Что значит машинное обучение

Что такое машинное обучение и как оно работает

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Что такое машинное обучение?

Единого определения для machine learning (машинного обучения) пока нет. Но большинство исследователей формулируют его примерно так:

Машинное обучение — это наука о том, как заставить ИИ учиться и действовать как человек, а также сделать так, чтобы он сам постоянно улучшал свое обучение и способности на основе предоставленных нами данных о реальном мире.

Вот как определяют машинное обучение представители ведущих ИТ-компаний и исследовательских центров:

Nvidia: «Это практика использования алгоритмов для анализа данных, изучения их и последующего определения или предсказания чего-либо».

Университет Стэнфорда: «Это наука о том, как заставить компьютеры работать без явного программирования».

McKinsey & Co: «Машинное обучение основано на алгоритмах, которые могут учиться на данных, не полагаясь на программирование на основе базовых правил».

Вашингтонский университет: «Алгоритмы машинного обучения могут сами понять, как выполнять важные задачи, обобщая примеры, которые у них есть».

Университет Карнеги Меллон: «Сфера машинного обучения пытается ответить на вопрос: «Как мы можем создавать компьютерные системы, которые автоматически улучшаются по мере накопления опыта и каковы фундаментальные законы, которые управляют всеми процессами обучения?»

История машинного обучения

Дмитрий Ветров, профессор-исследователь, заведующий Центром глубинного обучения и байесовских методов Факультета компьютерных наук ВШЭ, отмечает: изначально компьютеры использовались для задач, алгоритм решения которых был известен человеку. И только в последние годы пришло понимание, что они могут находить способ решать задачи, для которых алгоритма решения нет или он не известен человеку. Так появился искусственный интеллект в широком смысле и технологии машинного обучения в частности.

Как связаны машинное и глубокое обучение, ИИ и нейросети

Нейросети — один из видов машинного обучения.

Глубокое обучение — это один из видов архитектуры нейросетей.

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Глубокое обучение также включает в себя исследование и разработку алгоритмов для машинного обучения. В частности — обучения правильному представлению данных на нескольких уровнях абстракции. Системы глубокого обучения за последние десять лет добились особенных успехов в таких областях как обнаружение и распознавание объектов, преобразование текста в речь, поиск информации.

Какие задачи решает машинное обучение?

С помощью машинного обучения ИИ может анализировать данные, запоминать информацию, строить прогнозы, воспроизводить готовые модели и выбирать наиболее подходящий вариант из предложенных.

Особенно полезны такие системы там, где необходимо выполнять огромные объемы вычислений: например, банковский скоринг (расчет кредитного рейтинга), аналитика в области маркетинговых и статистических исследований, бизнес-планирование, демографические исследования, инвестиции, поиск фейковых новостей и мошеннических сайтов.

В Леруа Мерлен используют Big Data и Machine Learning, чтобы находить остатки товара на складах.

В маркетинге и электронной коммерции машинное обучение помогает настроить сервисы и приложения так, чтобы они выдавали персональные рекомендации.

Стриминговый сервис Spotify с помощью машинного обучения составляет для каждого пользователя персональные подборки треков на основе того, какую музыку он слушает.

Сегодня ключевые исследования сфокусированы на разработке машинного обучения с эффективным использованием данных — то есть систем глубокого обучения, которые могут обучаться более эффективно, с той же производительностью, за меньшее время и с меньшими объемами данных. Такие системы востребованы в персонализированном здравоохранении, обучении роботов с подкреплением, анализе эмоций.

Китайский производитель «умных» пылесосов Ecovacs Robotics обучил свои пылесосы распознавать носки, провода и другие посторонние предметы на полу с помощью множества фотографий и машинного обучения.

«Умная» камера на базе микрокомпьютера Raspberry Pi 3B+ с помощью фреймворка TensorFlow Light научилась распознавать улыбку и делать снимок ровно в этот момент, а также — выполнять голосовые команды.

В сфере инвестиций алгоритмы на базе машинного обучения анализируют рынок, отслеживают новости и подбирают активы, которые выгоднее всего покупать именно сейчас. При этом с помощью предикативной аналитики система может предсказать, как будет меняться стоимость тех или иных акций за конкретный период и корректирует свои данные после каждого важного события в отрасли.

Согласно исследованию BarclayHedge, более 50% хедж-фондов используют ИИ и машинное обучение для принятия инвестиционных решений, а две трети — для генерации торговых идей и оптимизации портфелей.

Наконец, машинное обучение способствует настоящим прорывам в науке.

Нейросеть AlphaFold от DeepMind в 2020 году смогла расшифровать механизм сворачивания белка. Над этой задачей ученые-биологи бились больше 50 лет.

Как устроено машинное обучение

По словам Дмитрия Ветрова, процесс машинного обучения выглядит следующим образом.

Есть большое число однотипных задач, в которых известны условие и правильный ответ или один из возможных ответов. Например, машинный перевод, где условие — фраза на одном языке, а правильный ответ — ее перевод на другой язык.

Модель машинного обучения, например, глубинная нейронная сеть, работает по принципу «черного ящика», который принимает на вход условие задачи, а на выходе выдает произвольный ответ. Например, какой-либо текст на втором языке.

У «черного ящика» есть дополнительные параметры, которые влияют на то, как будет обрабатываться входной сигнал. Процесс обучения нейросети заключается в поиске таких значений параметров, при которых она будет выдавать ответ, максимально близкий к правильному. Когда мы настроим параметры нужным образом, нейросеть сможет правильно (или максимально близко к этому) решать и другие задачи того же типа — даже если никогда не знала ответов к ним.

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Основные виды машинного обучения

1. Классическое обучение

Это простейшие алгоритмы, которые являются прямыми наследниками вычислительных машин 1950-х годов. Они изначально решали формальные задачи — такие, как поиск закономерностей в расчетах и вычисление траектории объектов. Сегодня алгоритмы на базе классического обучения — самые распространенные. Именно они формируют блок рекомендаций на многих платформах.

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Но классическое обучение тоже бывает разным:

Обучение с учителем — когда у машины есть некий учитель, который знает, какой ответ правильный. Это значит, что исходные данные уже размечены (отсортированы) нужным образом, и машине остается лишь определить объект с нужным признаком или вычислить результат.

Такие модели используют в спам-фильтрах, распознавании языков и рукописного текста, выявлении мошеннических операций, расчете финансовых показателей, скоринге при выдаче кредита. В медицинской диагностике классификация помогает выявлять аномалии — то есть возможные признаки заболеваний на снимках пациентов.

Обучение без учителя — когда машина сама должна найти среди хаотичных данных верное решение и отсортировать объекты по неизвестным признакам. Например, определить, где на фото собака.

Эта модель возникла в 1990-х годах и на практике используется гораздо реже. Ее применяют для данных, которые просто невозможно разметить из-за их колоссального объема. Такие алгоритмы применяют для риск-менеджмента, сжатия изображений, объединения близких точек на карте, сегментации рынка, прогноза акций и распродаж в ретейле, мерчендайзинга. По такому принципу работает алгоритм iPhoto, который находит на фотографиях лица (не зная, чьи они) и объединяет их в альбомы.

2. Обучение с подкреплением

Это более сложный вид обучения, где ИИ нужно не просто анализировать данные, а действовать самостоятельно в реальной среде — будь то улица, дом или видеоигра. Задача робота — свести ошибки к минимуму, за что он получает возможность продолжать работу без препятствий и сбоев.

Обучение с подкреплением инженеры используют для беспилотников, роботов-пылесосов, торговли на фондовом рынке, управления ресурсами компании. Именно так алгоритму AlphaGo удалось обыграть чемпиона по игре Го: просчитать все возможные комбинации, как в шахматах, здесь было невозможно.

3. Ансамбли

Это группы алгоритмов, которые используют сразу несколько методов машинного обучения и исправляют ошибки друг друга. Их получают тремя способами:

Ансамбли работают в поисковых системах, компьютерном зрении, распознавании лиц и других объектов.

4. Нейросети и глубокое обучение

Самый сложный уровень обучения ИИ. Нейросети моделируют работу человеческого мозга, который состоит из нейронов, постоянно формирующих между собой новые связи. Очень условно можно определить их как сеть со множеством входов и одним выходом. Нейроны образуют слои, через которые последовательно проходит сигнал. Все это соединено нейронными связями — каналами, по которым передаются данные. У каждого канала свой «вес» — параметр, который влияет на данные, которые он передает.

ИИ собирает данные со всех входов, оценивая их вес по заданным параметрами, затем выполняет нужное действие и выдает результат. Сначала он получается случайным, но затем через множество циклов становится все более точным. Хорошо обученная нейросеть работает, как обычный алгоритм или точнее.

Настоящим прорывом в этой области стало глубокое обучение, которое обучает нейросети на нескольких уровнях абстракций.

Здесь используют две главных архитектуры:

Нейросети с глубоким обучением требуют огромных массивов данных и технических ресурсов. Именно они лежат в основе машинного перевода, чат-ботов и голосовых помощников, создают музыку и дипфейки, обрабатывают фото и видео.

Проблемы машинного обучения

Перспективы машинного обучения: не начнет ли ИИ думать за нас?

Вопрос о том, не сделает ли машинное обучение ИИ умнее человека, изначально не совсем корректный. Дело в том, что в природе нет универсальной иерархии в плане интеллекта. Мы по умолчанию считаем себя умнее остальных существ, но, к примеру, белка способна запоминать местонахождения тысячи тайников с запасами, что не под силу даже очень умному человеку. А у осьминогов каждое щупальце способно мыслить и действовать самостоятельно.

Так же и с ИИ: он уже превосходит нас во всем, что касается сложных вычислений, но по-прежнему не способен сам ставить себе новые задачи и решать их, подбирая нужные данные и условия. Это ограничение в последние годы пытаются преодолеть в рамках сильного ИИ, но пока безуспешно. Надежду на решение этой проблемы внушают квантовые компьютеры, которые выходят за пределы обычных вычислений.

Зато мы в ближайшем будущем сможем заметно расширить свои возможности с помощью ИИ, передавая ему рутинные и затратные операции, общаясь и управляя техникой при помощи нейроинтерфейсов.

Источник

🤖 Машинное обучение для начинающих: основные понятия, задачи и сфера применения

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Ilya Ginsburg

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Что такое машинное обучение?

Для решения каждой задачи создается модель, теоретически способная приблизиться к человеческому уровню решения данной задачи при правильных значениях параметров. Обучение этой модели – это постоянное изменение ее параметров, чтобы модель выдавала все лучшие и лучшие результаты.

Разумеется, это лишь общее описание. Как правило, вы не придумываете модель с нуля, а пользуетесь результатами многолетних исследований в этой области, поскольку создание новой модели, превосходящей существующие хотя бы на одном виде задач – это настоящее научное достижение. Методы задания целевой функции, определяющей, насколько хороши выдаваемые моделью результаты (функции потерь), также занимают целые тома исследований. То же самое относится к методам изменения параметров модели, ускорения обучения и многим другим. Даже начальная инициализация этих параметров может иметь большое значение!

В процессе обучения модель усваивает признаки, которые могут оказаться важными для решения задачи. Например, модель, отличающая изображения кошек и собак, может усвоить признак «шерсть на ушах», наличие которого скорее свойственно собакам, чем кошкам. Большинство таких признаков нельзя описать словами: вы же не сможете объяснить, как вы отличаете кошку от собаки, правда? Выделение таких признаков зачастую не менее, а иногда намного более ценно, чем решение основной задачи.

Чем машинное обучение отличается от искусственного интеллекта?

Термин «искусственный интеллект» был введен еще в 50-е годы прошлого века. К нему относится любая машина или программа, выполняющая задачи, «обычно требующие интеллекта человека». Со временем компьютеры справлялись все с новыми и новыми задачами, которые прежде требовали интеллекта человека, то есть то, что прежде считалось «искусственным интеллектом» постепенно перестало с ним ассоциироваться.

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Модели и параметры

Самая простая модель имеет всего два параметра. Если нужно предсказать результат, линейно зависящий от входного признака, достаточно найти параметры a и b в уравнении прямой линии y=ax+b. Такая модель строится с помощью линейной регрессии. На следующем рисунке показана модель, предсказывающая «уровень счастья» человека по его собственной оценке в зависимости от уровня его дохода (красная линия):

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучениеМодель, предсказывающая уровень счастья человека по уровню его дохода

К сожалению, в реальной жизни простые линейные зависимости встречаются крайне редко. Даже на этом графике видно, что высокий уровень дохода выбивается из линейной зависимости – одних денег для счастья все-таки недостаточно. Даже полиномиальные модели, имеющие количество параметров, равное степени полинома, пригодны лишь для очень простых задач.

Хотя алгоритм обратного распространения ошибки (backropagation) был придуман довольно давно, до недавнего времени не было технических возможностей для реализации глубоких нейронных сетей, содержащих большое количество слоев. Быстрое развитие микроэлектроники привело к появлению высокопроизводительных GPU и TPU, способных обучать глубокие нейронные сети без суперкомпьютеров. Именно широкое распространение глубокого обучения стоит за тем бумом искусственного интеллекта, о котором вы слышите отовсюду.

Учиться, учиться и учиться

Машинное обучение требует много данных. В идеале, тренировочные данные должны описывать все возможные ситуации, чтобы модель могла подготовиться ко всему. Конечно, на практике добиться этого невозможно, но нужно стараться, чтобы тренировочный набор был достаточно разнообразным.

Стратегия обучения выбирается в зависимости от поставленной задачи и имеющихся данных для обучения. Выделяют обучение с учителем (supervised learning), обучение без учителя (unsupervised learning) и обучение с подкреплением (reinforcement learning).

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Обучение с учителем

Это обучение на примерах, при котором «учителем» называются правильные ответы, которые, в идеале, должна выдавать модель для каждого случая. Эти ответы называются метками (название происходит из задач классификации, модели которых практически всегда обучаются с учителем – там эти ответы являются метками классов), а данные с метками – размеченными.

К сожалению, с моделями машинного обучения все не так просто, поскольку мы сами не знаем, какой ответ будет «правильным» для каждого случая! Ведь именно для получения этих ответов нам и нужна модель. И практически всегда нам нужно, чтобы модель хорошо усвоила зависимость результата от входных признаков, а не точно повторяла результаты тренировочного набора, который в реальной жизни может содержать и ошибочные результаты (шум). Если модель выдает верные результаты на всем тренировочном наборе, но часто ошибается на новых данных, говорят, что она переобучена на этом наборе.

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучениеПереобученная модель классификации (зеленая линия) выдает верные результаты на всем тренировочном наборе, но правильно обученная модель (черная линия), скорее всего, будет не так сильно ошибаться на новых данных

Обучение без учителя

Некоторые задачи можно решить и без размеченных тренировочных данных – например, задачи кластеризации. Модель сама решает, как надо сгруппировать данные в кластеры, чтобы похожие экземпляры данных попадали в один кластер, а непохожие – не попадали.

Такую стратегию обучения, использует, например, Airbnb, объединяя в группы похожие дома, и Google News, группируя новости по их темам.

Частичное привлечение учителя

Как и предполагает название, обучение с частичным привлечение учителя (semi-supervised learning) – это смесь обучения с учителем и без него. Этот метод использует небольшое количество размеченных данных и множество данных без меток. Сначала модель обучается на размеченных данных, а затем эта частично обученная модель используется для разметки остальных данных (псевдо-разметка). Затем вся модель обучается на смеси размеченных и псевдо-размеченных данных.

Популярность такого подхода резко выросла в последнее время в связи с широким распространением генеративных состязательных сетей (GAN), использующих размеченные данные для генерации совершенно новых данных, на которых продолжается обучение модели. Если частичное привлечение учителя когда-нибудь станет не менее эффективным, чем обучение с учителем, то огромные вычислительные мощности станут более важными, чем большое количество размеченных данных.

Обучение с подкреплением

Это обучение методом проб и ошибок. Каждый раз, когда модель достигает поставленной цели, она получает «поощрение», а если не получает – «наказание». Эта стратегия обычно используется для обучения моделей, непосредственно взаимодействующих с реальным миром: моделей автоматического вождения автомобилей, игры в различные игры и т.д.

Лучшие курсы для изучения машинного обучения

Сферы применения машинного обучения

Машинное обучение имеет огромное количество применений, но особенно выделяются два крупных и важных направления: машинное зрение (computer vision, CV) и обработка естественного языка (natural language processing, NLP), каждое из которых объединяет множество различных задач.

Что значит машинное обучение. Смотреть фото Что значит машинное обучение. Смотреть картинку Что значит машинное обучение. Картинка про Что значит машинное обучение. Фото Что значит машинное обучение

Машинное зрение

Машинное зрение – это все приложения, включающие обработку изображений и видео. В частности, современные модели способны решать следующие задачи машинного зрения:

Обработка естественного языка

Обработка естественного языка – это революция в области интерфейса между человеком и компьютером. Она включает в себя следующие задачи:

Если вы хотите освоить востребованную профессию, стоит обратить внимание на курс факультета искусственного интеллекта образовательной онлайн-платформы GeekBrains. Одна из самых объемных и содержательных на рынке учебных программ включает основательную математическую подготовку, изучение программирования и статистического анализа, а также работу с базами данных, нейронные сети и машинное обучение. Курс построен на основе практической работы с ведущими специалистами технологических компаний и личным помощником-куратором. Выпускники получат диплом о профессиональной подготовке и помощь в трудоустройстве, а также смогут добавить в портфолио реализованные проекты.

Источник

Машинное обучение: просто о сложном

Время чтения : 8 минут

Что такое машинное обучение?

Машинное обучение — это специализированный способ, позволяющий обучать компьютеры, не прибегая к программированию. Отчасти это похоже на процесс обучения младенца, который учится самостоятельно классифицировать объекты и события, определять взаимосвязи между ними.

ML открывает новые возможности для компьютеров в решении задач, ранее выполняемых человеком, и обучает компьютерную систему составлению точных прогнозов при вводе данных. Оно стимулирует рост потенциала искусственного интеллекта, являясь его незаменимым помощником, а в представлении многих даже синонимом.

Наконец, машинное обучение — одна из наиболее распространенных форм применения искусственного интеллекта современным бизнесом. Если компания еще не использует ML, то в ближайшее время наверняка оценит его потенциал, а ИИ станет основным двигателем IT-стратегии многих предприятий. Ведь искусственный интеллект уже сегодня играет огромную роль в трансформации развития ИТ-индустрии: клиенты больше внимания уделяют интеллектуальным приложениям, чтобы развивать свой бизнес с помощью ИИ. Он применим к любому рабочему процессу, реализованному в программном обеспечении, — не только в рамках традиционной деловой части предприятий, но также в исследованиях, производственных процессах и, во все большей степени, самих продуктах.

Необычайный успех machine learning привел к тому, что исследователи и эксперты в области ИИ сегодня по умолчанию выбирают этот метод для решения задач.

Machine Learning: принципы и задачи

В основе машинного обучения лежат три одинаково важных компонента:

Примечание
Доверие к результатам машинного обучения должно строиться на понимании: они хороши настолько, насколько хороши данные, на которых обучается алгоритм.

В основу существования и развития машинного обучения легли три основных принципа:

Задачи, которые способно решить машинное обучение, напрямую определяют выгоды для бизнеса и возможности решения социальных проблем государствами разных стран. К основным задачам относятся:

Как видим, спектр задач машинного обучения широк, что подтверждает его перспективность в использовании как коммерческими предприятиями, так и в социальных проектах.

Как это работает: типы машинного обучения

Для простоты восприятия типы машинного обучения принято разделять на три категории:

Обучение с учителем

Этот тип максимально похож на процесс познания окружающего мира ребенком, только в роли малыша выступает алгоритм. Данные, подготовленные для анализа, изначально содержат правильный ответ, поэтому цель алгоритма — не ответить, а понять, «Почему именно так?» путем выявления взаимосвязей. Результатом становится способность выстраивать корректные прогнозы и модели.

Обучение без учителя

Для данного типа обучения ключевым понятием является паттерн — обрабатывая значительные массивы данных, алгоритм должен сперва самостоятельно выявлять закономерности. На следующем этапе на основе выявленных закономерностей машина интерпретирует и систематизирует данные.

Обучение с подкреплением

Принципы обучения с подкреплением заимствованы из психологических экспериментов: машина пытается найти оптимальные действия, которые будет предпринимать, находясь в наборе различных сценариев. Эти действия могут иметь как краткосрочные, так и долгосрочные последствия, а от алгоритма требуется обнаружить эти связи.

Инструменты machine learning

Инструменты машинного обучения используют на следующих этапах:

Для выполнения каждого из этих этапов применяются специализированные платформы. Они различаются по языку программирования (Python, Cython, C, C++, CUDA, Java), операционным системам (Linux, Mac OS, Windows) и тому, какие задачи можно решить с их помощью.

Сегодня на рынке представлено несколько десятков программных инструментов:

Практическое применение ML-технологий

Робототехника

В будущем роботы станут самообучаться ранее поставленным перед ними задачам. К примеру, смогут работать над добычей полезных ископаемых — нефти, газа и других. Они смогут, например, изучать морские глубины, тушить пожары. Программисты могут самостоятельно не писать массивные и сложные программы, опасаясь допустить ошибку в коде. ИИ повлияет и на повышение качества частной жизни человека: у нас уже есть беспилотные автомобили, роботы-пылесосы, трекеры сна, физической активности и здоровья и прочие продукты интернета поведения.

Маркетинг

Самый наглядный пример использования машинного обучения в маркетинге — поисковые системы Google и Яндекс, которые с его помощью контролируют релевантность рекламных объявлений.
Социальные сети FaceBook, ВКонтакте, Instagram и другие применяют собственные аналитические машины для исследования интересов пользователей и совершенствования персонализации новостной ленты.
Маркетинговые исследования, предваряющие разработку и релиз продуктов компании, станут проще с точки зрения реализации, а итоговые данные будут более точными. Выделение кластеров в группах со схожими параметрами превратит кастомизированные предложения в реальность — можно будет решать задачи не групп потребителей, а каждого в отдельности.

Безопасность

Современную сферу обеспечения безопасности невозможно представить без машинного обучения. Системы распознавания лиц в метро и использование камер, сканирующих лица и номера машин при движении по автодорогам, стали неотъемлемой частью человеческой жизни и незаменимыми помощниками для полиции в поиске преступников и потерявшихся людей.

Финансовый сектор и страхование

Более точные биржевые прогнозы и оценка капитализации брендов, решения о выдаче кредитных продуктов частным лицам и предприятиям, определение стоимости и целесообразности страховки и даже снижение очередей в офисах при параллельном сокращении издержек на персонал — только часть возможностей, которые станут доступны в этой сфере.

Общественное питание

На основе Big Data разрабатываются специальные предложения для гостей с учетом загрузки посадочных мест в ресторанах и кафе, функционируют сервисы по планированию закупок для поваров.

Медицина

В медицинских учреждениях машинное обучение позволяет быстро обрабатывать данные пациента, производить предварительную диагностику и подобрать индивидуальное лечение, опираясь на сведения о заболеваниях пациента из базы данных. ML также позволяет автоматически выделять группы риска при появлении новых штаммов вирусных заболеваний.

Добыча полезных ископаемых

Анализ почвы доказывает или опровергает наличие полезных ископаемых, помогает очертить площадь будущей разработки.

Примечание
Серьезным препятствием для повсеместного использования технологий машинного обучения был недостаток у значительного количества компаний финансовых ресурсов и инфраструктуры. Специалисты SberCloud разработал ML Space — платформу для ML-разработки полного цикла и совместной работы Data Science-команд над созданием и развертыванием моделей машинного обучения. Сервис предоставляет уникальную возможность эффективного внедрения машинного обучения в бизнес-процессы.

Резюме

Технологии машинного обучения уже стали частью повседневной жизни, при этом количество стартапов и продуктов на основе машинного обучения активно растет. Будучи причиной технологических революций в некоторых сферах экономики, ML способно быть драйвером в масштабах бизнеса и государств. Сегодня самое время задуматься об интеграции машинного обучения в бизнес-процессы, чтобы не утратить конкурентоспособность.

«Технологии искусственного интеллекта и машинного обучения уже определяют экономический успех предприятий. По данным консалтинговой компании Gartner порядка 50% процессов в сфере обработки и анализа данных будут автоматизированы с помощью ИИ к 2025 году, что снизит острую нехватку высококвалифицированных специалистов. Компания SberCloud следует самым современным трендам. ИИ является неотъемлемой частью разработки наших продуктов и услуг. SberCloud располагает достаточными материальными ресурсами: это и самый мощный в России суперкомпьютер “Кристофари”, облачная инфраструктура и платформа ML Space. Платформа позволяет ускорить, оптимизировать и упростить процесс обучения моделей, препроцессинга данных и развертывания моделей на высокопроизводительной инфраструктуре с целью последующего обращения к этим моделям для распознавания или прогнозирования по новым данным. Сегодня ML Space — это единственная в мире облачная платформа, позволяющая обучать модели более чем на 1000 графических процессоров (GPU)». Мария Рябенко, Старший технический писатель направления AI Cloud

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *