сегодня, более чем когда-либо, инженеры проектируют системы электрического технологического нагрева с использованием регуляторов мощности SCR. Использование регулятора мощности SCR имеет множество преимуществ: более точное управление процессом нагрева, увеличенный срок службы нагревателя, улучшенное качество продукции при более высоких скоростях производства и снижение затрат на обслуживание.
Если вы принимаете решения в своей компании, вы должны выбирать из множества типов компонентов, используемых во всем технологическом процессе. Возьмем, к примеру, контроль мощности. Вы можете спросить: «Зачем использовать кремниевый выпрямитель (SCR), регулирующий мощность?» Давайте ответим на данный вопрос.
В отличие от механического реле или контактора, регулятор мощности SCR не имеет механических частей, которые могут изнашиваться. Регулятор мощности SCR не будет подвергаться дуге или загрязнению контактов. А механическое реле необходимо будет заменить через определенное количество циклов. Из-за медленного (минимум 30 секунд) времени цикла, присущего механическим реле, управление напряжением с их помощью будет некачественным, в сравнении с SCR.
Ртутные реле смещения могут работать быстрее, чем механические реле. Однако при перегреве из-за слишком быстрой смены циклов или перегрузки ртутное реле взорвется. Это приводит к проблеме с опасными материалами. Из-за более строгих правительственных нормативов транспортировка и утилизация ртутных реле также становятся все труднее.
Минимальное номинальное напряжение SCR
Таблица 1: Минимальное номинальное напряжение SCR. Минимальное номинальное напряжение для SCR определяется уровнем напряжения питания, на котором он будет использоваться.
Продление срока службы вашего регулятора мощности
Три вещи разрушат все твердотельные регуляторы мощности:
Вот как уберечь их от выхода из строя на вашей производственной линии.
Перегрев
Почти все полупроводники будут разрушены при температуре внутреннего перехода 125 o C. Все твердотельные силовые устройства, такие как тиристоры, симисторы и твердотельные реле, рассеивают тепло. Падение напряжения на силовом устройстве приводит к выделению тепла. Это падение может составлять от 1 до 2 В в зависимости от устройства. Чем больше ток (в амперах) проходит через устройство, тем большую мощность устройство будет рассеивать в виде тепла. Это тепло необходимо убрать, иначе устройство выйдет из строя.
Даже при низкой мощности, такой как 25 А, каждая управляемая ножка твердотельного реле будет рассеивать около 50 Вт рассеиваемого тепла. Если у вас есть 20 регуляторов мощности твердотельных реле на DIN-рейке в небольшом корпусе, вам придется избавиться от 1000 Вт тепла! При установке элементов управления питанием следует использовать в два раза большую площадь, занимаемую устройством. Например, если регулятор мощности SCR имеет площадь основания 12 x 12 дюймов, используйте для установки область 24 x 24 дюйма.
Чтобы определить тепло, выделяемое контроллером SCR, используйте следующую формулу: для каждой контролируемой ветви (C) умножьте силу тока нагрузки (I) на 1,5.
C x I x 1,5 = рассеиваемая мощность (Вт)
Для создания безопасного расположения элементов, позволяющего поддерживать работу регуляторов мощности SCR в течение многих лет, нужно придерживаться следующих рекомендаций. Все тиристоры должны иметь предохранители и металлооксидную варисторную защиту по напряжению. Радиаторы должны быть расположены на безопасном расстоянии друг от друга для эффективного охлаждения. На дверце шкафа автоматики должен быть установлен вентилятор и вентиляционные отверстия в верхней части корпуса для обеспечения достаточного охлаждения для всех компонентов.
Защита от короткого замыкания и предохранители
Регуляторы напряжения, представленные в нашем интернет-магазине, имеют встроенные предохранители, которые позволят безопасно использовать их в нагревательных системах. Только будьте внимательны при выборе требуемой мощности, а лучше обратитесь к специалистам Элемаг за консультацией.
Помните, что 99,9% отказов предохранителей происходят из-за короткого замыкания нагревателей, слабых соединений, неправильного (слишком большого) согласования нагрузки или неправильного подключения регулятора мощности SCR. При высоких скачках нагрузки (вольфрамовые лампы, коротковолновые галогенные нагреватели) использование чего-либо, кроме плавного пуска, управления тиристором по углу сдвига по фазе, приведет к перегоранию предохранителей. Никогда не включайте холодный пусковой блок нагревателя после того, как был активирован плавный пуск.
Убедитесь, что размер регулятора мощности SCR соответствует нагрузке вашего нагревателя. Помните, что у нагревателей и линий электропередач есть допуски. В целях безопасности используйте регулятор мощности SCR с номиналом от 1 до 10 процентов от максимального потенциала нагрузки нагревателя.
Скачки напряжения
Скачки перенапряжения затронут почти все электронные устройства. Переходные скачки напряжения могут привести к пропуску зажигания в SCR или даже к необратимому повреждению SCR.
Самым простым в использовании защитным устройством является металлооксидный варистор (MOV). Варистор подключен к тиристору. При использовании варистора с номинальным напряжением выше, чем линейное напряжение, но ниже, чем пиковое напряжение SCR, металлооксидный варистор становится эффективной защитой от скачков напряжения. Если скачок переходного напряжения превышает номинальное напряжение варистора, варистор блокирует этот скачок. Если импульс достаточно мощный, металлооксидный варистор взорвется, защищая тиристор.
Постоянное перенапряжение разрушит SCR. Убедитесь, что тиристоры, используемые в регуляторе мощности, рассчитаны на достаточно высокое напряжение, чтобы выдерживать пики промышленного напряжения. Чем выше пиковое напряжение SCR, тем безопаснее он.
Выбор SCR
Фазо-угловые регуляторы пропорционально включают процентную долю каждого полупериода линии электропередачи. Это обеспечивает плавное, бесступенчатое приложение мощности к нагревателям. Самый точный метод управления, фазовый обжиг, также может увеличить срок службы нагревателя до семи раз, в зависимости от типа нагревателя. Кроме того, поджиг по фазе позволяет использовать такие опции, как плавный пуск, ограничение напряжения и тока. Эти параметры недоступны с другими средствами управления.
Элементы управления переключением при нулевом напряжении пропорционально включают и выключают каждый полный цикл линии питания. Изменяя количество циклов линии питания переменного тока, SCR обеспечивает питание нагревателей. Благодаря переменной временной развертке достигается оптимальное количество циклов включения и выключения. Этот метод создает меньше линейных шумов радиочастотных помех (RFI), чем тиристоры с фазо-угловым возбуждением.
Регуляторы включения / выключения работают так же, как механические или ртутные реле, но с тем преимуществом, что они намного сокращают время цикла.
Выполнив несколько простых шагов, регулятор мощности SCR может обеспечить превосходную производительность при минимальных затратах на обслуживание в течение многих лет.
Основные преимущества цифровых тиристорных контроллеров мощности SCR перед контакторами и твердотелыми реле
Мэтью Фишер, инженер по полевой эксплуатации, нагревательные изделия
В данной статье приводится сравнение электромеханических контакторов и твердотельных реле с контроллерами мощности SCR, эксплуатирующихся в аналогичных условиях включения-выключения. Контроллеры мощности SCR обладают рядом преимуществ, которые могут привести к снижению затрат и повышению управляемости процессом.
Электромеханические контакторы
Электромеханический контактор — это устройство, которое замыкает или размыкает контакт, позволяя включать и выключать электричество. Электрический управляющий сигнал запускает размыкание или замыкание контакта или контактов. Как правило, электромеханический контактор рассчитан на определенное количество циклов включения-выключения при работе в течение всего срока службы. Этот показатель зависит от производителя и обычно составляет от миллиона до нескольких миллионов циклов при номинальном токе и напряжении.
Таблица I. Расчет циклов включения-выключения для одного года при шести рабочих днях в неделю при работе в течение 48 недель и различной продолжительности технологических циклов контактора
Как показано в Таблице 1, за период технологического цикла в 30 секунд механический контактор выполняет 829 440 циклов включения-выключения в год. За период технологического цикла в 10 секунд механический контактор выполняет 2 488 320 циклов включения-выключения в год. В соответствии с рекомендацией изготовителя электрические контакты электромеханического контактора подлежат проверке и очистке, а также, возможно, ремонту или замене после достижения указанного количества операций включения-выключения.
Твердотельные реле
Твердотельное реле — это электронный переключатель, который работает без движущихся частей электромеханического реле. Благодаря отсутствию движущихся частей ожидаемый срок службы твердотельного реле больше. Стандартная продолжительность цикла для твердотельного реле составляет от 2 до 5 секунд. Твердотельное реле может работать с более быстрым циклом (включения/выключения), чем сопоставимый механический контактор.
Однако твердотельное реле имеет более высокое контактное сопротивление и подвержено повреждениям из-за тока перегрузки. Также имеются ограничения по схемам переключения по сравнению с электромеханическим контактором (обычно это SPST-контакт).
Таблица 2. Расчет циклов включения-выключения для одного года при шести рабочих днях в неделю при работе в течение 48 недель и различной продолжительности технологических циклов твердотельного реле (Твердотельные реле могут переключать выходную нагрузку быстрее, чем механические контакторы)
Модули контроллера мощности SCR
Модуль контроллера мощности SCR предназначен для быстрого переключения мощности, подаваемой на выходную нагрузку.
Таблица 3. Таблица I. Расчет циклов включения-выключения для одного года при шести рабочих днях в неделю при работе в течение 48 недель и различной продолжительности технологических циклов модуля контроллера мощности SCR
Стандартное время цикла составляет 1 секунду, что означает, что для указанных условий SCR будет выполнять 24 883 200 операций в год.
На рисунке 1 ниже приводится сравнение вычисленного общего количества циклов работы электромеханического реле, твердотельного реле (SSR) и SCR за 48 недель при работе шесть дней в неделю.
Типовая эксплуатация: циклы включения и выключения
Электромеханический контактор и твердотельное реле переключают ток на нагрузку, когда получают соответствующий сигнал. Это означает, что устройства могут включать и выключать питание для выходной нагрузки в любой точке синусоидальной волны.
В США электричество подается с частотой 60 циклов в секунду или 60 Гц. Когда питание, подаваемое на устройство, не включается и не выключается в точке пересечения нуля на синусоидальной волне, в сигнале возникают всплески напряжения, и образуются радиопомехи и гармоники. При таком варианте случайного включения и выключения может возникать дуга.
Во время работы при полном выключении или включении контактор и твердотельные реле работают эффективно (никаких помех при полном включении или выключении). Однако в стандартных рабочих условиях процесса генерируемые гармоники могут вызывать искажение синусоидального сигнала, передаваемого энергетической компанией. Это может привести к проблемам для измерительного оборудования энергетической компании, из-за чего создается впечатление, что измеренная или требуемая мощность больше, чем фактическая используемая мощность. Это влечет увеличение затрат на энергоносители.
Модули контроллера мощности SCR
Модуль контролл ера мощности SCR — это электронное полупроводниковое устройство, предназначенное для эффективного регулирования мощности на выходной нагрузке. Может очень быстро переключать питание, подаваемое на выходную нагрузку (например, в миллисекундах), по сравнению с механическим контактором или твердотельным реле.
Потребление энергии, радиопомехи и гармоники
Перекрестный режим работы позволяет SCR функционировать аналогично контакторам и твердотельным реле, работающим за счет полного включения и отключения питания. Однако в перекрестном режиме SCR включает и выключает выход в точке пересечения нуля на синусоидальной волне, что устраняет потенциальные радиопомехи, гармоники и искрения, на контакторах и твердотельных реле.
SCR обеспечивает более последовательное и эффективное регулирование мощности для выходной нагрузки, тем самым уменьшая потенциальные вредные эффекты и минимизируя энергопотребление в отличии от контакторов и твердотельных реле при устранении воздействия радиопомех и гармоник.
Уменьшение затрат на энергоносители
Способность SCR передавать мощность на нагрузку в точке пересечения нуля также помогает снизить затраты на энергоносители, связанные с «грязным» питанием. «Грязная» энергия при коэффициенте мощности ниже единицы обычно приводит к значительным штрафам энергетических компаний. SCR оказывает положительное влияние на электросеть, что позволяет снизить штрафы за «грязное» питание и, в конечном итоге, сократить расходы на коммунальные услуги.
Точность управления
Модуль контроллера мощности SCR обеспечивает более точное управление процессом по сравнению с контакторами и твердотельными реле. Может включаться и выключаться гораздо быстрее. Например, для обеспечения точного разрешения управления управляющий выход SCR может включаться и выключаться в течение 1 секунды.
Для выхода 60% мощности технологического контроллера SCR включается на 0,6 секунды (60% от 1 секунды или 36 циклов из 60 циклов) и выключается на 0,4 секунды (40% от 1 секунды или 24 цикла из 60 циклов) в течение 1-секундного периода времени.
Способность контроллера мощности SCR включать и выключать выход в точке пересечения нуля позволяет устранить потенциальные радиопомехи, гармоники и искрения на контакторах и твердотельных реле.
На рисунке 5 справа отображено визуальное представление стандартных периодов времени цикла для SCR, твердотельного реле (SSR) и электромеханического контактора, и сравнение каждого из них с продолжительностью цикла включения 60% и отключения 40% из расчета 60 циклов в секунду (60 Герц). SCR обеспечивает более точное разрешение управления по сравнению с SSR и электромеханическим контактором.
На рисунке 6 показано, что входной технологический сигнал в SCR может изменяться, при этом выходной технологический сигнал SCR поддерживает температуру на устойчивом уровне. Сравните это с контактором, который может включаться и выключаться в течение периода времени от 10 до 30 секунд, или с твердотельным реле, включающимся и выключающимся в течение периода от 2 до 5 секунд. Для сравнения, модуль контроллера мощности SCR минимизирует отставание и опережение в контролируемом процессе.
Обратите внимание на рисунок 7, на котором входной технологический сигнал на контакторе изменяется и отключается, а технологический выход (разомкнутый или замкнутый контакт) показывает некоторое изменение контроля температуры из-за циклической природы выходного сигнала включения/выключения и периода времени.
Модуль контроллера мощности SCR минимизирует отставание и опережение в контролируемом процессе.
Срок службы нагревателя
Способность контроллера мощности SCR обеспечивать более точное управление термоэлемента продлевает срок службы. При уменьшении количества включений/выключений нагревательного элемента, тратится меньше времени на переход между горячим (расширение) и холодным (сжатие) состояниями. Это обеспечивает относительно равномерную температуру нагревательного элемента во время работы и продлевает срок службы.
Способность контроллера мощности SCR обеспечивать более точное управление термоэлементом увеличивает срок службы.
Экономичность
Способность SCR обеспечивать точное управление приводит к повышению общей эффективности оборудования (OEE) для пользователя. Кроме того, повышенная устойчивость технологического управления и увеличенный срок службы нагревателя повышают отдачу по инвестициям (ROI). Повышенная устойчивость управления приводит к меньшей вариативности процесса, что помогает оптимизировать технологический цикл и снизить общую стоимость цикла. Кроме того, увеличенный срок службы нагревателя позволяет обрабатывать больше циклов с одним и тем же оборудованием, что снижает эксплуатационные затраты (COO).
Стойкость к шуму и переходным токам
Промышленное качество электроэнергии не всегда идеально. Провалы в линии напряжения, помехи от другого оборудования и ситуации пиковой нагрузки могут привести к ложному срабатыванию, сбросу и изменению выходной мощности.
Усовершенствованные модули контроллеров мощности SCR включают цифровые и аналоговые технологии для подавления последствий низкого качества линии, включая программное обеспечение и аналоговые фильтры, оптическую изоляцию между секциями управления и питания, а также настраиваемые сигналы напряжения и тока. Электромеханические контакторы и твердотельные реле не учитывают низкого качества линии питания.
На рисунке 8 показан стабильный выходной сигнал от SCR, несмотря на низкое качество входящей линии.
Активный технологический мониторинг
SCR контролирует работу, используя трансформаторы напряжения и тока, чтобы измерить текущее состояние в режиме реального времени. Эта информация используется для управления процессом через напряжение, ток или мощность.
Технологические значения процесса могут контролироваться путем взаимодействия с внешними устройствами с использованием либо аналогового выхода, либо через интерфейс связи полевой шины.
Диагностика и выявление неисправностей
SCR самостоятельно контролирует и отключает выходную мощность в случае сбоя. Обычно также имеются светодиоды для индикации неисправности.
Электромеханические контакторы могут выходить из строя в одном из двух режимов: неисправность может быть функцией сварных контактов (выходная мощность замкнута на включение) или функцией разомкнутых контактов (выходная мощность отключена). Контакты более подвержены выходу из строя в разомкнутом состоянии. Твердотельные контакты реле, как правило, выходят из строя от короткого замыкания при включении, что может привести к перегреву нагревательных элементов и связанного оборудования.
Оптимизированное энергопотребление
Несколько модулей контроллеров мощности SCR могут быть скоординированы для оптимизации потребления энергии. Это снижает пиковую нагрузку по сравнению с несколькими модулями контроллеров мощности SCR, работающими одновременно без координации.
По сравнению с несогласованной работой контакторов и твердотельных реле способность координировать и оптимизировать энергопотребление модулей контроллеров мощности SCR снижает общие эксплуатационные расходы.
На рисунке 11, страница 9, показана основная потребляемая мощность при нагрузке без координации с потребляемой мощностью. Обратите внимание на то, что координация энергопотребления снижает общую потребляемую мощность. Thyro-Power Manager обеспечивает статически последовательную оптимизацию нескольких SCR. Работа dASM обеспечивает динамическую оптимизацию нескольких модулей управления питанием SCR с целью снижения нагрузки на сеть.
Способность координировать и оптимизировать энергопотребление модулей контроллеров мощности SCR снижает общие эксплуатационные расходы.
Коммуникационные возможности
Усовершенствованные модули контроллеров мощности SCR могут связываться с другими устройствами (компьютерами, ПЛК), используя дополнительные протоколы полевой шины. Эта коммуникационная возможность позволяет обеспечить тесную интеграцию в общую схему технологического управления пользователя.
Стандартные коммуникационные протоколы включают в себя следующие:
Преимущества SCR
Контроллеры мощности SCR обеспечивают несколько преимуществ по сравнению с контакторами и твердотельными реле и включают в себя:
Выводы
Использование модулей контроллеров мощности SCR в сфере электрического теплового нагрева дает несколько преимуществ по сравнению с использованием электромеханических контакторов или твердотельных реле. В частности, преимущества включают в себя:
Данные преимущества могут привести к снижению стоимости эксплуатации и общих эксплуатационных расходов.
Дополнительные преимущества могут быть реализованы с помощью таких функций SCR, как диагностика, коммуникационные возможности и оптимизированное энергопотребление для нескольких SCR.