Что значит мнимое число
Откуда есть пошло комплексное число
В современной математике комплексное число является одним из фундаментальнейших понятий, находящее применение и в «чистой науке», и в прикладных областях. Понятно, что так было далеко не всегда. В далекие времена, когда даже обычные отрицательные числа казались странным и сомнительным нововведением, необходимость расширения на них операции извлечения квадратного корня была вовсе неочевидной. Тем не менее, в середине XVI века математик Рафаэль Бомбелли вводит комплексные (в данном случае точнее сказать, мнимые) числа в оборот. Собственно, предлагаю посмотреть, в чем была суть затруднений, доведших в итоге солидного итальянца до подобных крайностей.
Существует распространенное заблуждение, что комплексные числа потребовались для того, чтобы решать квадратные уравнения. На самом деле, это совершенно не так: задача поиска корней квадратного уравнения никоим образом введение комплексных чисел не мотивирует. Вот совершенно.
Давайте убедимся сами. Всякое квадратное уравнение можно представить в виде: .
Геометрически, это означает, что мы хотим найти точки пресечения некоторой прямой и параболы
Я тут даже картинку сделал, для иллюстрации.
Как нам всем хорошо известно из школы, корни квадратного уравнения (в указанных выше обозначениях) находятся по следующей формуле:
Оказываются возможными 3 варианта:
1. Подкоренное выражение положительно.
2. Подкоренное выражение равно нулю.
3. Подкоренное выражение отрицательно.
В первом случае имеются 2 различных корня, во втором два совпадающих, в третьем уравнение «не решается». Все эти случаи имеют вполне наглядную геометрическую интерпретацию:
1. Прямая пересекает параболу (синяя прямая на рисунке).
2. Прямая касается параболы.
3. Прямая не имеет с параболой общих точек (сиреневая прямая на рисунке).
Ситуация проста, логична, непротиворечива. Пытаться извлекать квадратный корень из отрицательного числа нет совершенно никаких оснований. Никто и не пытался.
Обстановка существенно изменилась, когда пытливая математическая мысль добралась до кубических уравнений. Чуть менее очевидно, используя некоторую несложную подстановку, всякое кубическое уравнение можно свести к виду: . С геометрической точки зрения ситуация похожа на предыдущую: мы ищем точку пересечения прямой и кубической параболы.
Взгляните на картинку:
Существенное отличие от случая квадратного уравнения в том, что какую бы прямую мы не взяли, она всегда пересечет параболу. Т.е., уже из чисто геометрических соображений, кубическое уравнение всегда имеет хотя бы одно решение.
Найти его можно воспользовавшись формулой Кардано:
где .
Немного громоздко, но пока, вроде бы, все в порядке. Или нет?
Вообще, формула Кардано — это яркий пример «принципа Арнольда» в действии. И что характерно, Кардано никогда на авторство формулы не претендовал.
Вернемся, однако, к нашим баранам. Формула замечательная, без преувеличение великое достижение математики начала-середины XVI века. Но есть у нее один нюанс.
Возьмем классический пример, который рассматривал еще Бомбелли: .
Внезапно, ,
и, соответственно, .
Приплыли. А формулу жалко, а формула-то хорошая. Тупик. При том, что решение у уравнения, безусловно, есть.
Идея Рафаэля Бомбелли заключалась в следующем: давайте прикинемся шлангом и сделаем вид, что корень из отрицательного — это какое-то число. Мы, конечно, знаем, что таких чисел нет, но тем не менее, давайте представим, что оно существует и его, как обычные числа, можно складывать с другими, умножать, возводить в степень и т.п.
Используя подобный подход, Бомбелли установил, в частности, что ,
и .
Давайте проверим: .
Заметьте, в выкладках никаких предположений о свойствах квадратных корней из отрицательных чисел не предполагалось, кроме упомянутого выше допущения, что они ведут себя как «обычные» числа.
В сумме получаем . Что вполне себе правильный ответ, который элементарно проверяется прямой подстановкой. Это был настоящий прорыв. Прорыв в комплексную плоскость.
Тем не менее, подобные выкладки выглядят как некоторая магия, математический фокус. Отношение к ним, как к некоему трюку, сохранялось среди математиков еще очень долго. Собственно, придуманное Рене Декартом для корней из отрицательных название «мнимые числа» вполне отражает отношение математиков тех времен к таким развлечениям.
Однако, время шло, «трюк» применялся с неизменным успехом, авторитет «мнимых чисел» в глазах математического общества рос, сдерживаемый, однако, неудобством их использования. Лишь получение Леонардом Эйлером (кстати, это именно он ввел ныне общеупотребительное обозначение для мнимой единицы) знаменитой формулы
открыло комплексным числам дорогу в самые различные области математики и ее приложений. Но это уже совсем другая история.
Мнимые числа для описания реальности?
Новый мысленный эксперимент показывает, что квантовая механика не работает без странных чисел, которые становятся отрицательными при возведении в квадрат.
Много веков назад математики были обеспокоены, когда обнаружили, что вычисление свойств определенных кривых требует, казалось бы, невозможного: чисел, которые при умножении сами на себя становятся отрицательными.
Однако физики, возможно, только что впервые показали, что мнимые числа в определенном смысле вещественны.
Группа теоретиков в области квантовой физики разработала эксперимент, результат которого зависит от того, есть ли у природы мнимая сторона. При условии, что квантовая механика верна — предположение, с которым мало кто поспорит, — аргумент команды по существу гарантирует, что комплексные числа являются неизбежной частью описания материальной вселенной.
«Эти комплексные числа обычно являются просто удобным инструментом, но здесь оказывается, что они действительно имеют какое-то материальное значение», — сказал Тамаш Вертези, физик из Института ядерных исследований Венгерской академии наук, который много лет назад утверждал обратное. «Мир таков, что ему действительно нужны эти комплексные числа», — сказал он.
В квантовой механике поведение частицы или группы частиц выражается волнообразным объектом, известным как волновая функция или ψ. Волновая функция прогнозирует вероятные результаты измерений, такие как вероятное положение или импульс электрона. Так называемое уравнение Шрёдингера описывает, как волновая функция изменяется во времени — и это уравнение включает i.
Физики никогда не знали, что с этим делать. Когда Эрвин Шрёдингер вывел уравнение, которое теперь носит его имя, он надеялся избавиться от i. «Что неприятно и против чего прямо следует возражать, так это против использования комплексных чисел, — писал он Хендрику Лоренцу в 1926 году, — Ψ, безусловно, является вещественной функцией».
Желание Шрёдингера, безусловно, было правдоподобным с математической точки зрения: любое свойство комплексных чисел может быть зафиксировано комбинациями вещественных чисел, а также новыми правилами, открывая математические возможности полностью вещественной версии квантовой механики.
Действительно, переход оказался достаточно простым, так что Шрёдингер почти сразу открыл то, что он считал «истинным волновым уравнением», которое «сторонилось» i. «Еще один камень с души упал», — написал он Максу Планку менее чем через неделю после своего письма Лоренцу. Все вышло именно так, как хотелось.
Но использование вещественных чисел для моделирования сложной квантовой механики неудобное и абстрактное занятие, и Шрёдингер признал, что его полностью вещественное уравнение слишком громоздко для повседневного использования. В течение года он описывал волновые функции как комплексные, в том виде, в каком их представляют сегодня физики.
«Любой, кто хочет выполнить работу, использует комплексное описание», — сказал Мэтью МакКейг, учёный в области информатики из Технологического университета Квинсленда в Австралии.
Однако формулировка квантовой механики с помощью вещественных чисел сохранилась как свидетельство того, что комплексная версия просто необязательна. Например, команды, включая Вертези и МакКейга, показали в 2008 и 2009 годах, что и без i они могут идеально предсказать результат известного эксперимента в квантовой физике, известного как тест Белла.
Новое исследование, которое было опубликовано на сервере научных препринтов arxiv.org в январе, обнаружило, что ранние предложения по тестам Белла просто недостаточно продвинулись, чтобы опровергнуть версию квантовой физики с вещественными числами. Это исследование предлагает более сложный эксперимент Белла, который, похоже, требует комплексных чисел.
Ранние исследования привели людей к выводу, что «в квантовой теории комплексные числа лишь удобны, но не необходимы», — писали авторы, в число которых входят Марк-Оливье Рену из Института фотонных наук в Испании и Николя Жизен из Женевского университета. «Мы доказываем ошибочность этого вывода».
Группа отказалась публично обсуждать свою работу, поскольку он все еще находится на экспертной оценке.
Тест Белла показывает, что пары удаленных друг от друга частиц могут обмениваться информацией в едином «запутанном» состоянии. Если бы монета 25 центов в штате Мэн могла «запутаться», например, с такой же монетой в Орегоне, то повторяющиеся подбрасывания показали бы, что всякий раз, когда одна монета падает орлом, ее дальний партнер, как ни странно, выпадет решкой. Точно так же в стандартном эксперименте теста Белла запутанные частицы отправляются двум физикам с вымышленными именами Алиса и Боб. Они измеряют частицы и, сравнивая измерения, обнаруживают, что результаты коррелированы таким образом, что это не поддаётся объяснению, разве что частицы обмениваются информацией.
Модернизированный эксперимент добавляет второй источник пар частиц. Одна пара достается Алисе и Бобу. Вторая пара, «родом» из другого места, отправляется Бобу и третьему лицу, Чарли. В квантовой механике с комплексными числами частицы, которые получают Алиса и Чарли, не обязательно должны быть запутаны друг с другом.
Однако никакое описание в виде вещественных чисел не может воспроизвести модель корреляций, которую будут измерять три физика. В новой статье показано, что рассмотрение системы как вещественной требует введения дополнительной информации, которая обычно находится в мнимой части волновой функции. Частицы Алисы, Боба и Чарли должны разделять эту информацию, чтобы воспроизводить те же корреляции, что и в стандартной квантовой механике. И единственный путь приспособиться к этому разделению — это перепутать все их частицы друг с другом.
В предыдущих воплощениях теста Белла электроны Алисы и Боба поступали из одного источника, поэтому дополнительная информация, которую они должны были нести в описании вещественных чисел, не представляла проблемы. Но в тесте Белла с двумя источниками, где частицы Алисы и Чарли происходят из независимых источников, фиктивная трехсторонняя запутанность не имеет физического смысла.
Даже без привлечения Алисы, Боба и Чарли для фактического проведения эксперимента, который представляет новая статья, большинство исследователей крайне уверены, что стандартная квантовая механика верна и, следовательно, эксперимент найдет ожидаемые корреляции. Если это так, то одни только вещественные числа не могут полностью описать природу.
«В статье устанавливается, что существуют истинные комплексные квантовые системы», — сказал Вальтер Моретти, физик-математик из Университета Тренто в Италии. Этот результат стал для него совершенно неожиданным.
Тем не менее велика вероятность того, что когда-нибудь эксперимент состоится. Это будет непросто, но технических препятствий нет. И глубокое понимание поведения усложняющихся квантовых сетей будет становиться все более актуальным, поскольку исследователи продолжают связывать многочисленные Алисы, Бобы и Чарли через возникающие квантовые сети.
«Поэтому мы верим, что опровержение вещественной квантовой физики произойдет в ближайшем будущем», — пишут авторы.
Числа. Комплексные (мнимые) числа.
Множество всех комплексных чисел с арифметическими операциями есть поле и обычно обозначают как .
Мнимое число (либо чисто мнимое число) — комплексное число с действительной частью, равной нулю. Раньше этим термином обозначали комплексные числа.
Комплексные числа изображаются на комплексной плоскости:
Например, построим на комплексной плоскости следующие комплексные числа:
,
,
,
,
,
,
,
,
,
.
Действия над комплексными числами.
означает, что a = c и b = d (2 комплексных числа равны между собой только в том случае, если равны их действительные и мнимые части).
(a + bi) + (c + di) = (a + c) + (b + d)i.
Для того чтобы сложить 2 комплексных числа нужно сложить их действительные и мнимые части:
(a + bi) – (c + di) = (a – c) + (b – d)i.
Действие аналогично сложению, отличие только в том, что вычитаемое берем в скобки, а потом – как обычно раскрываем их со сменой знака:
У числа, которое мы получили 2, а не 3 части. Так как действительная часть является составной: . Что было понятней ответ перепишем так:
.
Рассчитываем 2-ю разность:
Здесь действительная часть тоже составная: .
Приведем короткий пример с «нехорошей» мнимой частью: . В этом случае без скобок никак не обойтись.
Найдем произведение комплексных чисел ,
Раскрываем скобки, как обычно. Обратите внимание, что и будьте внимательны.
Напомним: Чтобы умножить многочлен на многочлен надо все члены 1-го многочлена умножить на каждый член другого многочлена.
Очевидно, что .
Как и в сумме, в произведении комплексных чисел работает перестановочный закон: .
Произведение 2-х сопряжённых комплексных чисел равно положительному действительному числу.
Если делитель ненулевой, деление всегда возможно.
Есть комплексные числа ,
. Найдем частное
.
Деление чисел производится способом умножения знаменателя и числителя на сопряженное знаменателю выражение.
Напомним, что и смотрим на наш знаменатель:
. В знаменателе уже имеется
, поэтому сопряженным выражением в данном случае оказывается
, т.е.
.
Из правила, знаменатель необходимо домножить на , и, чтобы ничего не изменилось, умножить числитель на такое же число
:
Дальше в числителе раскрываем скобки. А в знаменателе пользуемся формулой (при
).
Часто перед делением дробь лучше упростить.
Свойства комплексных чисел.
1. Основная теорема алгебры.
У всех, не являющихся константой многочленов (от одной переменной) с комплексными коэффициентами есть как минимум 1 корень в поле комплексных чисел.
2. Формула Муавра и извлечение корней из комплексных чисел.
Эта формула помогает возводить в целую степень комплексное число, не равное нулю, которое представлено в тригонометрической форме.
Формула Муавра имеет вид:
где r — модуль, а φ — аргумент комплексного числа.
Аналогичная формула применяется также и при вычислении корней n-ой степени из комплексного числа, не равного нулю:
Заметим, что корни n-й степени из комплексного числа, не равного нулю, всегда есть, и их чило равно n. На комплексной плоскости, как видно из формулы, все эти корни оказываются вершинами правильного n-угольника, который вписан в окружность радиуса с центром в начале координат.
Например, корни 5-ой степени из единицы (вершины пятиугольника):
Мнимое число
Определения
Пусть — комплексное число, где
и
— вещественные числа. Числа
или
и
или
называются соответственно вещественной и мнимой (аналогично англ. real, imaginary ) частями
.
См. также
Примечания
Полезное
Смотреть что такое «Мнимое число» в других словарях:
МНИМОЕ ЧИСЛО — (imaginary number) Число (обозначается i), квадрат которого равен –1. Мнимые числа введены для решения уравнений, когда они не имеют действительных корней. Например, корень из 1 может принимать два действительных значения: +1 и –1. Следовательно … Экономический словарь
МНИМОЕ ЧИСЛО — МНИМОЕ ЧИСЛО, см. число, МНИМОЕ … Научно-технический энциклопедический словарь
МНИМОЕ ЧИСЛО — см. Комплексное число … Большой Энциклопедический словарь
мнимое число — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN imaginary number … Справочник технического переводчика
мнимое число — см. Комплексное число. * * * МНИМОЕ ЧИСЛО МНИМОЕ ЧИСЛО, см. Комплексное число (см. КОМПЛЕКСНОЕ ЧИСЛО) … Энциклопедический словарь
МНИМОЕ ЧИСЛО — см. Комплексное число … Естествознание. Энциклопедический словарь
ЧИСЛО МНИМОЕ — ЧИСЛО, МНИМОЕ, квадратный корень (Ц) из отрицательного числа. Самый простой, Ц 1, обычно обозначается i. Эти числа получили такое название, потому что, когда их впервые открыли, то считали бессмысленными. Тем не менее, они незаменимы при решении… … Научно-технический энциклопедический словарь
Число (матем.) — Число, важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие Ч. изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним… … Большая советская энциклопедия