new float c что это
Указатели в C++ — урок 7
Если переменных в памяти потребуется слишком большое количество, которое не сможет вместить в себя сама аппаратная часть, произойдет перегрузка системы или её зависание.
Если мы объявляем переменные статично, так как мы делали в предыдущих уроках, они остаются в памяти до того момента, как программа завершит свою работу, а после чего уничтожаются.
Такой подход может быть приемлем в простых примерах и несложных программах, которые не требуют большого количества ресурсов. Если же наш проект является огромным программным комплексом с высоким функционалом, объявлять таким образом переменные, естественно, было бы довольно не умно.
Можете себе представить, если бы небезызвестная Battlefield 3 использовала такой метод работы с данными? В таком случае, самым заядлым геймерам пришлось бы перезагружать свои высоконагруженные системы кнопкой reset после нескольких секунд работы игры.
Дело в том, что играя в тот же Battlefield, геймер в каждый новый момент времени видит различные объекты на экране монитора, например сейчас я стреляю во врага, а через долю секунды он уже падает убитым, создавая вокруг себя множество спецэффектов, таких как пыль, тени, и т.п.
Естественно, все это занимает какое-то место в оперативной памяти компьютера. Если не уничтожать неиспользуемые объекты, очень скоро они заполнят весь объем ресурсов ПК.
По этим причинам, в большинстве языков, в том числе и C/C++, имеется понятие указателя. Указатель — это переменная, хранящая в себе адрес ячейки оперативной памяти, например 0x100.
Мы можем обращаться, например к массиву данных через указатель, который будет содержать адрес начала диапазона ячеек памяти, хранящих этот массив.
После того, как этот массив станет не нужен для выполнения остальной части программы, мы просто освободим память по адресу этого указателя, и она вновь станет доступно для других переменных.
Ниже приведен конкретный пример обращения к переменным через указатель и напрямую.
Пример использования статических переменных
Пример использования динамических переменных
Во втором примере мы оперируем динамическими переменными посредством указателей. Рассмотрим общий синтаксис указателей в C++.
Логично предположить, что для разных типов данных выделяется разное количество памяти. Следует быть особенно осторожным при работе с памятью, потому что именно ошибки программы, вызванные утечкой памяти, являются одними из самых трудно находимых. На отладку программы в поисках одной ничтожной ошибки, может уйти час, день, неделя, в зависимости от упорности разработчика и объема кода.
В этих вещах очень часто возникают недопонимания, и кстати, не только у новичков. Многие из тех, кто начинал программировать с того же php, также часто испытывают подобную путаницу при работе с памятью.
Для того, чтобы освободить память, выделенную оператором new, используется оператор delete.
Пример освобождения памяти
При использовании оператора delete для указателя, знак * не используется.
Тип float
Числа с плавающей запятой используют формат IEEE (Института инженеров по электротехнике и электронике). Значения с одиночной точностью и типом float имеют 4 байта, состоят из бита знака, 8-разрядной двоичной экспоненты excess-127 и 23-битной мантиссы. Мантисса представляет число от 1,0 до 2,0. Поскольку бит высокого порядка мантиссы всегда равен 1, он не сохраняется в числе. Это представление обеспечивает для типа float диапазон примерно от 3,4E–38 до 3,4E+38.
Можно объявить переменные в качестве типа float или double в зависимости от нужд приложения. Основные различия между двумя типами значения заключаются в представляемой ими значимости, требуемых ресурсах хранения и диапазоне. В следующей таблице показана связь между значимостью и требованиями к хранению.
Типы с плавающей запятой
Переменные с плавающей запятой представлены мантиссой, которая содержит значение числа, и экспонентой, которая содержит порядок возрастания числа.
В следующей таблице показано количество битов, выделенных мантиссе и экспоненте для каждого типа с плавающей запятой. Наиболее значимый бит любого типа float или double — всегда бит знака. Если он равен 1, число считается отрицательным; в противном случае — положительным.
Длина экспонент и мантисс
Type | Длина экспоненты | Длина мантиссы |
---|---|---|
float | 8 бит | 23 бита |
double | 11 бит | 52 бита |
Поскольку экспоненты хранятся в форме без знака, экспоненты смещены на половину своего возможного значения. Для типа float смещение составляет 127; для типа double это 1023. Можно вычислить фактическое значение экспоненты, вычтя значение смещения из значения экспоненты.
Мантисса хранится в виде бинарной доли, которая больше или равна 1 и меньше 2. Для типов float и double в мантиссе подразумевается наличие начального 1 в наиболее значимой битовой позиции, поэтому фактически длина мантисс составляет 24 и 53 бит соответственно, даже если наиболее значимый бит никогда не хранится в памяти.
Вместо только что описанного метода хранения пакет значений с плавающей запятой может хранить двоичные числа с плавающей запятой как денормализованные числа. Денормализованные числа — это ненулевые числа с плавающей запятой и зарезервированными значениями экспонент, в которых наиболее значимый бит мантиссы равен 0. Используя денормализованный формат, можно расширить диапазон числа с плавающей запятой в ущерб точности. Невозможно контролировать, в какой форме будет представлено число с плавающей запятой — нормализованной или денормализованной. Пакет значений с плавающей запятой определяет представление. В пакете значений с плавающей запятой никогда не используется денормализованная форма. Исключение составляют случаи, когда экспонента становится меньше, чем минимальное значение, которое может быть представлено в нормализованной форме.
В следующей таблице показаны минимальное и максимальное значения, которое можно сохранить в переменных каждого типа с плавающей запятой. Значения, указанные в этой таблице, применяются только к нормализованным числам с плавающей запятой; денормализованные числа с плавающей запятой имеют меньшее минимальное значение. Обратите внимание, что номера, сохраненные в регистрах 80x87, всегда представлены в 80-разрядной нормализованной форме; при сохранении в 32- или 64-разрядных переменных с плавающей запятой числа могут быть представлены только в ненормализованной форме (переменные типов float и long).
Диапазон типов с плавающей запятой
Type | Минимальное значение | Максимальное значение |
---|---|---|
плавающее | 1,175494351 E – 38 | 3,402823466 E + 38 |
double | 2,2250738585072014 E – 308 | 1,7976931348623158 E + 308 |
Если точность менее важна, чем размер хранимых данных, имеет смысл использовать тип float для переменных с плавающей запятой. И наоборот, если точность — наиболее важный критерий, используйте тип double.
Уровень переменных с плавающей запятой можно повысить до типа большей значимости (преобразование типа float в тип double). Повышение уровня часто происходит при выполнении арифметических действий с переменными плавающего типа. Это арифметическое действие всегда выполняется на том же уровне точности, что и переменная с наивысшим уровнем точности. Например, проанализируйте объявления следующих типов.
В следующем примере (с использованием объявлений из предыдущего примера) арифметическая операция выполняется на уровне точности переменной типа float (32-разрядной). Уровень результата затем повышается до уровня double.
Типы данных для C#: минимум, который необходимо знать
Содержание статьи:
Введение
Типы данных используются для управления переменными. Каждый из типов данных обрабатывается в соответствии с определенными правилами. Поскольку C# — язык со строгой типизацией, то абсолютно все выполняемые операции проверяются на соответствие типов (во избежание ошибок производится их предварительный контроль). Если какая-либо операция с типами недопустима, итоговая программа не будет скомпилирована. По сути, разработка программного обеспечения на C# представляет собой создание и организацию взаимодействия между различными типами данных.
В языке C# типы данных имеют две категории:
Подразделение типов значения
Подразделение ссылочных типов
Использование суффиксов float, decimal, double
У некоторых числовых типов имеются суффиксы, позволяющие записывать значение типа в переменную.
Числовые типы с плавающей запятой — это действительные числа. Они принадлежат к категории Типы значения. Это простые типы, которые могут быть инициализированы литералами. Они поддерживают операторы сравнения, равенства и арифметические операторы.
Тип C# | Диапазон | Точность/Знаков после запятой | Размер/байт | Системный тип |
float | ±1,5 x 10-45…±3,4 x 1038 | 6-9 | 4 | System.Single |
double | ±5,0 × 10-324…±1,7 × 10308 | 15-17 | 8 | System.Double |
decimal | ±1,0 x 10-28…±7,9228 x 1028 | 28-29 | 16 | System.Decimal |
Ключевые слова из колонки Тип C# взаимозаменяемы с системными типами.
С# decimal VS double
Литералы
Тип определяется суффиксом:
Decimal и float
Decimal и float используются для хранения числовых значений:
C# convert to decimal
Класс convert создан для того, чтобы преобразовывать широкий спектр типов. С его помощью можно преобразовывать в десятичное число больше типов. Метод Convert.ToDecimal используется для преобразования строкового представления числа в эквивалентное десятичное число с информацией о форматировании.
Вывод: преобразование в десятичное значение указанных строк:
123456789, 12345.6789, 123456789.0123.
C# decimal to int
Метод Decimal.ToInt32() создан для преобразования decimal значения в эквивалентное 32-разрядное целое число со знаком.
C# decimal round
Decimal.Round() или С# round decimal представляет собой метод округления к ближайшему целому числу или указанному количеству десятичных знаков.
Вывод: округленное значение 184467440737096.
2 Round(Decimal, Int32) Method — округление значения Decimal до указанного количества десятичных знаков;
3 Round(Decimal, Int32, MidpointRounding) Method ;
Таблица некоторых типов C# и их сочетание с системными типами
Название встроенного типа (столбец Ключевое слово) — и есть сокращенное обозначение системного типа (столбец Системный тип).
Неявная типизация
Но такие переменные имеют свои ограничения:
1 Нельзя определить неявную переменную и сразу ее инициализировать.
Double или format decimal C#?
После запятой decimal может иметь до 28 цифр, тогда как double — до 16. Тем не менее double широко используется в математических вычислениях, а decimal — в финансовых.
Таблица различий между double и decimal
Максимальное значение | Минимальное значение | Цифр после запятой | Размер | Количество операций |
double | 16 | 8 байт | миллиарды в секунду | |
decimal | 10-28 | 28 | 16 байт | сотни миллионов в секунду |
Типы данных могут быть простыми и сложными. Сложные типы чаще всего данные структурируют, а у простых значения данных неделимы. Любой язык программирования имеет систему встроенных типов данных, на их основе можно создавать свои производные.
В C# типы данных подразделяются на две большие группы:
Закрепить материал по типам C#-данных можно на основе этого замечательного видео, где дополняется все сказаное нами:
Урок №33. Типы данных с плавающей точкой: float, double и long double
Обновл. 11 Сен 2021 |
Типы данных с плавающей точкой
Есть три типа данных с плавающей точкой: float, double и long double. Язык C++ определяет только их минимальный размер (как и с целочисленными типами). Типы данных с плавающей точкой всегда являются signed (т.е. могут хранить как положительные, так и отрицательные числа).
Тип | Минимальный размер | Типичный размер | |
Тип данных с плавающей точкой | float | 4 байта | 4 байта |
double | 8 байт | 8 байт | |
long double | 8 байт | 8, 12 или 16 байт |
Объявление переменных разных типов данных с плавающей точкой:
Если нужно использовать целое число с переменной типа с плавающей точкой, то тогда после этого числа нужно поставить разделительную точку и нуль. Это позволяет различать переменные целочисленных типов от переменных типов с плавающей запятой:
Обратите внимание, литералы типа с плавающей точкой по умолчанию относятся к типу double. f в конце числа означает тип float.
Экспоненциальная запись
Обычно, в экспоненциальной записи, в целой части находится только одна цифра, все остальные пишутся после разделительной точки (в дробной части).
На практике экспоненциальная запись может использоваться в операциях присваивания следующим образом:
Встроенные типы (C++)
Встроенные типы (также называемые фундаментальными типами) задаются стандартом языка C++ и встроены в компилятор. Встроенные типы не определены в файле заголовка. Встроенные типы делятся на три основные категории: целые, с плавающей запятойи void. Целочисленные типы представляют целые числа. Типы с плавающей запятой могут указывать значения, которые могут содержать дробные части. Большинство встроенных типов рассматриваются компилятором как отдельные типы. Однако некоторые типы являются синонимамиили обрабатываются компилятором как эквивалентные типы.
Тип void
в операторе выражения (Дополнительные сведения см. в разделе выражения.)
в левом операнде оператора запятой (Дополнительные сведения см. в разделе оператор-запятая.)
std:: nullptr_t
Тип Boolean
Символьные типы
Зависящие от Майкрософт: переменные типа помещаются в int тип по signed char умолчанию, если не /J используется параметр компиляции. В этом случае они рассматриваются как тип unsigned char и переносятся в int без расширения знака.
Переменная типа wchar_t является расширенным символом или типом многобайтового символа. Используйте L префикс перед символьным или строковым литералом, чтобы указать тип расширенных символов.
char16_t Тип используется для символьного представления UTF-16. Он должен быть достаточно большим, чтобы представлять любой блок кода UTF-16. Компилятор обрабатывает его как отдельный тип.
char32_t Тип используется для символьного представления UTF-32. Он должен быть достаточно большим, чтобы представлять любую единицу кода UTF-32. Компилятор обрабатывает его как отдельный тип.
Типы с плавающей запятой
Типы с плавающей запятой используют представление IEEE-754, чтобы обеспечить приближение дробных значений к широкому диапазону величин. В следующей таблице перечислены типы с плавающей запятой в C++ и сравнительные ограничения размеров типов с плавающей запятой. Эти ограничения задаются стандартом C++ и не зависят от реализации Майкрософт. Абсолютный размер встроенных типов с плавающей запятой не указан в стандарте.
Конкретно для Майкрософт: представление и double идентично. Однако long double double компилятор обрабатывает как отдельные типы. Компилятор Microsoft C++ использует 4-и 8-байтовые представления с плавающей запятой в формате IEEE-754. Дополнительные сведения см. в разделе IEEE с плавающей точкой.
Целочисленные типы
int Тип является базовым целочисленным типом по умолчанию. Он может представлять все целые числа в диапазоне, зависящем от реализации.
Представление целого числа со знаком — это одно из значений, которое может содержать положительные и отрицательные значения. Он используется по умолчанию или при signed наличии ключевого слова модификатор. unsigned Ключевое слово модификатор задает unsigned представление, которое может содержать только неотрицательные значения.
Реализация должна поддерживать как минимальные требования к размеру, так и отношение размера для каждого типа. Однако фактические размеры могут и зависеть от реализации. См. раздел размеры встроенных типов для деталей реализации, связанных с Майкрософт.
int Ключевое слово можно опустить, если signed unsigned заданы модификаторы, или. Модификаторы и int тип, если они есть, могут использоваться в любом порядке. Например, short unsigned и unsigned int short следует ссылаться на один и тот же тип.
Синонимы целочисленного типа
Компилятор считает синонимами следующие группы типов:
Размеры встроенных типов
Большинство встроенных типов имеют размеры, определенные реализацией. В следующей таблице перечислены объемы хранилища, необходимые для встроенных типов в Microsoft C++. В частности, long имеет 4 байта даже в 64-разрядных операционных системах.
Дополнительные сведения о преобразовании типов см. в разделе стандартные преобразования.