pbo bios что это
Precision Boost Overdrive — что это в биосе? (PBO)
Приветствую друзья. Разгон позволяет улучить производительность, однако не все знают как правильно разгонять.
Именно для таких людей компания AMD придумала собственную технологию авторазгона, главное чтобы пользователь не забыл о качественном охлаждении.
Precision Boost Overdrive — что это такое? (PBO)
PBO — сочетание стандартного разгона, при котором ускоряются все ядра, с возможностью повысить частоту на одном.
Алгоритмы PBO учитывают возможности конкретной платы по обеспечению питания процессора, тактовую частоту каждого ядра, энергопотребление и нагрев.
Впервые функция была представлена в Threadripper.
Данная функция обьединяет в себе две технологии — Precision Boost 2.0 и Extended Frequency Range 2.0, чтобы повышать производительность тогда, когда это нужно и настолько, насколько нужно. Для работа функции нужен процессор серии Ryzen X и материнка с чипсетом 400-той серии. Чипсет B350 тоже способен разгонять процессоры X-серии, но 400-тая серия с поддержкой PBO позволяет это делать куда эффективнее.
Чипсет X570 содержит более качественный VRM чем X470, поэтому разгонный потенциал выше.
Также стоит учитывать, что возможность использования функции зависит от версии AGESA.
Precision Boost Overdrive активируется также в фирменной утилите Ryzen Master.
Однако для полноценной работы функции необходимо хорошее охлаждение, желательно водяное.
Функция для процов 3000 серии может накинуть сверху 200 МГц по сравнению с тем, что написано на коробке.
Опция в биосе
Обычно присутствует в разделе AMD CBS, присутствует ручной режим Manual:
Ручной режим стоит использовать только, когда вы понимаете что делаете. По поводу лимитов нашел информацию:
По поводу этого режима. Как я понимаю — каждая строка позволяет вручную выставить ограничения. 1000 означает без ограничений.
Оказывается PBO можно использовать и в обратную сторону, например чтобы снизить потребление/нагрев процессора. Например взять процессор AMD Ryzen 9 3900X, если при ручной настройке в PPT выставить 61, то тепловыделение процессора снизиться до 45 Ватт. Формула по вычислению TPD примерно такая: желаемое TDP * 1.35 = получаем значение для PPT. Минимально значение PPT — 44, что соответствует 32,5 Ватт.
Да, конечно ограничение TDP повлияет на тактовые частоты, однако скорее всего частота одного или двух ядер при максимальной нагрузке будет близкой к исходной. Но если нагрузить все ядра, то частота уже будет низкой и примерно соответствовать TDP. Таким образом при желании вы можете собрать тихую и мощную систему даже с топовым процессором (правда смысла особого нет брать топ проц чтобы потом его урезать).
Функция PBO ориентирована исключительно на разгон. Она не включена по умолчанию, активация функции приводит к прекращению гарантии, как и разгон вручную. Автоматический разгон представляет собой аналог ручного разгона в определенных рамках.
В качестве примера AMD указывает процессор Ryzen, который работает на 4,55 ГГц с помощью Precision Boost. Через автоматический разгон частоту можно увеличить еще на 200 МГц до 4,75 ГГц (что очень даже неплохо).
AMD разъясняет работу Precision Boost Overdrive на новых процессорах Ryzen
С процессорами Ryzen третьего поколения нас ждут инновации по работе процессоров на разных тактовых частотах. Технология Precision Boost Overdrive (PBO) уже знакома по ранее вышедшим процессорам Ryzen. Впервые она была представлена со вторым поколением Ryzen Threadripper. С третьим поколением AMD добавила автоматический разгон.
Технология Precision Boost Overdrive будет доступна для всех процессоров Ryzen третьего поколения, начиная от Ryzen 5 и выше. Материнские платы платформы должны соответствовать минимальным требованиям AMD, но большинство производителей будут оснащать их более мощными VRM. Чем AMD и позволяет воспользоваться. Процессор Ryzen будет знать, на какой материнской плате он работает через BIOS. Среди новых материнских плат на чипсете X570 можно ожидать большое количество моделей с мощными VRM. Впрочем, технология будет работать и на старых материнских платах, независимо от чипсета.
Также Роберт Халлок дал свои комментарии на Reddit:
«Любая материнская плата, которую вы встречаете, соответствует минимальным спецификациям AMD по электропитанию, а также превосходит их на определенный уровень. CPU не будет задействовать потенциал VRM выше минимальных спецификаций без явного указания пользователя через PBO или ручной разгон. Если пользователь не планирует разгонять процессор, мощная подсистема питания выше рекомендованного уровня AMD просто красивый бонус.»
Соответственно, все материнские платы AM4 соответствуют минимальным требованиям AMD (в конце концов, на них должны работать все процессоры, независимо от TDP), но у большинства есть дополнительный потенциал. Халлок привел пример:
«Процессор Ryzen на 105 Вт никогда не будет потреблять от сокета больше 142 Вт; 95 А от VRM в случае температурных ограничений; или 140 А от VRM без ограничений. Все это жестко прописано в прошивке, если только не указать CPU игнорировать данные ограничения. Любая материнская плата, сертифицированная под 105-Вт процессоры Ryzen, будет соответствовать данным требованиям. Если же материнская плата сделана с большим запасом, он никак не сказывается на работе процессора, если только вы не измените штатное поведение.»
Современные и новые материнские платы, особенно high-end модели, разработаны с приличным запасом. Впрочем, без ручного разгона задействовать его не получится. Именно здесь как раз и помогает PBO.
Автоматический разгон представляет собой аналог ручного разгона в определенных рамках. Данная функция активируется в BIOS или через утилиту Ryzen Master. В качестве примера AMD указывает процессор Ryzen, который работает на 4,55 ГГц с помощью Precision Boost. Через автоматический разгон частоту можно увеличить еще на 200 МГц до 4,75 ГГц.
Конечно, мы уделим пристальное внимание Precision Boost и автоматическому разгону в тестах новых процессоров Ryzen.
Процессоры Ryzen можно сделать более экономичными через Precision Boost Overdrive
Технология Precision Boost Overdrive или PBO обычно используется, чтобы гарантировать максимальные тактовые частоты процессоров Ryzen, если такая возможность существует. PBO значительно облегчает задачу пользователям по достижению максимальной производительности.
Но PBO можно использовать и иначе. В своем твите Роберт Халлок (Robert Hallock), отвечающий в AMD за технический маркетинг, объяснил следующее:
Процессор будет ориентироваться на планку Package Power Tracking, выше которой энергопотребление не возрастет. И Ryzen 9 3950X будет всегда работать экономично, независимо от действий пользователя и нагрузки. Так что можно получить тихую и экономичную систему. При этом на однопоточной производительности ограничение вряд ли скажется, одно ядро будет всегда достигать максимальных частот. Но вот по многопоточной производительности наверняка будут ограничения, связанные с TDP.
В ветке Reddit пользователи активно делятся своим опытом реализации данного метода.
Режим Eco Mode приводит к работе Ryzen 9 3950X на 7 °C холоднее, энергопотребление снижается на 44%. Но производительность снижается на меньшее значение.
Подписывайтесь на группы Hardwareluxx ВКонтакте и Facebook, а также на наш канал в Telegram (@hardwareluxxrussia).
Мы рекомендуем ознакомиться с нашим руководством по выбору лучшего процессора Intel и AMD на зиму 2020. Оно поможет выбрать оптимальный CPU за свои деньги и не запутаться в ассортименте моделей на рынке.
Принципы авторазгона современных процессоров, или как нас обманывают Intel и AMD
Скорее всего, про технологию Intel Turbo Boost слышали многие (а вот про AMD PBO — нет, но о ней будет ниже): дескать, это волшебная функция, позволяющая процессорам самостоятельно разгоняться и работать быстрее. Отчасти это действительно правда — технология волшебная, вот только волшебство здесь работает скорее в сторону компаний-производителей CPU, чем в сторону обычных пользователей. И с учетом того, что информации о работе функций авторазгона в интернете крайне мало, особенно на официальных сайтах (по очевидным уже причинам), приходится по крупицам собирать ее, смотря как работают различные процессоры в разных условиях.
А разгон-то ненастоящий!
Современные процессоры от Intel (про AMD поговорим отдельно, ибо там все еще запутаннее) имеют множество ограничений — которые, сюрприз, могут не выполняться, если производитель материнской платы отключит их по умолчанию в BIOS. Первое и самое важное ограничение — по максимальной температуре, порядка 100-105 градусов для различных дестопных процессоров. При приближении к ней CPU начнет троттлить, иными словами — серьезно снижать частоту, дабы удерживать температуру в допустимых рамках. Если же даже на минимальной рабочей частоте в 800 МГц процессору не удается справиться с перегревом, он или аварийно отключается (в этот момент зависает картинка на мониторе), или же плата перезагружается.
Казалось бы — отличное ограничение, идеально работающее и не позволяющее процессору раньше времени попасть в кремниевую вальгаллу. На деле все несколько сложнее. Во-первых, датчики температур внутри кристалла CPU есть не везде, и если максимальный фиксируемый нагрев, например, 80 градусов, то в процессоре вполне может быть место, которое греется до 85. Во-вторых, кристалл сам по себе греется неравномерно: самые горячие места, разумеется, это ядра. А вот интегрированная графика, различные контроллеры и кэш могут греться слабее на десяток-другой градусов — особенно если ядра греются под сотню градусов. Конечно, кремнию такие перепады температур в рамках одного кристалла далеко не полезны.
Так что нет ничего удивительного в том, что Intel решила вводить новые лимиты. Самый известный из них — это TDP, или Thermal Design Power. Эта очень хитрая цифра: дескать, именно столько тепла должна отводить от процессора система охлаждения. На практике все еще интереснее: именно к этой цифре стремится тепловыделение процессора при длительной нагрузке. И тут случается первый «упс»: возьмем, например, популярный мобильный Core i5-8250U. Он имеет родную частоту всего 1.6 ГГц, однако Turbo Boost позволяет ему разгоняться до 3.4 ГГц. Он имеет TDP 15 Вт, что позволяет ставить его в ультрабуки — что ж, давайте проведем стресс-тест и проверим, какая будет реальная частота при долгой нагрузке:
2.4 ГГц. Формально, все хорошо — частота же выше родных 1.6 ГГц, причем в полтора раза. Но, с другой стороны, это не 3.4 ГГц: теряется процентов 20-25%, что тоже достаточно значительно. Ладно, запустим теперь игру — она нагружает процессор слабее, он «укладывается» в 15 Вт и работает на максимальной частоте в 3.4 ГГц.
Так что мы видим первое лукавство, которое скрывается во фразе «до 3.4 ГГц»: ведь и 2 ГГц — «до». И 2.5 тоже «до». Но это только начало — большинство производителей десктопных материнских плат делают вид, что они не знают про TDP и банально отключают этот лимит! К чему это приводит? Да к тому, что 6-ядерный Core i5-8400T, который формально имеет тепловыделение в 35 Вт, начинает в некоторых задачах потреблять и 60, и 70, при этом не снижая частот. Казалось бы — вот оно счастье, производительность не падает? Так-то да, но не совсем: если 35 Вт легко отведет боксовый алюминиевый кулер, то вот с 70 Вт он может и не справиться. Конечно, как я уже писал выше, от перегрева процессор едва ли сгорит, но вряд ли вас будут устраивать постоянные подтормаживания в работе. Выхода тут, очевидно, два — или включить ограничение по TDP в BIOS, или купить более мощный кулер.
Конечно, это слегка надуманная проблема: в большинстве своем все наоборот отключают в BIOS различные лимиты и энергосберегающие функции, чтобы процессор мог работать на максимально возможной частоте. Но это отлично показывает, что производителям плат чихать хотели на спецификации Intel (да и AMD тоже).
Второе лукавство еще интереснее: так, в некоторых процессорах указанная частота Turbo Boost достигается лишь. при работе одного ядра. Так, тот же i7-8550U при нагрузке на одно ядро может работать на частоте до 4.0 ГГц, двух — уже только 3.8 ГГц, ну а все четыре не могут «буститься» выше 3.7 ГГц. Так что даже если этому процессору создать идеальные условия — 4 ГГц при серьезной нагрузке вы никогда не увидите. Вообще говоря — вы вообще эту цифру никогда не увидите, потому что в современном мире задачу, которая будет грузить только одно ядро, еще нужно поискать, и в реалистичных задачах при высокой нагрузке и при отсутствии сдерживающих факторов реальная частота будет на уровне 3.7-3.8 ГГц. Причем формально к Intel опять же не придраться: эта частота выше родных 1.8 ГГц? Выше. Ну а то, что одноядерную нагрузку сделать не можете — ваши проблемы.
Но вернемся к ноутбукам и ультрабукам. В Intel отлично понимают, что большая часть серьезных нагрузок — короткие: сколько займет по времени открытие программы? Секунд 5-10, не больше. На загрузку страницы в браузере требуется и того меньше. При этом система охлаждения обладает большой тепловой инертностью: чтобы ее разогреть до сотни градусов потребуется никак не меньше нескольких десятков секунд, а то и целых минут. Вывод — на какой-то небольшой срок можно «забыть» про ограничение по TDP и позволить процессору работать на максимальной частоте: очевидно, это здорово повышает отзывчивость системы в реальных задачах.
В цифрах это сделано так: так называемый Turbo Time Limit обычно длится 28 секунд, и в это время работает Short TDP, который может достигать 30-50 Вт: это гарантированно позволяет процессору использовать максимальную частоту даже при серьезной нагрузке с векторными инструкциями. После этих 28 секунд в ход вступает Long TDP — те самые 15 Вт, и частота CPU серьезно снижается. И если система охлаждения справляется, то в таком режиме ноутбук будет работать, образно говоря, вечно.
Ладно, вроде все хорошо: работает Long TDP, процессор не перегревается — идиллия? Увы, нет. Большинство ноутбуков имеют общую систему охлаждения для процессора и дискретной видеокарты. И, очевидно, достаточно часто бывают задачи (например, игры), которые серьезно грузят оба компонента системы. При этом, обычно, максимальная температура GPU все же ниже, чем у CPU, то есть троттлить видеокарта начинает раньше: а это, разумеется, негативно сказывается на частоте кадров в играх. Выход? Раз система охлаждения у процессора и видеокарты общая, то почему бы не замедлить процессор — редко когда в играх он работает на 100%, так что некоторое снижение его частоты и тепловыделения, в теории, не должны сказаться на производительности в играх, и при этом видеокарта не будет троттлить.
Эта функция называется BD Prochot, и, к сожалению, это действительно «просчет». Проблема в том, что если она активирована, то процессор реагирует на перегрев видеокарты так же, как и на свой — иными словами, роняет частоту вплоть до 800 МГц. Очевидно, это приводит к резкому снижению тепловыделения и температуры GPU, так что частота процессора из-за этого быстро восстанавливается до прежнего уровня в несколько гигагерц. И сия катавасия начинает происходить раз в несколько секунд: при этом нужно понимать, что падение частоты до 800 МГц ощущается не иначе, как фриз. То есть игры начинают стабильно подтормаживать раз в несколько секунд — как говорится, приятной игры. К счастью, эта функция легко отключается в бесплатной утилите ThrottleStop: конечно, при этом будет перегреваться и троттлить видеокарта, но вот она это обычно делает более плавно, снижая частоту лишь на небольшую величину. Так что да, это приведет к некоторому падению fps, но это все еще приятнее, чем постоянные подлагивания.
А вот дальше становится забавнее и страшнее одновременно. Разумеется, процессоры уже не один десяток лет умеют работать в огромном диапазоне частот, зачастую снижая ее ниже родной для энергосбережения. При этом также очевидно, что чем ниже частота — тем ниже можно подать на CPU напряжение и он останется стабильным, а потреблять энергии будет меньше. Так называемая таблица частот-напряжения для каждого совместимого с платой процессора есть в ее BIOS, и, к счастью, производители плат обычно ее придерживаются.
То есть, напряжения, мощности и частоты заданы достаточно жестко — что же меняется? Правильно, это ток (напомню, что мощность это ток, умноженный на напряжение). И, разумеется, на него Intel тоже задает лимит: в случае с i5-8250U это 64 А (параметр IccMax). С учетом того, что напряжение при работе на 3.4 ГГц порядка 1 В, мы получаем максимальное тепловыделение не более 64 Вт: процессор, очевидно, никак не сможет его достичь (Short TDP обычно ниже 50 Вт), отсюда возникает вполне логичный вопрос — ну и зачем нужно было вводить IccMax, если он никогда не будет ограничивать процессор? Причем, к слову, в десктопных платах этот параметр зачастую установлен вообще на 255 А — при напряжении в 1.2-1.3 В это даст умопомрачительные 330 Вт: очевидно, это мягко говоря далековато от реального потребления десктопных CPU.
А дальше еще интереснее. Мне стало интересно, какие MOSFET используются в цепи питания моего i5-8250U. Оказалось, что это Sic634 — а у них максимальный ток 50 А и пиковый 55. То есть ниже, чем нужно по спецификации Intel. Разумеется, я решил, что это сэкономила Xiaomi, но потом обнаружил, что ровно такие же транзисторы используются и в дорогих Dell XPS 13 с точно таким же CPU. Конечно, 50 А при напряжении в 1 В даст нам целых 50 Вт — это несколько больше Short TDP, которое в моем случае 44 Вт, и в разы больше Long TDP в 15 Вт, но все еще то, что производители «забывают» про спецификации Intel при планировании силовой части плат, мягко говоря, пугает.
Ну и вишенка на торте: разумеется, речь пойдет о Intel Turbo Boost 3.0. Современное процессоростроение можно очень точно описать одной фразой: «третий сорт — не брак». Топовые решения под сокет LGA2066 могут иметь аж 18 ядер, да и еще все в одном кристалле. Разумеется, шанс того, что все ядра будут разгоняться одинаково хорошо, крайне низкий — всегда будет 1-2 более удачных ядра, способных брать более высокие частоты. Так что если Turbo Boost 2.0 разгоняет все ядра или же любое из попавшихся до указанных в нем частот, то после установки мощного HEDT-процессора в плату технология Turbo Boost 3.0 определяет лучшие ядра в нем и позволяет только им «буститься» сильнее других. Разницу сложно назвать значительной, она обычно находится на уровне 200 МГц, но все еще мы видим, как Intel пускает в ход «полубракованные» кристаллы, где разные ядра разгоняются по-разному.
AMD Precision Boost Override — кручу, мучу, разгонять не хочу
Как мы помним, после «бульдозерных» FX 2011-2013 годов, которые были не способны конкурировать с Core i7, AMD решила прекратить такие серьезные эксперименты и вернуться в архитектуре Zen к обычным ядрам с поддержкой гиперпоточности, которая в данном случае называется SMT. Что ж, идея, как мы знаем, хорошая, и процессоры Ryzen пользователи расхватывают как горячие пирожки, быстро сдвинув Intel с лидера по продажам (>80% в начале 2017) на уровень догоняющего (порядка трети продаж на данный момент).
При этом AMD отлично понимала две вещи: во-первых, она не в том положении, чтобы не продавать «полубрак» (тем более, что этим занимается Intel), так что более дешевые Ryzen без литеры X работают на частотах в 150-200 МГц ниже, чем их «иксовые» собратья, даже под разгоном. Во-вторых, с одноядерной производительностью у Zen и Zen+ все было не очень хорошо, так что ее нужно было поднимать всеми силами. Так и родилась технология PBO, которая, с одной стороны, сильно похожа на Turbo Boost, а с другой — кардинально отличается.
В общем и целом, в случае с десктопными процессорами Intel оказывается важен лишь один лимит — по температуре, все остальные или никогда не достигаются, или обычно по умолчанию отключены в BIOS, так что процессор стабильно работает на своей максимальной частоте Turbo Boost для всех ядер, то есть на разных платах CPU будет в общем и целом показывать одинаковый уровень производительности.
А вот у AMD это не так: как я уже писал выше, чтобы держать низкие цены, они решили использовать ту же уловку, что и Intel в Hi-End процессорах — а именно маркировать хорошие ядра, и лишь они «бустятся» до указанных в спецификациях высоких частот в 4.5+ ГГц. Очевидно, что все ядра в таком случае до такой частоты не доберутся — для этого понадобятся слишком высокие напряжения, так что получается неприятная ситуация: если у Intel указанная максимальная Turbo Boost частота не достигается только в мобильных процессорах, которые не всегда используют для серьезной нагрузки, то у AMD это происходит даже у десктопных процессоров, что делает теоретические максимальные частоты фикцией и только.
Причем в утилите Ryzen Master указываются звездочками лучшие ядра — как оказалось, эта официальная программа от AMD ставит их случайным образом, на деле оказываются лучшими абсолютно другие ядра:
Лично я могу охарактеризовать происходящее сейчас на рынке процессоров только одним словом — жесть. Липовые частоты, неработающие лимиты, невыполняющиеся спецификации — складывается серьезное ощущение того, что индусы кодят, а китайцы паяют. Так что при покупке нового ноутбука или же платы с процессором внимательно изучайте именно их реальную производительность и частоты, ибо в даже в десктопном сегменте может быть крайне разительная разница при работе, на секундочку, в полностью дефолтном режиме.
Чипсеты AMD B350 И B450: в чем разница?
После выхода процессоров Ryzen 2-го поколения, изготовленных по технологии 12 нм, неминуемым был и выпуск нового чипсета 400-й серии среднего класса. Материнские платы с чипсетом B350 оставались одним из наиболее популярных вариантов в средней ценовой категории для тех пользователей, которые перешли на платформу AMD за прошедший год или около того. Вот почему теперь все с нетерпением ждут прибытия материнских плат с чипсетом B450, чтобы собрать на их основе новый компьютер.
Поскольку плата серии B350 позволит использовать процессор Ryzen 2-го поколения после простого обновления BIOS, многие пользователи задаются вопросом, предлагает ли чипсет B450 нечто, ради чего стоит совершить апгрейд. Но ведь изменился не только чипсет! Линейка материнских плат MSI B450 была разработана с учетом разгонных возможностей процессоров Ryzen и новой функциональности чипсета. Давайте рассмотрим, в чем они отличаются от своих предшественников.
Как видите, чипсет AMD B350 поддерживает больше моделей процессоров. Однако B450 совместим со всеми сериями, которые актуальны в 2018 году. Новая линейка процессоров Raven Ridge со встроенным графическим ядром по сути заменила собой старые и значительно более слабые модели Bristol Ridge. Таким образом, брать материнскую плату с чипсетом B350 имеет смысл только тогда, когда у вас уже есть процессор Bristol Ridge, который вы и хотите использовать. Впрочем, оба чипсета будут поддерживать все процессоры AMD, которые выйдут вплоть до 2020 года.
Технология AMD Precision Boost Overdrive (PBO)
Технологии Extended Frequency Range и Precision Boost, разработанные компанией AMD, появились в 2017 году и поначалу вызвали немалый интерес. Впрочем, хотя они и работали, как полагалось, прирост производительности от их использования был слишком мал. Ситуация меняется с появлением технологии AMD Precision Boost Overdrive (AMD PBO), поддерживаемой чипсетами AMD 400-й серии. Уже опробованная с большим эффектом на флагманской платформе X470, она теперь доступна и с материнскими платами серии B450.
Технология Precision Boost Overdrive по сути объединяет в себе технологии Precision Boost 2.0 и Extended Frequency Range 2.0, чтобы повышать производительность процессора тогда, когда нужно, и настолько, насколько нужно. Для ее работы требуется процессор Ryzen X и материнская плата с чипсетом 400-й серии. Чипсет AMD B350 тоже умеет автоматически разгонять процессоры X-серии до определенного уровня, однако B450 с технологией PBO позволяет получить при этом куда больший прирост производительности.
Что делает технология AMD PBO?
Новый алгоритм, используемый технологией Precision Boost 2.0, обеспечивает улучшенное масштабирование частоты процессора в зависимости от количества задействованных ядер, а технология Extended Frequency Range 2.0 позволяет чипсету лучше отслеживать температуру по сравнению с предыдущими чипсетами AMD.
Сочетание этих двух технологий гарантирует более сильный прирост частоты при использовании мощных систем охлаждения. Поскольку результатом является нечто вроде автоматического разгона, вмешательство пользователя не требуется. В отличие от чипсетов Intel среднего уровня, недорогой чипсет B450 от AMD поддерживает оверклокинг, а технология AMD PBO автоматизирует данный процесс для тех, кто не особенно комфортно чувствует себя со всеми этими настройками частоты и напряжения в BIOS.
Технология AMD StoreMI
AMD StoreMI – это ответ компании AMD на технологию Optane от Intel. Однако, в отличие от Optane, для ее работы не требуется какое-либо аппаратное обеспечение. Достаточно твердотельного накопителя и жесткого диска, которые у вас уже есть. Благодаря технологии StoreMI эти два устройства объединяются в одно, которое сочетает в себе скорость твердотельного накопителя с высокой емкостью жесткого диска.
Помимо быстрой загрузки ОС и приложений, AMD StoreMI может похвастать простотой настройки. Это решение прекрасно подходит для пользователей, которые не хотят тратить огромные деньги на покупку твердотельного накопителя высокой емкости, но желают получить достаточно скоростную и объемную подсистему хранения данных.
Поскольку технология AMD StoreMI доступна только с чипсетами 400-й серии, она представляет собой еще одну причину, по которой вам может захотеться перейти на новейшую платформу AMD.
Материнские платы MSI B450: новые функции
Материнские платы MSI серии B350 отличались лучшими в своем классе компонентами и функциональностью, однако всегда есть место для улучшений. Примером чему является новая серия продуктов на базе чипсета B450.
Технология Core Boost
Разблокированные ядра процессоров Ryzen требуют большей заботы с точки зрения правильного питания. Вот почему материнские платы MSI серии B450 обладают по меньшей мере 7 фазами питания и 8-контактным процессорным разъемом. Это поможет вам разогнать даже флагманскую модель Ryzen (с 6 или 8 ядрами) без проблем со стабильностью.
Большой радиатор
На элементы системы питания материнских плат MSI B450 установлен радиатор, площадь которого увеличена на 40% по сравнению с обычными. Увеличенная площадь теплорассеивания в сочетании с улучшенной разводкой компонентов ведет к существенному понижению температуры, а значит позволит выжать максимум из процессора Ryzen без опасности перегрева.
BIOS Flashback+
Проблемы при обновлении прошивки BIOS – одна их самых страшных вещей, которые могут случиться с пользователем ПК. Однако все материнские платы MSI серии B450 поддерживают технологию BIOS Flashback+, которая позволяет практически моментально вернуться к старой, рабочей версии BIOS. Причем она работает даже без установки процессора, памяти и видеокарты!
Вывод: нужен ли апгрейд?
Чипсеты AMD 400-й серии обладают множеством привлекательных для большинства пользователей функций. В сочетании с эксклюзивными разработками MSI, реализованными в новых материнских платах серии B450, это кажется весьма заманчивым предложением. Итак, стоит ли переходить со старой платы с чипсетом B350 на новую? Чтобы ответить на этот вопрос, давайте вспомним, какие именно новшества предлагают материнские платы MSI серии B450 по сравнению со своими предшественницами серии B350:
• Технология AMD Precision Boost Overclocking обеспечивает больший прирост производительности процессоров X-серии.
• Технология AMD StoreMI позволяет объединить твердотельный накопитель и жесткий диск, чтобы получить одновременно и скорость первого, и высокую емкость второго.
• Функция BIOS Flashback+ для безболезненного обновления и восстановления прошивки BIOS.
• Технология Core Boost для обеспечения стабильности при разгоне процессоров Ryzen (включая 8-ядерные!).
• Радиатор увеличенного размера гарантирует улучшенное охлаждение компонентов системы питания.
Если какие-либо из указанных выше возможностей вас интересуют, то вам непременно нужно как можно быстрее приобрести материнскую плату MSI серии B450! Чипсет B450, как и другие чипсеты 400-й серии, гарантирует наилучшую работу процессоров Ryzen, особенно когда речь идет о Ryzen 2-го поколения, изготовленных по технологии 12 нм.
С другой стороны, имеет смысл оставить нынешнюю плату серии B350, если:
1) вы все еще пользуетесь процессором AMD Bristol Ridge со встроенным графическим ядром Radeon R7 и планируете использовать его в ближайшем будущем или 2) у вас не хватает бюджета для обновления и процессора, и материнской платы, поэтому вы готовы пойти на некоторые компромиссы с точки зрения производительности и функциональности.