Что значит равные фигуры
Равновеликие фигуры
Равновеликие фигуры — это фигуры, которые имеют одинаковые площади.
Равновеликие тела — это тела, которые имеют равные объёмы (равновеликие тела часто также называют равновеликими фигурами). Равные фигуры — это фигуры, которые совпадают при наложении (у них соответствующие стороны равны и соответствующие углы равны).
Равные фигуры имеют равные площади, поэтому равные фигуры являются также равновеликими. Обратное, вообще говоря, неверно.
1) Прямоугольник и квадрат, изображенные на рисунке 1, — равновеликие фигуры.
То есть, прямоугольник со сторонами a и b и квадрат со стороной c являются равновеликими, если
2) Треугольник и квадрат, изображенные на рисунке 2 — равновеликие фигуры, так как имеют равные площади.
Площадь квадрата S=3²=9.
Треугольник со стороной a и проведенной к ней высоте ha и квадрат со стороной c являются равновеликими, если
3) Треугольник и трапеция, изображенные на рисунке 3 — равновеликие, поскольку их площади равны.
Треугольник со стороной c и проведенной к ней высотой hс и трапеция с основаниями a и b и высотой h являются равновеликими, если
Что означает равные фигуры?
Какие геометрические фигуры называются равными?
Ответ: Две фигуры называются равными, если имеют одинаковую форму и одинаковые размеры.
В каком случае две геометрические фигуры называются равными?
Две фигуры называются равными, если все их стороны имеют одинаковую длину.
Что такое равенство геометрических фигур?
Определение равных фигур через наложение
Другими словами: Если две фигуры совместить друг с другом (наложить друг на друга) посредством движения, то эти фигуры одинаковы, т. е. равны.
Как можно проверить что две геометрические фигуры равны?
Какие фигуры равными?
Равными фигурами являются, например, два отрезка одинаковой длины, два круга с одинаковым радиусом, два прямоугольника с попарно равными сторонами (короткая сторона одного прямоугольника равна короткой стороне другого, длинная сторона одного прямоугольника равна длинной стороне другого).
Какие фигуры называются равными 7 класс?
Какие прямоугольники будут считаться равными?
Ответ: Равными фигурами являются, например, два отрезка одинаковой длины, два круга с одинаковым радиусом, два прямоугольника с попарно равными сторонами (короткая сторона одного прямоугольника равна короткой стороне другого, длинная сторона одного прямоугольника равна длинной стороне другого).
Какие фигуры называются подобными?
Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия, то есть если расстояния между точками изменяются одно и то же число раз. Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
Какие фигуры называют Равносоставленными?
Равносоставленность Две фигуры называются равносоставленными, если они могут быть разрезаны на одинаковое число попарно равных фигур. Из свойств площади.
Какие признаки равенства треугольников вы знаете?
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Что является треугольником?
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника.
Какие есть признаки равенства треугольников?
Что значит равные фигуры в пространстве?
Две фигуры на плоскости (в пространстве) называются равными, если существует движение, взаимно однозначно переводящее одну фигуру в другую. Элементы данных фигур (вершины, стороны, центры и т. д.), переходящие друг в друга при этом движении, называются соответствующими друг другу или соответственными.
Как доказать равенства геометрических фигур?
Если первая фигура равная второй фигуре, то вторая фигура равная первой фигуре. Если первая фигура равная второй фигуре, а вторая фигура равна третьей фигуре, то первая фигура и третья фигура также равны между собой. Обратите внимание! Из того, что треугольники равны, следует, что уровни их периметры и площади.
Как найти площадь фигуры?
Равные фигуры
Цель: формирование понятия “равные фигуры”.
1. Организационный момент
Вступительное слово учителя.
Она очень запутанная, на ней отмечено множество островов, чтобы запутать искателей, но нужно попасть на остров, на котором спрятаны сокровища. Чтобы его найти, нам нужно будет преодолеть множество препятствий. Вы готовы? Тогда в путь.
Путешествовать мы будем на корабле.
Отправляемся на первый остров.
Итак, следуя нашей карте, мы оказались на острове под названием “Устный счет”. И чтобы двинуться дальше, нам необходимо выполнить задания:
— назови соседей чисел: 3, 6, 8;
— реши пример по числовому отрезку.
3. Актуализация знаний
Следующий остров, встретившийся нам на пути, это “Геометрический остров”. Он таит в себе свои тайны и загадки, которые нам необходимо раскрыть!
— Ребята нужно вспомнить и нарисовать все известные нам геометрические фигуры. (Круг, квадрат, ромб, овал, прямоугольник)
— Посмотрите на рисунок, какие фигуры изображены?
— По каким признакам можно разбить все фигуры на группы? (Цвет, форма, размер). Назови эти группы.
4. Ознакомление с новым материалом
Мы удачно справились с заданием и можем отправиться на следующий остров. На третьем острове я нашла тайные послания для нас с вами. У каждого на парте есть конверт. Давайте откроем их и посмотрим, какое на этот раз испытание нас ждёт. (В каждом конверте находятся большой и маленький зеленый квадрат, большой и маленький синий треугольник, большой и маленький желтый прямоугольник, два красных круга одинакового размера)
— Ребята, вспомним, по каким признакам делятся все фигуры? (Цвет, форма, размер)
Задание: разбейте по парам фигуры, находящиеся в конверте, так, чтобы менялся только один признак – размер.
— Смогли ли вы разбить все предметы по парам? (Нет)
— Почему? (Потому что два круга одинаковы по размеру, цвету и форме)
— Докажите, что эти фигуры одинаковы. (Наложением)
— Давайте подумаем, как можно такие фигуры назвать? (Из предложенных вариантов учитель выбирает понятие “равные фигуры”)
— Итак, ребята, тема нашего урока “Равные фигуры”. (Тема фиксируется на доске)
Давайте поближе познакомимся с ними. Для этого нам нужно отправиться на следующий остров, который так и называется: “Равные фигуры”.
Прибыв на остров, я сразу заметила на песке различные фигуры, зарисовала их, так как волна могла в любой момент их смыть.
— Посмотрите на доску, вот эти фигуры:
— Если среди них равные? (Дети сначала определяют визуально равные фигуры, затем к доске вызывается ученик)
— Как мы узнаем, действительно эти фигуры равны или нет? (Путем наложения одной фигуры на другую). Выполняется практическое действие.
— Итак, какие же фигуры мы можем назвать равными? (Равными фигурами являются те, которые совпадают при наложении).
— Определим, какие признаки у равных фигур должны совпадать.
Под темой урока на доске фиксируется краткая запись рассуждений детей.
ФФ
РР
Цили
Ц
(Равные фигуры всегда одинаковой формы и одинакового размера, а цвет может различаться)
Далее к доске приглашаются три ученика, каждому учитель выдаёт большую модель фигуры. Весь класс участвует в обсуждении.
— Как вы считаете, 1 и 2 фигуры – равные?
— Как мы это проверим? (Ученики совмещают фигуры и убеждаются, что они равны)
— А как вы думаете, 2 и 3 фигуры равны? (Выполняется аналогичная работа)
— Ребята, а 1 и 3 фигура равны?
— Почему? (Они обе равны фигуре 2, значит, равны друг другу)
— Давайте проверим наложением.
Ребята делают вывод, учитель кратко фиксирует на доске 1=2 и 2=3, то 1=3 (Если первая фигура равна второй, а вторая третьей, то первая фигура равна третьей)
— У меня возникла проблема, а если я не могу наложить фигуры, например, они нарисованы в тетради, как проверить, равны они или нет? (Можно посчитать по клеткам)
Отправляемся на следующий остров.
5. Первичное закрепление
Работа с учебником.
1) Стр. 36 №1. Найди равные фигуры и раскрась их одинаковым цветом. Работа выполняется по вариантам:
— Ребята, и с этим заданием вы справились, но продолжить наше путешествие мы не можем, корабль наткнулся на риф, нам необходимо его снова собрать. Потому что по карте последний остров именно тот, который нам нужен!
6. Повторение пройденного
Вы сегодня были храбры и не боялись сложных испытаний, которые встречались нам на островах. И в награду за это вы можете стать учителями-капитанами корабля. Но быть капитаном не просто, вам нужно многое знать и уметь, поэтому постарайтесь справиться со следующими заданиями:
1) Учащимся предлагается стать учителем: придумать задание к рисунку, проконтролировать выполнение, оценить.
2) Раздаются карточки. Нужно найти все ошибки. Взаимопроверка по парам.
Какие фигуры называются равными
Содержание статьи
Геометрические фигуры могут рассматриваться не изолированно, а в том или ином соотношении друг с другом – их взаимное расположение, соприкосновение и прилегание, положение «между», «внутри», соотношение, выраженное в понятиях «больше», «меньше», «равно».
Геометрия изучает инвариантные свойства фигур, т.е. те, которые остаются неизменными при тех или иных геометрических преобразованиях. Такое преобразование пространства, при котором остается неизменным расстояние между точками, составляющими ту или иную фигуру, называется движением.
Движение может выступать в разных вариантах: параллельный перенос, тождественное преобразование, поворот вокруг оси, симметрия относительно прямой или плоскости, центральная, поворотная, переносная симметрия.
Движение и равные фигуры
Если возможно такое движение, которое приведет к совмещению одной фигуры с другой, такие фигуры называют равными (конгруэнтными). Две фигуры, равные третьей, равны и между собою – такое утверждение было сформулировано еще Евклидом, основоположником геометрии.
Понятие конгруэнтных фигур может быть объяснено и более простым языком: равными называются такие фигуры, которые полностью совпадут при наложении их друг на друга.
Это достаточно легко определить, если фигуры даны в виде неких предметов, которыми можно манипулировать – например, вырезаны из бумаги, поэтому в школе на уроках нередко прибегают к такому способу объяснения данного понятия. Но две фигуры, начерченные на плоскости, нельзя физически наложить друг на друга. В данном случае доказательством равенства фигур выступает доказательство равенства всех элементов, составляющих эти фигуры: длина отрезков, размер углов, диаметр и радиус, если речь идет об окружности.
Равновеликие и равносоставленные фигуры
С равными фигурами не следует смешивать равновеликие и равносоставленные фигуры – при всей близости данных понятий.
Равновеликими называются такие фигуры, которые имеют равную площадь, если это фигуры на плоскости, или равный объем, если речь идет о трехмерны телах. Совпадение всех элементов, составляющих данные фигуры, не является обязательным. Равные фигуры будут равновеликими всегда, но не всякие равновеликие фигуры можно назвать равными.
Понятие равносоставленности чаще всего применяют к многоугольникам. Оно подразумевает, что многоугольники можно разбить на одинаковое количество соответственно равных фигур. Равносоставленные многоугольники всегда являются равновеликими.
Равные многоугольники
По определению равные фигуры должны быть во всём одинаковыми, включая площадь, длину сторон, размер углов и другие параметры. Чтобы рассмотреть всё из них, уйдёт много времени, да это и не нужно, ведь они взаимозависимы. Хорошим примером будет самый простой многоугольник — треугольник. Существует несколько правил, по которым можно определить, равны ли 2 треугольника между собой или нет:
Нельзя путать первое условие с тремя углами. Ведь если в треугольнике равны 3 угла, они необязательно будут равными, но будут подобными.
Названия условий достаточно точно описывают критерии, по которым можно определить одинаковые 2 треугольника или нет. Из них следует, что необязательно знать все параметры: часто хватает только нескольких из них для определения «равности».
В большинстве случаев определить одинаковость других фигур гораздо сложнее, нежели треугольников. К счастью, чаще всего в школьной геометрии такой класс задач не рассматривают или даются дополнительные данные, помогающие с решением.
Например, доказательство «равности» для четырёхугольника сложнее, да и почти не встречается. Но если по условию сказано, что четырёхугольник не произвольный, а имеет прямые углы, задача становится проще. В таком случае рассматривается прямоугольник. А для него достаточно, чтобы 2 не противолежащие стороны были равны.
Если указано ещё и условие, что прямоугольник является квадратом, достаточно указать, что у двух таких фигур совпадает по длине одна сторона и уже этого будет достаточно.
Равность правильных фигур
Частным и самым простым для сравнения является случай, когда многоугольник по условию правильный. Так называется фигура с одинаковыми сторонами и углами. Например, равносторонний треугольник и квадрат. Важно не забывать проверить равны ли углы, так как не каждая фигура правильная. Тот же ромб по определению имеет 4 совпадающие по длине стороны, но разные углы. При сравнении правильных многоугольников достаточно указать, что, хотя бы одна сторона фигуры равна стороне у другой. Это будет достаточное условие для доказательства «равности».
Самым простым и наглядным способом сверки двух фигур будет не геометрический с помощью правил, а путём наложения рисунков друг на друга. Разумеется, что он не претендует на точность, но изобразить параллелограмм и наложить его на другой нагляднее, чем сравнивать, например, углы. Понятно, что так можно только ознакомиться с концепцией «равности» и показать, какие фигуры называются равными, для упрощения в дальнейшем решения задач, но доказывать что-либо нельзя, ввиду неточности метода.
Если при сравнении двух тел оказывается, что их площади равны, такие тела (многоугольники) являются равновеликими. Как и в случае с прошлым, это определение звучит несложно. Проблемы могут начаться непосредственно при вычислении площадей. Самый простой многоугольник — треугольник. Для вычисления его площади существует множество способов.
Вычисление площади треугольника
Чаще всего приходится работать с прямоугольными треугольниками. Их площадь вычислить несложно — это полупроизведение катетов (сторон, между которыми лежит прямой угол). Таким образом, даже если стороны двух фигур по длине разные, но их произведение равно, они равновеликие. Например, треугольник с катетами 4 и 4 равен по площади многоугольнику с катетами 16 и 1. Так как их полупроизведение, а значит и площадь равна 8.
Если же треугольник произвольный (то есть не является частным случаем — прямоугольным, равнобедренным или равносторонним), можно воспользоваться одной из 5 формул, позволяющих вычислить его площадь.
То, какую формулу использовать, будет зависеть от данных, предоставленных в задаче. Иногда придётся проводить дополнительное построение, например, провести высоту или использовать свойства, что биссектрисы пересекаются в центре вписанной окружности. Если не даны все 3 стороны, использовать третью формулу не получится.
Важно понять, что фигуры могут быть разными по количеству углов, но всё равно считаться равновеликими — в учёт идёт только площадь, остальные параметры не важны. Например, прямоугольный треугольник с катетами 2 и 4 будет визуально казаться больше, чем квадрат со стороной 2, но их площади совпадают и равны 4 (площадь прямоугольника считается как произведение прилежащих сторон друг на друга). По определению это делает их равновеликими.
Визуальный способ
Существует также наглядный, но неточный способ. Нужно взять листок в клеточку и нарисовать на нём многоугольники. Если рисунок получился большой — не страшно, так будет только проще в дальнейшем. Следующий шаг — посчитать количество клеток, которое заняла каждая фигура и сравнить. Если оно равно, равновеликость доказана. Опять же метод не точный, но для введения в концепцию площадей и их «равности» подойдёт.
Иногда встречается словосочетание «равносоставленная фигура». Такими называют произвольные многоугольники, которые можно составить друг из друга путём разрезания одного из них на одинаковые объекты и перекладывания. Например, если прямоугольник 4 на 1 нарезать на одинаковые части — квадраты 1 на 1, то из полученных маленьких квадратов можно составить один большой со стороной 2. Но это не более чем забавное свойство некоторых фигур и в геометрии фактически почти не используется.